1	Antagonism for NPY signaling reverses cognitive behavior defects induced by
2	activity-based anorexia in mice
3	
4	Natasya Trivena Rokot ^{a#} , Koji Ataka ^{b#*} , Haruki Iwai ^c , Hajime Suzuki ^d , Homare Tachibe ^e ,
5	Timothy Sean Kairupan ^f , Kai-Chun Cheng ^b , Haruka Amitani ^a , Akio Inui ^b , Akihiro
6	Asakawa ^a
7	
8	a. Department of Psychosomatic Internal Medicine, Kagoshima University Graduate
9	School of Medical and Dental Sciences, Kagoshima, Japan.
10	b. Pharmacological Department of Herbal Medicine, Kagoshima University Graduate
11	School of Medical and Dental Sciences, Kagoshima, Japan.
12	c. Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate
13	School of Medical and Dental Sciences, Kagoshima, Japan.
14	d. Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School
15	of Medical and Dental Sciences, Kagoshima, Japan.
16	e. Institute of Laboratory Animal Science Research Support Center, Kagoshima
17	University, Kagoshima, Japan.
18	f. Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia.
19	

- 20 * Corresponding author:
- 21 Koji Ataka, PhD
- 22 Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1,
- 23 Sakuragaoka, Kagoshima, 890-8544, Japan.
- 24 Email: kataka@m3.kufm.kagoshima-u.ac.jp
- 25 Tel: +81 99 275 5752
- 26 Fax: +81 99 275 5749
- 27
- ²⁸ #Authorship note: Natasya Trivena Rokot and Koji Ataka contributed equally to this work.
- 29
- 30

31 ABSTRACT

32 Patients with AN often express psychological symptoms such as body image distortion,

- 33 cognitive biases, abnormal facial recognition, and deficits in working memory. However,
- 34 the molecular mechanisms underlying the impairment of cognitive behaviors in AN
- 35 remain unknown.

In the present study, we measured cognitive behavior using novel object recognition 36 37(NOR) tasks and mRNA expressions in hypothalamic neuropeptides in female C57BL/6J mice with activity-based anorexia (ABA). Additionally, we evaluated the effects of 38antagonists with intracerebroventricular (icv) administration on the impairment of 39cognitive behavior in NOR tasks. Our results showed that NOR indices were lowered, 40 subsequently increasing mRNA levels of agouti-related peptide (AgRP) and neuropeptide 41 Y (NPY), and c-Fos- and AgRP- or NPY-positive cells in the hypothalamic arcuate 42nucleus in ABA mice. We also observed that icv administration of anti-NPY antiserum (2 43μl), anti-AgRP antibody (0.1 μg), and Y5 receptor antagonist CPG71683 (15 nmol) 44significantly reversed the decreased NOR indices. Therefore, our results suggest that 45increased NPY and AgRP signaling in the brain might contribute to the impairment of 46 47cognitive behavior in AN.

Keywords: Anorexia nervosa; Cognitive behavior; Agouti-related peptide; Neuropeptide
Y; Y5 receptor.

50 **1. Introduction**

51Anorexia nervosa (AN) is a serious eating disorder that often occurs in adolescent women and has a higher comorbidity rate with psychiatric disorders and suicide attempts 52compared to other psychiatric disorders (Kask et al., 2016, Udo et al., 2019). 53The fifth edition of the Diagnostic and Statistical Manual of Mental Disorder (DSM-545) lists the following diagnostic criteria: 1) restriction of energy intake, 2) intense fear of 5556gaining weight or becoming fat, 3) body image distortion. Additionally, the severity of AN is categorized by on body mass index (BMI). Despite many available treatments, such 57as medication, behavioral therapy, cognitive-behavioral therapy, and family therapy, 58among others, AN continues to be a refractory disorder because of its unknown etiology. 59Body image distortion, including negative feelings and estimations of body shape and 60 body size, is a hallmark risk factor for development of AN (Dalhoff et al., 2019; Stice and 6162Shaw, 2002). The disturbance of cognitive function has been reported in many studies (Frantz, 1981; Hamsher et al., 1981; Maxwell et al., 1984; Witt et al., 1985; Strupp et al., 63 1986; Palazidou et al., 1990; Pendleton et al., 1991; Szmukler et al., 1992; Hamatani et 64 al., 2016; Tamiya et al., 2018; Olivo et al., 2019). It has been reported that AN patients 6566 have specific cognitive biases, such as negative interpretation biases to eating-related stimuli (Brockmeyer et al., 2018; Shafran et al., 2007). They also exhibit the 67 abnormalities in the recognition of emotional expressions on the faces of people around 68

69	them, as well as their own (Hirot et al., 2016; Sfärlea et al., 2018). Further, AN patients
70	exhibit a deficit of working memory, which is an important function regulating cognition
71	functions (Kemps et al., 2006). Koyama et al. reported that working memory was not
72	recovered, and overall IQ scores were restored after weight gain in AN patients (Koyama
73	et al., 2012). Patients with AN show deficits in cognitive function, including alterations
74	in attentional styles, perceptual processing, working memory, cognitive flexibility, and
75	decision making (Reville et al., 2016). Overcoming these impairments of cognition-
76	related functions is one of the critical aims of AN treatment.
77	An activity-based anorexia (ABA) model in female rodents has been used as a well-
78	validated animal model for AN research (Carrera et al., 2014; Pierce et al., 1994;
79	Routtenberg and Kuznesof, 1967). AN is characterized by the restriction of calorie intake
80	and excessive physical exercise to avoid weight gain, leading to severe weight loss
81	(Lamanna et al., 2019). ABA rodents, which receive the scheduled feeding with free
82	access to running wheels for appropriate periods, exhibit body weight loss, reduction in
83	food intake, and hyperactivity, which are similar to features observed in AN (Schalla and
84	Stengel, 2019). Although it is difficult to assess cognitive behavior impairments in
85	animals as it is possible in AN patients, a previous study showed that female adolescent
86	rats in the ABA condition have poor performance in the novel object recognition (NOR)
87	task, which indicated impairments in object recognition or contextual memory (Boersma

88	et al., 2016). On the other hand, spatial memory measured with the Barnes maze was not
89	altered (Boersma et al., 2016). However, the mechanisms involved in the impairment of
90	cognitive functions in the ABA model remain unclear. The NOR task has been used to
91	investigate cognitive paradigms based on working memory, attention, anxiety, and
92	preference for novelty in rodents in the absence of reward or punishment (Antunes and
93	Biala, 2012; Webster et al., 2014). Rodents approach and explore novel objects more
94	frequently when they are exposed to familiar and novel objects. Therefore, cognitive
95	function can be evaluated by results of the NOR task. Defects in cognitive function, as
96	evaluated by the NOR task, have been observed in various animal models, including
97	Alzheimer's disease, traumatic brain injury, schizophrenia, Parkinson's disease, autism
98	spectrum disorder, and aging (Grayson et al., 2015; Traschütz et al., 2018).
99	Feeding behaviors are controlled by various neuropeptides, including orexigenic
100	peptides: agouti-related peptide (AgRP) and neuropeptide Y (NPY), anorexigenic
101	peptides: proopiomelanocortin (POMC), amphetamine-regulated transcript (CART),
102	oxytocin (OXT), corticotropin-releasing factor (CRF), urocortin1 (Ucn1), and brain-
103	derived neurotrophic factor (BDNF) in the hypothalamus (Sohn, 2015). AgRP and NPY
104	are upregulated under hunger conditions and lead to food intake (Loh et al., 2015; Stütz
105	et al., 2005). High AgRP and NPY levels are reported in AN patients (Moriya et al., 2006;
106	Kaye, 1996) and ABA rats (Stütz et al., 2005). However, the reasons behind upregulated

107	AgRP and NPY in AN remain unclear. In animal experiments, AgRP has been shown to
108	induce stereotypic behavior (Dietrich et al., 2015), and alter spatial navigation in probe
109	trials and spontaneous alteration behavior in the Y-maze test (Zimmer et al., 2019). It is
110	well known that NPY can regulate learning, memory, and anxiolysis (Gøtzsche and
111	Woldbye, 2016; Reichmann and Holzer, 2016). This study aimed to investigate the
112	relationship between central neuropeptides associated with feeding behavior and the
113	deficiency of cognition behaviors in NOR tasks in ABA model mice.
114	
115	2. Materials and methods
116	
117	2.1. Animals
118	
119	Female C57BL/6J mice at 6-8 weeks of age and 15-20 g body weight were purchased
120	from Charles River Laboratories Japan, Inc. (Tokyo, Japan). Mice were individually
121	maintained in a pathogen-free facility under standard conditions at 24 \pm 2°C and 50 \pm
122	10% humidity with a 12-h/12-h light-dark cycle (light-dark phase reversal: dark phase
123	from 11:00 AM to 11:00 PM) and ad libitum access to sterile standard chow (3.4 kcal/g;
124	CE-2, CLEA Japan Inc., Tokyo, Japan) and water in the animal facility of Kagoshima
125	University. All animal protocols for this study were approved by the Kagoshima

 $\overline{7}$

126	University Committee for Animal Experiments, (MD17118 and MD19004). Experiments
127	were performed in accordance with the relevant guidelines and regulations.
128	
129	2.2. ABA procedure
130	
131	The ABA procedure was performed as previously described (François et al., 2015;
132	Jésus et al., 2014). Briefly, mice were randomly assigned to four experimental groups: ad
133	libitum feeding (Normal group), free access to running wheel with scheduled feeding
134	(ABA group), scheduled feeding (food restriction, FR group), and free access to running
135	wheel with ad libitum feeding (Wheel group). All mice were housed individually and had
136	free access to food and water for 1 week, and mice in the ABA and Wheel groups were
137	able to freely access a running wheel for 3 days before the start of the experiments. Food
138	access was progressively limited in the ABA and FR groups to 6 h on Day 1, 5 h on Day
139	2, 4 h on Day 3, and 3 h on Days 4 to 8. Food was provided at the beginning of the dark
140	phase. The schematic diagram of ABA schedule is presented in Fig. 1.
141	
142	2.3. Measurements of body weight, food intake, and running wheel activity
143	

Body weight and the number of wheel cycles were measured at the end of the light

145	phase (11:00 AM). Food intake was measured at the end of scheduled feeding in the ABA
146	and FR groups, and at the end of the light phase (11:00 AM) in the Normal and Wheel
147	groups. Running wheel activity (km/day) was calculated.
148	

150

149

2.4. NOR task

151On Day 8, a NOR task was performed 6 h after the end of scheduled feeding (8:00 PM) with partial modifications to previously described methods (De Rosa et al., 2005; 152Leger et al., 2013). Briefly, mice were placed in an empty box (black walls with open top 153to record video footage, $60 \text{ cm} \times 60 \text{ cm} \times 70 \text{ cm}$) to habituate to the environment for 10 154min (habituating phase). Then, the mice were returned to their home cages. Two objects 155of same color, shape, and size were placed on opposite sides of the box. Mice were placed 156in the box to allow free exploration for 10 min (Phase I). Mice were returned to their 157home cages, and the two objects were removed from the box. Mice were placed in the 158cleared box without objects for 10 min (resting phase). Mice were returned to their home 159cages, and the same objects used in Phase I were placed in the box: one object was placed 160 161 in the same position (familiar object), but the other object was placed in a different position. Mice were placed in the box and allowed to explore for 10 min (Phase II). The 162mice were returned to their home cages, and the two objects were removed from the box. 163

164	Mice were placed in the cleared box without objects for 10 min (resting phase). The same
165	object (familiar) and a novel object were placed in the same position as in Phase I. Mice
166	were placed in the box and allowed to explore for 10 min (Phase III). All objects and the
167	box were cleaned with 70% ethanol to remove any odor after previous phase. Object
168	exploration was defined as follows; the nose of the mouse touched the object, and
169	climbing onto the object (unless the mouse sniffs the object it has climbed on) or chewing
170	the object did not qualify as exploration. The NOR index was calculated using the
171	following formula: (exploration time to the new object - exploration time to the familiar
172	object) / (exploration time to the new object + exploration time to the familiar object).
173	The NOR task procedure is presented in Fig. 3A.

174

175 2.5. Tissues sampling

Tissues were obtained from the other mice who did not receive the NOR task. Mice were deeply anesthetized by isoflurane inhalation and perfused with 0.1 M phosphate buffer 6 h after the end of scheduled feeding (8:00 PM) on Day 8. After euthanasia brain tissues were isolated for real-time quantitative PCR (qPCR) analysis. For immunohistochemistry, mice were perfused in the same way as described above, and were perfused with 4% paraformaldehyde and 0.5% glutaraldehyde in 0.1 M phosphate buffer.

182

183 2.6. Real-time qPCR analysis

184	Total RNA was extracted from resected hypothalamus tissue using an RNeasy Plus
185	Mini Kit (74134; QIAGEN, Hilden, Germany), and cDNA was synthesized using a
186	SuperScript III First-Strand Synthesis System (18080-051; Invitrogen, Carlsbad, CA,
187	USA) according to the manufacturer's protocol. The real-time qPCR analysis was
188	performed with SYBR Green Master Mix (Roche Inc., Basel, Switzerland) according to
189	the manufacturer's protocol. Relative mRNA levels were quantified using the $2^{-\Delta\Delta CT}$
190	method. Changes in mRNA expression were defined as significant if the $2^{-\Delta\Delta CT}$ value
191	increased by $>$ 2-fold or decreased by $<$ 0.5-fold. The primers used for real-time qPCR
192	are shown in Table 1.

193

194 2.7. Immunohistochemistry

195

Hypothalamus sections were incubated with anti-c-Fos antibody (sc-52-G, Santa
Cruz Biotechnology, Inc., Dallas, TX, USA; 1:500) and anti-NPY antiserum (Y061,
Yanaihara Institute, Shizuoka, Japan, 1:500), or anti-c-Fos antibody (ABE457, Merck
Millipore, Belize, MA, USA; 1:500) and/or anti-AgRP antibody (ab32882, Abcam,
Cambridge, UK; 1:500) for 48 h at 4°C, and then incubated with the following secondary
antibodies: Alexa Fluor 488-conjugated anti-goat IgG (705-545-147, Jackson

202	ImmunoResearch Laboratories Inc., West Grove, PA, USA; 1:800) and Alexa Fluor 594-
203	conjugated anti-rabbit IgG (711-295-152, Jackson ImmunoResearch Laboratories Inc.;
204	1:800) for 4 h at room temperature. Hypothalamus sections were observed using a
205	confocal laser scanning microscope (LSM TCS SP8, Leica Microsystems, Wetzlar,
206	Germany). Nuclei were counterstained with 4',6-diamidino-2-phenylindole
207	dihydrochloride solution (DAPI, D523; Dojindo Molecular Technologies, Inc.,
208	Kumamoto, Japan). The number of c-Fos-positive cells was counted on one side of 2-5
209	species of hypothalamus tissues of each mouse, and the averages were calculated. These
210	number were used in subsequent analysis.
211	
212	2.8. Cannula implantation
213	
214	Mice were anesthetized by intraperitoneal (ip) administration of a mixture of 0.3
215	mg/kg of medetomidine (Domitor; Meiji Seika Pharma, Tokyo, Japan), 4.0 mg/kg of
216	midazolam (Sandoz, Tokyo, Japan), and 5.0 mg/kg of butorphanol (Vetorphale; Meiji

217 Seika Pharma, Tokyo, Japan). A guide cannula (25-guage; Eicom, Kyoto, Japan) was

- 218 implanted into the right lateral ventricle using a Kopf stereotaxic frame (David Kopf
- 219 Instruments, Tujunga, CA, USA). Stereotaxic coordinates were 0.6 mm posterior to the
- bregma, 1.5 mm right lateral to the midline, and 1.5 mm below the outer surface of the

221	skull. The guide cannula was secured with dental cement and anchored by two stainless
222	steel screws fixed to the dorsal surface of the skull. A dummy cannula (Eicom) was placed
223	into each guide cannula and fixed with a screw cap (Eicom) to prevent occlusion. When
224	intracerebroventricular (icv) delivery was administered to conscious animals, the dummy
225	cannula was replaced by a microinjection cannula (AMI-5; Eicom), 1 mm longer than the
226	guide cannula, and connected to a polyethylene tube (PE-50, Clay Adams, Parsippany,
227	NJ, USA). After cannula implantation mice were recovered from anesthesia with ip
228	administration of 0.3 mg/kg of atipamezole (Antisedan; Nippon Zenyaku Kogyo,
229	Fukushima, Japan). At the end of the experiments, animals were euthanized by inhalation
230	of carbon dioxide gas. After euthanasia, the correct location of the icv cannula was
231	verified by administration of 10 μ l dye (0.05% cresyl violet).
232	
233	2.9. Drug administration

234

The following antiserum, antibodies, and chemicals were intracerebroventricularly
administered: anti-NPY antiserum (2 µl/mouse, Y061, Yanaihara Institute), anti-AgRP
antibody (0.1 µg/mouse, ab32882, Abcam), CPG 71683A hydrochloride, a NPY 5 (Y5)
receptor antagonist (15 nmol/mouse, 2199, Tocris Bioscience, Bristol, UK), and BIBO
3304 trifluoroacetate, a Y1 receptor antagonist (30 nmol/mouse, 2412, Tocris Bioscience,

240	Bristol, UK). Anti-NPY antiserum and anti-AgRP antibody were dissolved in water, and
241	CPG 71683A and BIBO 3304 were dissolved in 5% DMSO and 5% Tween-80 in water,
242	and each solvent was administered (2 $\mu l)$ as vehicle. These drugs were administered
243	intracerebroventricularly at the end of scheduled feeding on Days 4 to 8.
244	
245	2.10. Data Analysis
246	
247	The data are presented as means \pm standard error of the mean (SEM). Comparisons
248	between two groups were performed using two-tailed Student's <i>t</i> -tests. One- or two-way
249	analysis of variance (ANOVA) followed by Tukey's multiple comparison test was used
250	to compare three or more groups. Differences were considered statistically significant at
251	p < 0.05. All statistical analyses were performed using Prism 6 software (GraphPad, San
252	Diego, CA, USA).
253	
254	3. Results
255	
256	3.1. Changes in body weight, food intake, and wheel activity
257	
258	Food intake and body weight of the ABA ($n = 8$) and FR groups ($n = 7$) animals were 14

259	significantly decreased from Day 1 and Day 2, respectively, compared to the Normal (n
260	= 8) and Wheel groups ($n = 8$, Fig. 2A and B, $F_{27, 216} = 23.25$, $p < 0.0001$, $\eta^2 = 0.48$ in
261	food intake and $F_{27,216} = 103.71$, $p < 0.0001$, $y^2 = 0.52$ in body weight; two-way ANOVA,)
262	Wheel activity of the ABA group significantly increased at Day 2; however, there were
263	no significant differences at other days during the experiments compared to the Wheel
264	group (Fig. 2C, $F_{14, 98} = 4.85$, $p < 0.0001$, $\eta^2 = 0.40$; two-way ANOVA).
265	
266	3.2. ABA induces the impairment of NOR behaviors
267	
268	There were no significant differences in the NOR index among all groups in Phase I
269	(Fig. 3B). NOR index in the ABA group $(n = 5)$ was significantly lower than the Normal
270	group ($n = 5$), whereas the ABA group was not significantly different from the FR ($n = 6$)
271	and Wheel groups ($n = 5$) in Phase II (Fig. 3C, $F_{3, 17} = 4.546$, $p = 0.0163$, $\eta^2 = 0.45$; one-
272	way ANOVA). NOR index in ABA group was significantly lower than the Normal, FR,
273	and Wheel groups in Phase III (Fig. 3D, $F_{3, 17} = 9.686$, $p = 0.0006$, $\eta^2 = 0.54$; one-way
274	ANOVA). There were no significant differences between the Normal, FR, and Wheel
275	groups in all Phases.

276

277 3.3. ABA increases the mRNA levels of NPY and AgRP in hypothalamus

278

279	The mRNA levels of NPY and AgRP in the ABA group $(n = 6)$ were significantly
280	higher than those in the Normal $(n = 5)$, FR $(n = 6)$, and Wheel groups $(n = 6, Fig. 4,$
281	NPY: $F_{3, 19} = 14.29$, $p < 0.0001$, $\eta^2 = 0.70$, AgRP: $F_{3, 18} = 6.081$, $p = 0.0048$, $\eta^2 = 0.50$;
282	one-way ANOVA). The mRNA levels of POMC in the Wheel group were significantly
283	higher than those in the ABA and FR groups (Fig. 4, $F_{3, 19} = 7.796$, $p = 0.0014$, $\eta^2 = 0.55$;
284	one-way ANOVA). The mRNA levels of arginine vasopressin (AVP) in the ABA group
285	were significantly higher than those in the Normal group, and those in the Wheel group
286	were significantly higher than the Normal and FR groups (Fig. 4, $F_{3,19} = 7.796$, $p = 0.0105$,
287	$\eta^2 = 0.51$; one-way ANOVA). There were no significant differences among all groups for
288	the mRNA levels of cocaine- and CART, OXT, CRF, Ucn1, and BDNF (Fig. 4; one-way
289	ANOVA).
290	

291 *3.4. ABA increases the number of c-Fos-positive cells in arcuate nucleus of hypothalamus,*

292 which are NPY- or AgRP-positive cells

293

The number of c-Fos-positive cells in the arcuate nucleus of the hypothalamus was significantly higher in the ABA group (n = 7) than in the Normal (n = 6), FR (n = 6), and Wheel groups (n = 6, Fig. 5A, $F_{3, 21} = 13.52$, p = 0.1234, $\eta^2 = 0.66$; one-way ANOVA). c297 Fos-positive cells were also NPY- or AgRP-positive (Fig. 5B and C).

298

299 3.5 Anti-NPY antiserum, anti-AgRP antibody, and Y5 receptor antagonist reverse the

300 impairment of NOR induced by ABA

301

The icv administration of anti-NPY antiserum (n = 4), anti-AgRP antibody (n = 5), 302303 and the Y5 receptor antagonist CGP71683 (n = 4) reversed the decrease in the NOR index induced by ABA in Phase III (n = 4, n = 6, and n = 5, Fig. 6A to C, t(6) = 4.500, p =304 0.0041, t(9) = 3.246, p = 0.0101, and t(7) = 3.406, p = 0.0114, $\eta^2 = 0.77, 0.54$, and 0.62), 305whereas icv administration of the Y1 receptor antagonist BIBO 3304 trifluoroacetate (n 306 = 4) did not reverse the decrease in the NOR index induced by ABA in Phase III (n = 4, n = 4)307Fig. 6D). There were no differences of NOR indices between mice with drug 308administration and vehicle in Phase I (Supplementary fig. 1A-D). The NOR indexes in 309 Phase II of ABA mice with icv administration of anti-AgRP antibody and Y5 receptor 310antagonist were significantly increased (Supplementary fig. 1B and C, t(9) = 2.851, p =3110.0191, $\eta^2 = 0.47$, and t(7) = 3.087, p = 0.0176, $\eta^2 = 0.68$). The icv administration of anti-312AgRP antibody and a Y1 receptor antagonist BIBO 3304 trifluoroacetate significantly 313 decreased the food intake and wheel activity (anti-AgRP antibody: $F_{8, 72} = 96.11$, p < 1003140.0001, $\eta^2 = 0.49$ in food intake, and $F_{7,63} = 13.37$, p < 0.0001, $\eta^2 = 0.23$ in wheel activity. 31517

316 Y1 receptor antagonist: $F_{8, 48} = 35.38$, p < 0.0001, $y^2 = 0.95$ in food intake and $F_{7, 42} =$ 317 2.45, p = 0.0334, $y^2 = 0.18$ in wheel activity; two-way ANOVA), whereas icv 318 administration of anti-NPY antiserum and Y5 receptor antagonist did not alter the food 319 intake and wheel activity (Supplementary fig. 2).

320

4. Discussion

322AN is a complex and serious motivated behavioral situation with high morbidity and mortality, including suicide especially in adolescent women, leading to self-induced 323weight loss, immoderate food intake restriction, and elevated physical activity (Guarda et 324al., 2015). Although it is difficult to reproduce the negative motivation against eating food 325in AN patients in animals, the ABA model is used as a model mimicking hunger and 326 starvation conditions in AN patients. ABA model rodents have unlimited access to 327running wheels despite food restrictions, namely self-induced hyperactivity under hunger, 328which causes body weight loss (Schalla and Stengel, 2019). Although only ABA rats, not 329Normal, FR, and Wheel rats, exhibit no significant differences in terms of the time spent 330 interacting with familiar and a novel objects (Boersma et al., 2016), the mechanisms of 331action remain unclear. Previous studies have shown that mRNA levels of AgRP and NPY 332in the hypothalamus of ABA rats are higher (de Rijke et al., 2005). Elevated levels of 333AgRP in plasma and NPY in cerebrospinal fluid have been observed in AN patients (Kaye, 334

1996; Moriva et al., 2006). Higher levels of AgRP and NPY were observed in the present 335336 study. These increases in orexigenic peptides such as AgRP and NPY might reflect the hunger situation in AN, in which the body may seek the food intake to dispel 337 hypoalimentation. However, the negative motivation to eating (as AN patients would not 338 like to eat) makes it hard to treat AN. 339 The effects of excess levels of orexigenic peptides in AN patients have been little 340 341known. Animal studies have demonstrated that the activation of AgRP neurons in the absence of food induces repetitive/stereotypic behaviors in the marble-burying test, and 342digging and grooming in home cages, which are related to obsessive behaviors (Dietrich 343et al., 2015). Furthermore, activation of AgRP neurons has been reported to reduce 344behavioral flexibility in modified Barn's maze tests, in which food rewards are not 345required, and diminish performance in the Y-maze test in mice (Zimmer et al., 2019). 346 These results suggest that AgRP is connected with memory-related cognitive process. In 347addition, it has been reported that these AgRP functions are canceled by an NPY 5 348

- receptor antagonist (Dietrich et al., 2015; Zimmer et al., 2019).
- NPY is a 36 amino acid peptide found in the central and peripheral nervous systems
 (Beck, 2006). The arcuate nucleus of the hypothalamus is an NPY-abundant area, in
 which NPY neurons co-synthesize another orexigenic peptide, AgRP (Hahn et al., 1998).
 AgRP neurons, as well as NPY, are well-known to promote food intake, and activation of

AgRP neurons induces hunger-associated behaviors such as consumption of food,
working at operant tasks for food, and attending to food cues (Andermann and Lowell,
2017).

NPY/AgRP neurons in the arcuate nucleus project to the paraventricular nucleus, 357dorsomedial nucleus, lateral hypothalamus, and ventromedial nucleus (Beck, 2006). 358Central NPY neurons participate in various biological actions, including cardiovascular 359360 regulation, cognition, memory, and appetite, which are mediated by six receptors, and Y1, Y2, Y4, Y5, and Y6 have been cloned from humans and mice (Blomqvist and Herzog, 3613621997). NPY secreted from NPY/AgRP neurons in the arcuate nucleus binds to the Y1 and Y2 receptors on POMC/CART neurons, leading to the inhibition of their firing activities 363 (Mercer et al., 2011). In addition, NPY binds Y5 receptors on POMC/CART neurons and 364inhibits release of melanocortin from POMC/CART neurons, in which melanocortin can 365366 inhibit NPY/AgRP neurons through melanocortin 3 receptors (MC3Rs) and MC4Rs on NPY/AgRP neurons (Mercer et al., 2011). In the present study, we found that ABA mice 367induced the activation of AgRP and NPY neurons in the arcuate nucleus and defective 368 cognitive behaviors in the NOR task. Furthermore, these impairments to cognitive 369 370 behaviors were reversed by the central administration of anti-AgRP antibody, anti-NPY antiserum, and Y5 receptor antagonist. The present study is the first report demonstrating 371372that AgRP, NPY, and Y5 receptors are related to defects in cognitive behaviors induced 20

373 by ABA.

374	In the present study repeated central administration of a Y1 receptor antagonist, but
375	not the Y5 receptor antagonist, decreased food intake in ABA mice (Supplementary fig.
376	2D). A double blocker for both Y1 and Y5 is required as an anti-obesity medication
377	(MacNeil, 2007); however, the function of Y1 receptor in terms of food intake might be
378	predominant in starvation conditions such as AN. The repeated central administration of
379	anti-AgRP antibody decreased food intake in ABA mice, with an accompanying decrease
380	in wheel activity; however, the body weights of these mice were not altered
381	(Supplementary fig. 2B). Wheel running activity in ABA models indicates self-motivated
382	behavior for rodents in absence of any rewards (Sherwin, 1998). AgRP and Y5 receptors
383	might contribute to voluntary exercise in ABA mice. The present study has shown that
384	the mRNA level of AVP was higher in ABA and Wheel mice than in Normal and FR mice.
385	Both ABA and Wheel mice had free access to the running wheel. AVP in the
386	suprachiasmatic nucleus of the hypothalamus is reported to be associated with voluntary
387	behaviors (Cormier et al., 2015). Cormier et al. demonstrated that microinjection of AVP
388	into the suprachiasmatic nucleus reduces wheel running activity in hamsters (Cormier et
389	al., 2015). However, plasma AVP levels in humans have been reported to increase after
390	prolonged endurance exercise, such as a 56-km ultramarathon (Hew-Butler et al., 2008).
391	The higher mRNA levels of AVP in ABA and Wheel mice in the present study might have 21

In conclusion, the present study has shown that ABA induces defective recognition behaviors in NOR tasks and activation of AgRP and NPY neurons in the arcuate nucleus. These defects were reversed by the central administration of anti-NPY antiserum, anti-AgRP antibody, and Y5 receptor antagonist. Overall, AgRP and NPY signaling, including the Y5 receptor, might represent valuable and novel targets for the treatment of cognitive behavior impairments in AN, which has become increasingly prevalent globally.

22

410 REFERENCE

- 411 American Psychiatric Association, 2013. Diagnostic and statistical manual of mental
- 412 disorders : DSM-5. American Psychiatric Association.
- 413 Andermann, M.L., Lowell, B.B., 2017. Toward a Wiring Diagram Understanding of
- 414 Appetite Control. Neuron 95, 757–778. 415 https://doi.org/10.1016/j.neuron.2017.06.014
- 416 Antunes, M., Biala, G., 2012. The novel object recognition memory: neurobiology, test
- 417 procedure, and its modifications. Cogn. Process. 13, 93–110.
 418 https://doi.org/10.1007/s10339-011-0430-z
- 419 Beck, B., 2006. Neuropeptide Y in normal eating and in genetic and dietary-induced
- 420 obesity. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361, 1159–1185.
 421 https://doi.org/10.1098/rstb.2006.1855
- 422 Blomqvist, A.G., Herzog, H., 1997. Y-receptor subtypes--how many more? Trends
- 423 Neurosci. 20, 294–298. https://doi.org/10.1016/s0166-2236(96)01057-0
- 424 Boersma, G.J., Treesukosol, Y., Cordner, Z.A., Kastelein, A., Choi, P., Moran, T.H.,
- 425 Tamashiro, K.L., 2016. Exposure to activity-based anorexia impairs contextual
- 426 learning in weight-restored rats without affecting spatial learning, taste, anxiety, or
- 427 dietary-fat preference. Int. J. Eat. Disord. 49, 167–179.
- 428 https://doi.org/10.1002/eat.22489

23

429	Brockmeyer, T., Anderle, A., Schmidt, H., Febry, S., Wünsch-Leiteritz, W., Leiteritz, A.,
430	Friederich, H.C., 2018. Body image related negative interpretation bias in anorexia
431	nervosa. Behav. Res. Ther. 104, 69–73. https://doi.org/10.1016/j.brat.2018.03.003
432	Carrera, O., Fraga, Á., Pellón, R., Gutiérrez, E., 2014. Rodent Model of Activity-Based
433	Anorexia, in: Current Protocols in Neuroscience. John Wiley & Sons, Inc., Hoboken,
434	NJ, USA, pp. 9.47.1-9.47.11. https://doi.org/10.1002/0471142301.ns0947s67
435	Cormier, H.C., Della-Maggiore, V., Karatsoreos, I.N., Koletar, M.M., Ralph, M.R., 2015.
436	Suprachiasmatic vasopressin and the circadian regulation of voluntary locomotor
437	behavior. Eur. J. Neurosci. 41, 79–88. https://doi.org/10.1111/ejn.12637
438	Dalhoff, A.W., Romero Frausto, H., Romer, G., Wessing, I., 2019. Perceptive Body Image
439	Distortion in Adolescent Anorexia Nervosa: Changes After Treatment. Front.
440	Psychiatry 10, 748. https://doi.org/10.3389/fpsyt.2019.00748
441	de Rijke, C.E., Hillebrand, J.J.G., Verhagen, L.A.W., Roeling, T.A.P., Adan, R.A.H., 2005.
442	Hypothalamic neuropeptide expression following chronic food restriction in
443	sedentary and wheel-running rats. J. Mol. Endocrinol. 35, 381–390.
444	https://doi.org/10.1677/jme.1.01808
445	De Rosa, R., Garcia, A.A., Braschi, C., Capsoni, S., Maffei, L., Berardi, N., Cattaneo, A.,
446	2005. Intranasal administration of nerve growth factor (NGF) rescues recognition
447	memory deficits in AD11 anti-NGF transgenic mice. Proc. Natl. Acad. Sci. 102, 24

- 448 3811–3816. https://doi.org/10.1073/pnas.0500195102
- 449 Dietrich, M.O., Zimmer, M.R., Bober, J., Horvath, T.L., 2015. Hypothalamic Agrp
- 450 Neurons Drive Stereotypic Behaviors beyond Feeding. Cell 160, 1222–1232.
- 451 https://doi.org/10.1016/j.cell.2015.02.024
- 452 François, M., Barde, S., Achamrah, N., Breton, J., do Rego, J.-C., Coëffier, M., Hökfelt,
- 453 T., Déchelotte, P., Fetissov, S.O., 2015. The number of preproghrelin mRNA
- 454 expressing cells is increased in mice with activity-based anorexia. Neuropeptides 51,
- 455 17–23. https://doi.org/10.1016/j.npep.2015.04.003
- 456 Frantz Fox, C., 1981. Neuropsychological correlates of anorexia nervosa. Int. J.
- 457 Psychiatry Med. 11, 285–290. https://doi.org/10.2190/9260-hl5e-1f5a-ry5u
- 458 Gøtzsche, C.R., Woldbye, D.P.D., 2016. The role of NPY in learning and memory.
- 459 Neuropeptides 55, 79–89. https://doi.org/10.1016/j.npep.2015.09.010
- 460 Grayson, B., Leger, M., Piercy, C., Adamson, L., Harte, M., Neill, J.C., 2015. Assessment
- 461 of disease-related cognitive impairments using the novel object recognition (NOR)
- 462 task in rodents. Behav. Brain Res. 285, 176–193.
 463 https://doi.org/10.1016/j.bbr.2014.10.025
- 464 Guarda, A.S., Schreyer, C.C., Boersma, G.J., Tamashiro, K.L., Moran, T.H., 2015.
- 465 Anorexia nervosa as a motivated behavior: Relevance of anxiety, stress, fear and
- 466 learning. Physiol. Behav. 152, 466–472.

25

- 467 https://doi.org/10.1016/j.physbeh.2015.04.007
- 468 Hahn, T.M., Breininger, J.F., Baskin, D.G., Schwartz, M.W., 1998. Coexpression of Agrp
- and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1, 271–272.
- 470 https://doi.org/10.1038/1082
- 471 Hamatani, S., Tomotake, M., Takeda, T., Kameoka, N., Kawabata, M., Kubo, H., Tada,
- 472 Y., Tomioka, Y., Watanabe, S., Ohmori, T., 2016. Impaired social cognition in
- anorexia nervosa patients. Neuropsychiatr. Dis. Treat. 12, 2527–2531.
- 474 https://doi.org/10.2147/NDT.S116521
- 475 Hamsher, K. de S., Halmi, K.A., Benton, A.L., 1981. Prediction of outcome in anorexia
- 476 nervosa from neuropsychological status. Psychiatry Res. 4, 79–88.
 477 https://doi.org/10.1016/0165-1781(81)90011-1
- 478 Hew-Butler T, Jordaan E, Stuempfle KJ, Speedy DB, Siegel AJ, Noakes TD, Soldin SJ,
- 479 Verbalis JG., 2008. Osmotic and nonosmotic regulation of arginine vasopressin
- 480 during prolonged endurance exercise. J Clin Endocrinol Metab. 93, 2072-2078.
- 481 https://doi: 10.1210/jc.2007-2336.
- 482 Hirot, F., Lesage, M., Pedron, L., Meyer, I., Thomas, P., Cottencin, O., Guardia, D., 2016.
- 483 Impaired processing of self-face recognition in anorexia nervosa. Eat. Weight Disord.
- 484 Stud. Anorexia, Bulim. Obes. 21, 31–40. https://doi.org/10.1007/s40519-015-
- 485 0223-y

26

	486	Jésus, I	P.,	Ouelaa,	W	Franc	cois,	М.,	Riachy,	L.,	Guérin,	С.	, Aziz	, M.	, Do	Rego	, J.	- C.	•
--	-----	----------	-----	---------	---	-------	-------	-----	---------	-----	---------	----	--------	------	------	------	------	-------------	---

- 487 Déchelotte, P., Fetissov, S.O., Coëffier, M., 2014. Alteration of intestinal barrier
- 488 function during activity-based anorexia in mice. Clin. Nutr. 33, 1046–1053.
- 489 https://doi.org/10.1016/j.clnu.2013.11.006
- 490 Kask, J., Ekselius, L., Brandt, L., Kollia, N., Ekbom, A., Papadopoulos, F.C., 2016.
- 491 Mortality in Women With Anorexia Nervosa. Psychosom. Med. 78, 910–919.
- 492 https://doi.org/10.1097/PSY.00000000000342
- 493 Kaye, W.H., 1996. Neuropeptide abnormalities in anorexia nervosa. Psychiatry Res. 62,
- 494 65–74. https://doi.org/10.1016/0165-1781(96)02985-x
- 495 Kemps, E., Tiggemann, M., Wade, T., Ben-Tovim, D., Breyer, R., 2006. Selective
- 496 working memory deficits in anorexia nervosa. Eur. Eat. Disord. Rev. 14, 97–103.
- 497 https://doi.org/10.1002/erv.685
- Kim, E.M., Welch, C.C., Grace, M.K., Billington, C.J., Levine, A.S., 1996. Chronic food
- 499 restriction and acute food deprivation decrease mRNA levels of opioid peptides in
- arcuate nucleus. Am. J. Physiol. Integr. Comp. Physiol. 270, R1019–R1024.
- 501 https://doi.org/10.1152/ajpregu.1996.270.5.R1019
- 502 Koyama, K.I., Asakawa, A., Nakahara, T., Amitani, H., Amitani, M., Saito, M., Taruno,
- 503 Y., Zoshiki, T., Cheng, K.-C., Yasuhara, D., Inui, A., 2012. Intelligence quotient and
- 504 cognitive functions in severe restricting-type anorexia nervosa before and after

505	weight gain. Nutrition 28, 1132–1136. https://doi.org/10.1016/j.nut.2012.03.003									
506	Lamanna, J., Sulpizio, S., Ferro, M., Martoni, R., Abutalebi, J., Malgaroli, A., 2019.									
507	Behavioral assessment of activity-based-anorexia: how cognition can become the									
508	drive wheel. Physiol. Behav. https://doi.org/10.1016/j.physbeh.2019.01.016									
509	Leger, M., Quiedeville, A., Bouet, V., Haelewyn, B., Boulouard, M., Schumann-Bard, P.,									
510	Freret, T., 2013. Object recognition test in mice. Nat. Protoc. 8, 2531-2537.									
511	https://doi.org/10.1038/nprot.2013.155									
512	Loh, K., Herzog, H., Shi, Y.C., 2015. Regulation of energy homeostasis by the NPY									
513	system. Trends Endocrinol. Metab. 26, 125–135.									
514	https://doi.org/10.1016/j.tem.2015.01.003									
515	MacNeil, D., 2007. NPY Y1 and Y5 Receptor Selective Antagonists as Anti-Obesity									
516	Drugs. Curr. Top. Med. Chem. 7, 1721–1733.									
517	https://doi.org/10.2174/156802607782341028									
518	Maxwell, J.K., Tucker, D.M., Townes, B.D., 1984. Asymmetric cognitive function in									
519	anorexia nervosa. Int. J. Neurosci. 24, 37–44.									
520	https://doi.org/10.3109/00207458409079532									
521	Mercer, R.E., Chee, M.J.S., Colmers, W.F., 2011. The role of NPY in hypothalamic									
522	mediated food intake. Front. Neuroendocrinol. 32, 398–415.									

523 https://doi.org/10.1016/j.yfrne.2011.06.001

524 Moriya, J., Takimoto, Y., Yoshiuchi, K., Shimosawa, T., Akabayashi, A., 2006. Plasma

525agouti-related protein levels in women with anorexia nervosa. Psychoneuroendocrinology 1057-1061. 31, 526https://doi.org/10.1016/j.psyneuen.2006.06.006 527Olivo, G., Gaudio, S., Schiöth, H.B., 2019. Brain and cognitive development in 528adolescents with anorexia nervosa: A systematic review of FMRI studies. Nutrients 529

- 530 https://doi.org/10.3390/nu11081907
- Palazidou, E., Robinson, P., Lishman, W.A., 1990. Neuroradiological and
 neuropsychological assessment in anorexia nervosa. Psychol. Med. 20, 521–527.
 https://doi.org/10.1017/S0033291700017037
- Pendleton Jones, B., Duncan, C.C., Brouwers, P., Mirsky, A.F., 1991. Cognition in eating
- 535
 disorders.
 J.
 Clin.
 Exp.
 Neuropsychol.
 13,
 711–728.

 536
 https://doi.org/10.1080/01688639108401085
- 537 Pierce, W.D., Epling, W.F., Dews, P.B., Estes, W.K., Morse, W.H., Van Orman, W.,
- 538 Herrnstein, R.J., 1994. Activity anorexia: An interplay between basic and applied
- 539 behavior analysis. Behav. Anal. 17, 7–23. https://doi.org/10.1007/bf03392649
- 540 Reichmann, F., Holzer, P., 2016. Neuropeptide Y: A stressful review. Neuropeptides 55,
- 541 99–109. https://doi.org/10.1016/j.npep.2015.09.008
- 542 Reville, M.C., O'Connor, L., Frampton, I., 2016. Literature Review of Cognitive

- 543 Neuroscience and Anorexia Nervosa. Curr. Psychiatry Rep.
 544 https://doi.org/10.1007/s11920-015-0651-4
- 545 Routtenberg, A., Kuznesof, A.W., 1967. Self-starvation of rats living in activity wheels
- on a restricted feeding schedule. J. Comp. Physiol. Psychol. 64, 414–421.
- 547 https://doi.org/10.1037/h0025205
- 548 Schalla, M.A., Stengel, A., 2019. Activity Based Anorexia as an Animal Model for
- Anorexia Nervosa–A Systematic Review. Front. Nutr. 6, 69.
 https://doi.org/10.3389/fnut.2019.00069
- 551 Sfärlea, A., Greimel, E., Platt, B., Dieler, A.C., Schulte-Körne, G., 2018. Recognition of
- 552 emotional facial expressions in adolescents with anorexia nervosa and adolescents
- 553 with major depression. Psychiatry Res. 262, 586–594.
- 554 https://doi.org/10.1016/j.psychres.2017.09.048
- 555 Shafran, R., Lee, M., Cooper, Z., Palmer, R.L., Fairburn, C.G., 2007. Attentional bias in
- 556 eating disorders. Int. J. Eat. Disord. 40, 369–380. https://doi.org/10.1002/eat.20375
- 557 Sherwin, C.M., 1998. Voluntary wheel running: A review and novel interpretation. Anim.
- 558 Behav. https://doi.org/10.1006/anbe.1998.0836
- 559 Sohn, J.-W., 2015. Network of hypothalamic neurons that control appetite. BMB Rep. 48,
- 560 229–233. https://doi.org/10.5483/bmbrep.2015.48.4.272
- 561 Stice, E., Shaw, H.E., 2002. Role of body dissatisfaction in the onset and maintenance of 30

562	eating pathology: a	synthesis of research	findings. J. Psychosom.	Res. 53, 985–993.
-----	---------------------	-----------------------	-------------------------	-------------------

- 563 https://doi.org/10.1016/s0022-3999(02)00488-9
- 564 Strupp, B.J., Weingartner, H., Kaye, W., Gwirtsman, H., 1986. Cognitive processing in
- anorexia nervosa: A disturbance in automatic information processing.
 Neuropsychobiology 15, 89–94. https://doi.org/10.1159/000118248
- 567 Stütz, A.M., Morrison, C.D., Argyropoulos, G., 2005. The Agouti-related protein and its
- role in energy homeostasis. Peptides 26, 1771–1781.
 https://doi.org/10.1016/j.peptides.2004.12.024
- 570 Szmukler, G.I., Andrewes, D., Kingston, K., Chen, L., Stargatt, R., Stanley, R., 1992.
- 571 Neuropsychological impairment in Anorexia Nervosa: before and after refeeding. J.
- 572 Clin. Exp. Neuropsychol. 14, 347–352.
- 573 https://doi.org/10.1080/01688639208402834
- Tamiya, H., Ouchi, A., Chen, R., Miyazawa, S., Akimoto, Y., Kaneda, Y., Sora, I., 2018.
- 575 Neurocognitive impairments are more severe in the binge-eating/purging anorexia
- 576 nervosa subtype than in the restricting subtype. Front. Psychiatry 9, 138.
- 577 https://doi.org/10.3389/fpsyt.2018.00138
- 578 Traschütz, A., Kummer, M.P., Schwartz, S., Heneka, M.T., 2018. Variability and temporal
- 579 dynamics of novel object recognition in aging male C57BL/6 mice. Behav.
- 580 Processes 157, 711–716. https://doi.org/10.1016/j.beproc.2017.11.009

581	Udo, T., Bitley, S., Grilo, C.M., 2019. Suicide attempts in US adults with lifetime DSM-
582	5 eating disorders. BMC Med. 17, 120. https://doi.org/10.1186/s12916-019-1352-3
583	Webster, S.J., Bachstetter, A.D., Nelson, P.T., Schmitt, F.A., Van Eldik, L.J., 2014. Using
584	mice to model Alzheimer's dementia: an overview of the clinical disease and the
585	preclinical behavioral changes in 10 mouse models. Front. Genet. 5, 88.
586	https://doi.org/10.3389/fgene.2014.00088
587	Witt, E.D., Ryan, C., George Hsu, L.K., 1985. Learning deficits in adolescents with
588	anorexia nervosa. J. Nerv. Ment. Dis. 173, 182–184.
589	https://doi.org/10.1097/00005053-198503000-00009
590	Zimmer, M.R., Schmitz, A.E., Dietrich, M.O., 2019. Activation of Agrp neurons
591	modulates memory-related cognitive processes in mice. Pharmacol. Res. 141, 303-

309. https://doi.org/10.1016/j.phrs.2018.12.024 592

32

593 Acknowledgements

- 594 We thank all the staff members of the Institute of Laboratory Animal Sciences at
- 595 Kagoshima University for keeping the animals in good condition.

596

597 Author Contribution

- 598 N. T, R., K. A. and A. A. conceived and designed the study.
- 599 N. T, R., K. A., H. I., H. S., H. T., T. S. K. and K. C. C. performed the experiments.
- 600 N. T. R. and K. A. performed the data analysis.
- 601 N. T. R., K. A., H. A. and A. A. wrote the paper.
- 602 N. T. R., K. A., H. I., H. S., H. T., T. S. K., K. C. C., H. A., A. I. and A. A. reviewed
- 603 draft of the paper.

604

605 Competing Interests

- 606 The authors have declared that no conflicts of interest exist.
- 607

608 Funding

609 This study was supported in part by JSPS KAKENHI Grant Number JP15K08923 and

610 JP19K07917.

611

612 Figure legends

613 Fig. 1. Timeline for ABA procedures. Mice were divided into four groups: ad libitum

- 614 feeding (Normal), free access to running wheel with scheduled feeding (ABA), scheduled
- 615 feeding (food restriction, FR), and free access to running wheel with ad libitum feeding
- 616 (Wheel) groups
- 617

618	Fig. 2.	Time courses	of food intake,	body weight,	and wheel	activity. Food	l intake	(A),
-----	---------	--------------	-----------------	--------------	-----------	----------------	----------	------

body weight (B), and wheel activity (C) were measured during the ABA procedure (n =

620 7 - 8). The values are presented as means \pm SEM. Differences were considered significant

621 at ** p < 0.01 compared with the Normal group and $\delta p < 0.05$ and $\delta p < 0.01$ compared

622 with the Wheel group.

623

624 Fig. 3. NOR indices. (A) Schema of the NOR task. NOR indices of Phase I (B), II (C),

and III (D) were calculated 6 h after the end of scheduled feeding on Day 8 (n = 5 - 6).

626 Values are presented as means \pm SEM. Differences were considered significant at ** p <

627 0.01.

628

Fig. 4. mRNA levels of neuropeptides in the hypothalamus of ABA mice. mRNA levels

630 of neuropeptide Y (NPY), agouti-related peptide (AgRP), proopiomelanocortin (POMC),

631	cocaine- and amphetamine-regulated transcript (CART), arginine vasopressin (AVP),
632	oxytocin (OXT), corticotropin-releasing factor (CRF), urocortin1 (Ucn1), and brain-
633	derived neurotrophic factor (BDNF) were measured in hypothalamus tissues obtained
634	from mice 6 h after the end of scheduled feeding on Day 8 ($n = 5 - 6$). Values are presented
635	as means \pm SEM. Differences were considered significant at * $p < 0.05$, or ** $p < 0.01$.
636	
637	Fig. 5. Immunostaining for c-Fos, AgRP or NPY. Brain tissues were isolated and fixed
638	with 4% PFA and 0.5% GA in 0.1 M PB 6 h after the end of scheduled feeding on Day 8
639	(n = 6 - 7). Coronal sections of the arcuate nucleus were stained with an anti-mouse c-Fos
640	and/or anti-NPY antiserum or anti-AgRP antibody. (A) Representative images of c-Fos-
641	positive cells in the arcuate nucleus using immunofluorescent staining (white arrowheads)
642	The number of c-Fos-positive cells was counted. Values are presented as means \pm SEM.
643	Differences were considered significant at ** $p < 0.01$. (B) Representative images of c-
644	Fos- and NPY-, c-Fos- and DAPI-, or NPY- and DAPI-positive cells (white arrow heads)
645	in the arcuate nucleus cells. (C) Representative images of c-Fos- and AgRP-, c-Fos- and
646	DAPI-, or AgRP- and DAPI-positive cells (white arrow heads) in the arcuate nucleus cells
647	

648 Fig. 6. NOR indices in Phase III of ABA mice with central administration of anti-NPY

antiserum, anti-AgRP antibody, Y5 receptor antagonist, and Y1 receptor antagonist. Anti-

650	NPY antiserum (2 μ l/mouse), anti-AgRP antibody (0.1 μ g/mouse), Y5 receptor antagonist
651	CPG 71683A hydrochloride (15 nmol/mice), Y1 receptor antagonist BIBO 3304
652	trifluoroacetate (30 nmol/mice), and each vehicle (2 $\mu l/mouse)$ were administered
653	intracerebroventricularly at the end of scheduled feeding on Days 4 to 8 ($n = 4 - 6$). Values
654	are presented as means \pm SEM. Differences were considered significant at * $p < 0.05$ or
655	** <i>p</i> < 0.01.

Figure 6

Figure S1

Figure S2

Table 1.

		Forward	Reverse
neuropeptide Y (NPY)	NM_012614	CGCTCTGCGACACTACATCAAT	TGAGATGAGGGTGGAAACTTGG
agouti-related peptide (AgRP)	NM_033650	GCGGCCTGAAAGCTTTGTC	TCCTGTAGCCAGGGCATGAG
proopiomelanocortin (POMC)	NM_012625	AGAGGCCACTGAACATCTTTGTC	ATCTATGGAGGTCTGAAGCAGGAG
cocaine- and amphetamine-regulated transcript (CART)	NM_017110	TCAAGAGTAAACGCATTCCGATCTA	TCCTCACTGCGCACTGCTCT
arginine vasopressin (AVP)	NM_016992	ACCTCTGCCTGCTACTTCCAGA	ACACTGTCTCAGCTCCATGTCG
oxytocin (OXT)	NM_012996	TGCCAGGAGGAGAACTACCTG	TATTCCCAGAAAGTGGGCTCAG
corticotropin-releasing factor (CRF)	NM_031019	CAGAGCCCAAGTACGTTGAGAG	GCTCTCTTCTCCTCCCTTGGTA
urocortin1 (Ucn1)	NM_021290	CATCTTGCACTGGGCAGACACT	AAGCTGTGCCAAGAGCAGCAAC
brain-derived neurotrophic factor (BDNF)	NM_001048139	TCAAGTTGGAAGCCTGAATGAATG	CTGATGCTCAGGAACCCAGGA
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)	NM_017008	TGTGTCCGTCGTGGATCTGA	TTGCTGTTGAAGTCGCAGGAG