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Abstract 

Soluble solids content (Brix) and polarimetric sucrose (Pol) are important 

indexes for evaluating the quality and maturity of sugarcane, and the development of 

a measurement method that can be evaluated quickly, accurately, and in a short time 

is desired. In this study, we developed a sugarcane quality evaluation system that 

combines using a benchtop visible-near infrared (Vis-NIR) spectrometer, a portable 

Vis-NIR spectrometer, and an unmanned aerial system (UAS).  

As the first step, the sugar content of the squeezed sugarcane juice is measured 

by the conventional measurement method (Horn's method), and the NIR spectrum is 

acquired with a benchtop Vis-NIR spectrometer to develop a calibration model. 

Secondly, we measured the Vis-NIR spectra of sugarcane stalks using a portable Vis-

NIR spectrometer. A calibration model for directly estimating the sugar content of 

stalks from the Vis-NIR spectrum of sugarcane stalks was developed using the 

calibration model obtained in the first experiment. As the third step, we developed a 

calibration model for estimating Pol sugar content from UAS images taken from the 

above sugarcane fields. We developed a model using the Pol obtained by a portable 

Vis-NIR spectrometer and considered the effect of region of interest (ROI) size on 

image processing.  

In the non-destructive evaluation of a small amount of squeezed liquid using a 

benchtop Vis-NIR spectrometer, we examined the effect of pre-processing of NIR 

spectra on the calibration model, SNV processing, and the second derivative 

processing verified to be the most effective of pre-processing to develop the PLSR 

calibration model. Furthermore, in developing a Pol calibration model for stalks 

using a portable Vis-NIR spectrometer, it was suggested that second derivative 
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processing and multiple regression models are more effective for quantitative 

analysis than direct use of NIR spectra.  

In the third stage, the sugar content estimation experiment from UAS, 

multispectral images were obtained and calculated to the vegetation index (VI), 

which was used to estimate the sugar content. The results show that NDVI, CIRedEdge, 

and SRPIb effectively evaluate the sugar content. As a result of examining the ROI 

size, the number of small pixels was small, so the information other than leaves was 

reflected relatively large, and the accuracy of the prediction model will be decreased. 

Pol estimation by vegetation index showed a high correlation between SRPIb and 

NDVI. In particular, the Pol estimation model based on SRPIb images had the highest 

correlation, with R2 of 0.87 and RMSEC of 0.6%. This model shows that Pol is 

related to nitrogen in sugarcane leaves.  

Furthermore, we analyzed the Pol estimation from the image of each band 

using multiple linear regression analysis. We showed that the NIR band influences 

the sugar content estimation and the information on water, sugar, chlorophyll, etc., is 

effective. This study showed that the combined use of optical sensors enabled 

consistent sugar content evaluation from field to post-harvest. 
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要旨 

可溶性固形分含量 （Brix）と旋光糖度（Pol 糖度）はサトウキビの品質な

らびに成熟度を評価するための重要な指標であり，迅速・正確かつ短時間で

評価できる計測手法の開発が望まれている。本研究では卓上型の近赤外分光

装置（Vis-NIR 装置），ポータブル型の可視-近赤外分光装置（Vis-NIR 装

置），および無人航空システム （UAS）を複合的に利用したサトウキビ品質

評価システムの開発を行った。 

 

第一の段階として搾汁液の Pol 糖度を従来計測法（ホーン法）で測定し，

さらに卓上型 Vis-NIR装置で近赤外スペクトルを取得し，これらのデータを

利用して微量サンプルの Pol 糖度を推定する検量モデルを開発した。次

に，第二段階としてポータブル型 Vis-NIR 装置を使用してサトウキビ茎の 

Vis-NIR スペクトルを測定した。茎の Vis-NIR スペクトルから直接的に茎

の糖度を推定する検量モデルを，第一実験で得られた検量モデルを利用して

開発した。第三段階として，サトウキビ圃場の上空から撮影した UAS 画像

から Pol 糖度を推定するための検量モデルを開発した。ここでは，ポータ

ブル型 Vis-NIR 装置で取得した Pol 糖度を活用したモデルを開発し，画像

処理では関心領域（ROI）サイズが与える影響について考察した。 

 

卓上型 Vis-NIR 装置による微量搾汁液の非破壊評価では，NIR スペクトル

の前処理が検量モデルに与える影響を検討し，SNV 処理や 2 次微分処理に

よる前処理が有効であることを検証するとともに，PLSR による検量モデル
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を開発した。モバイル型 Vis-NIR 装置を用いた茎の Pol糖度検量モデル開

発では，近赤外スペクトルを直接用いるよりも 2 次微分処理と重回帰モデ

ルが定量分析に 効果的であることを示唆した。 

 

第三段階の UAS からの糖度推定実験では，マルチスペクトル画像を取得

し，これから算出できる植生指数 （VI）による糖度推定を検討した。その

結果， NDVI，CIRedEdge，および SRPIb がサトウキビの Brix と Pol 糖度推

定に有効であることを示唆した。関心領域サイズを検討した結果，小ピクセ

ル数が少ないため葉以外の情報が相対的に大きく反映され，予測モデルの精

度は低下した。 植生指数による Pol 糖度推定は， SRPIb と NDVI の相関

が高くなった。特に SRPIb 画像に基づく Pol 糖度推定モデルは最も相関が

高く， R2 は 0.87，RMSEC は 0.6%となった。このモデルから Pol 糖度 は

サトウキビ葉中の窒素と関連している可能性が示唆された。さらに，各バン

ドの画像による Pol 糖度推定について，重回帰分析を用いて解析を行い， 

NIR バンドが最も糖度推定に影響していること，水，糖，クロロフィル等の

情報が有効であることを示した。本研究により，光学的センサーの複合利用

によって，圃場から収穫後まで一貫した糖度評価が可能であることを示し

た。 
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Chapter 1: Introduction 

This chapter provides an overview of the study, starting with the background 

(section 1.1) and contextual information (section 1.2), followed by the specific aims 

and objectives of the research (section 1.3). Additionally, section 1.4 outlines the 

significance and scope of the study and includes definitions of key terms used 

throughout the text. Finally, section 1.5 discusses the anticipated benefits of the 

research. 

 

1.1 BACKGROUND 

Sugarcane (Saccharum officinarum L.) is a high-biomass-yielding crop 

containing a large amount of sugar. Thus, it is mainly used for sugar and biofuel 

production1. In Japan, sugarcane is mostly grown on southern islands at 24–31N 

latitude and 123–131E longitude. A total of 16 raw-sugar mills are scattered across 

these islands. Although sugarcane production in Japan is relatively small, accounting 

for less than 0.1% of the world’s production, sugarcane is one of the most important 

agricultural products supporting the local economy. Sugarcane quality and yield are 

two of the most important indices for millers and producers because the cane price is 

determined based on the sugarcane quality. 

In contrast, the yield determines the total output. The primary criteria for 

measuring the sugar quality are polarimetric sucrose (Pol), total soluble solids (Brix), 

and the purity coefficient of sugarcane where the conventional method2 is a method 

to measure the Pol and Brix in sugar mills (Figure 1.1). However, this method is 

time-consuming and requires considerable skill and care to obtain sufficient 
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sugarcane juice needed for the measurements (Figure 1.2). Brix is used to determine 

the approximate quantity of sugar present in agricultural products. It can be measured 

from a small amount of juice using a refractometer (Figure 1.3). Brix is commonly 

used as a sugar index for the samples. However, sugarcane juice also contains other 

components besides sugar, which are unnecessary in the valuation of sugarcane, such 

as minerals and reducing sugar. Pol is determined by Brix and Pol readings 

(International Sugar Scale). Pol readings are measured from 100 mL of clear cane 

juice using a polarimeter (Figure 1.4). However, obtaining clear juice involves 

squeezing, clarification with a toxic chemical, and filtration, which creates hazardous 

waste. The purity coefficient is calculated from %Pol divided by %Brix, which 

serves as a maturity index that can be used to determine the best harvest time. 

Although these quality indices (i.e., Pol, Brix, and purity) are important for farmers 

and millers before the harvest, a measurement method that can be used in the 

farmland has not yet been developed.  

 

 

Figure 1.1: The conventional method contains two instruments; (a) a polarimeter 

and (b) a refractometer 
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Figure 1.2: Diagram of process to obtain sugarcane juice in sugar mill using press 

machine 
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Figure 1.3: Diagram of present process to obtain sugarcane Brix value in sugar mill  
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Figure 1.4: Diagram of present process to obtain sugarcane Pol value in 

sugar mill 

Spectroscopy is a rapid and accurate technique used in many agricultural 

applications. This method involves the analysis of interactions of light with matter, 

which is achieved by measuring changes in the wavelengths of light as parts of it get 

absorbed by the molecular moieties of the studied materials. For example, in the case 

of food and forage materials, molecular moieties containing C–H, N–H, and O–H 
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bonds show absorption bands within 1400–2500 nm, which correspond to the 

biological signatures of materials such as water and sugar content3. Because of these 

advantages, NIR spectroscopy is used to perform sugarcane quality measurements. A 

near-infrared (NIR) spectrum can be acquired in less than a minute. As shown in 

Figure 1.6, The sugar quality estimated through calibration using the NIR spectrum 

of shredded cane corresponds to that measured by the slower, conventional method. 

Therefore, benchtop Vis-NIR spectrometers have been introduced in all Japanese 

sugar mills, and the current quality-based payment system has been employed since 

the 2005/2006 harvest season. The data can be shared on the network system. This 

data can later be combined with that obtained by other mills of different regions to 

further improve the accuracy of the calibration model4. However, benchtop Vis-NIR 

spectrometers are not mobile and require of shredded cane which need to be 

shredding with sugarcane cutter glider (Figure 1.7). Therefore, measurement 

methods that can be used in the farmland still need to be developed. 
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Figure 1.5: Diagram of using benchtop Vis-NIR spectrometer in sugar mill 
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Figure 1.6: Diagram of process to obtain shredded sugarcane in sugar mill using 

cutter grinder  

 

The abovementioned problems can be resolved using a portable visible-NIR 

(Vis-NIR) spectrometer (Figure 1.7). A Vis-NIR spectrometer can be used in the 

laboratory or the field by aiming its emitter beam directly onto the surface of the 

selected internode of a sugarcane stalk (Figure 1.8). Thereafter, the spectral 

information (400-1000 nm) for predicting the sugar quality can be collected within 
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approximately 10 s without damaging the sugarcane plant5-7. Furthermore, the 

method may be more accurate than the refractometer as the Vis-NIR beam covers the 

whole internode. This fast, easy, and non-destructive measurement system is 

expected to be quite useful; therefore, a good calibration model should be developed 

for its practical application.  

 

 

Figure 1.7: A portable Vis-NIR spectrometer  

 

Figure 1.8: Example of demonstration of using a portable Vis-NIR spectrometer  
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The chlorophyll, water, and sugar bands were the key to developing the sugar 

quality prediction model for a portable Vis-NIR spectrometer. Chlorophyll plays an 

important role in the visible range because it is the most common pigment in plants 

and is involved in photosynthesis which is considered related to sugar quality in the 

case of sugarcane. Chlorophyll helps absorb energy from sunlight and converts light 

energy into chemical energy. Chlorophyll appears green because it absorbs light well 

at a wavelength of approximately 400–500 nm and 600–700 nm – i.e., blue and red- 

reflecting green light. Another photosynthetic pigment, called carotenoid, absorbs 

light energy but passes it to the chlorophyll molecules. Chlorophylls are blue-green 

(chlorophyll–a) or green (chlorophyll– b) in color, whereas carotenoids are orange 

(carotenes) or yellow (xanthophyll). Analyzing chlorophyll in sugarcane using leaves 

canopy reflectance images might lead to assessing the sugarcane vegetation state and 

sugar quality.  

A multispectral camera mounted on a small unmanned aerial system (UAS) is 

the new instrument for future yield and sugar quality estimation8 (Figure 1.9). For 

example, a multispectral camera mounted on a small UAS could collect mass 

information of sugarcane canopy reflectance information and solve the problem of 

row obstacles in the sugarcane field that a portable Vis-NIR spectrometer could not 

access. Vegetation indices (VIs) are simple spectral imaging that combines two or 

more image bands to enhance the vegetation properties in the image. VIs are 

sensitive to leaf changes and are helpful for estimation research9. For example, the 

Normalized difference vegetation index (NDVI) is sensitive to the leaves area of the 

plant, the Chlorophyll index red edge (CIRedEdge) is sensitive to chlorophyll in leaves, 

and The Simple ratio pigment index (SRPIb) is sensitive to nitrogen in leaves10. This 

phenomenon is related to the photosynthesis of the sugarcane cycle and might be 
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directly or indirectly sensitive to the change in sugarcane maturity, health, and sugar 

quality11. However, a complete field image requires expensive software to generate 

and combine the map, and it takes time before calculating the vegetation indices and 

further analysis. 

 

 

Figure 1.9: UAS 

 

Nevertheless, developing Pol prediction requires harvesting the sugarcane stalk 

and bringing it to the laboratory to measure it. Unfortunately, this process 

permanently damages the sugarcane and takes time to develop the Pol prediction 

model. Smart agriculture techniques like using a portable Vis-NIR spectrometer on 

the ground for Pol measurement and capturing the sugarcane canopy reflectance 

images using a UAS to develop a Pol prediction model might compensate for each 

instrument's weakness. In addition, this technique might be cost-efficient and faster. 

 

1.2 CONTEXT 

The sugar mill needs to improve the use of benchtop Vis-NIR spectrometer and 

find a new tools or methods that function faster, non-destructive, and mobile to 

predict sugar quality at both field and laboratory. 
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1.3 PURPOSES 

The study aim was (I) to develop a sugarcane quality calibration model for the 

benchtop Vis-NIR spectrometer using sugarcane juice spectral analysis results and 

sugarcane quality as measured by the conventional method, (II) to develop a sugar 

quality calibration model for a portable Vis-NIR spectrometer using stalk spectra and 

the sugar quality predicted from sugarcane juice using the benchtop Vis-NIR 

spectrometer, and (III) to develop a sugarcane quality calibration model for a 

multispectral camera mounted on UAS using various cropped sizes of sugarcane 

reflectance canopy at the region of interest images and sugarcane quality as 

measured by a portable Vis-NIR spectrometer. 

 

1.4 SCOPE OF RESEARCH 

This research was conducted in Okinawa prefecture, Japan, to develop highly 

accurate evaluation systems for sugarcane quality using popular Japanese cultivars 

such as Ni27, NiH25, Ni21, NiF8, etc., delivered from 16 sugar industries around 

Japan. The sugarcane spectra and sugar quality were measured by a polarimeter, 

refractometer, benchtop Vis-NIR spectrometer, portable Vis-NIR spectrometer, and 

UAS to analyze and develop calibration models. 

 

1.5 EXPECTED BENEFIT 

Author demand to use the benefit of how basic, rapid, and non-destructive a 

portable Vis-NIR spectrometer is to measure the sugar quality in the field to know 

when sugarcane has the highest sugar quality or sugarcane maturity stage for future 

research, where generally previous methods cannot be used like this and most 

importantly a stalk spectra that measured by a portable Vis-NIR spectrometer could 
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be used learn more about sugarcane like health, habit, water stress, factors that made 

sugarcane change in sugar quality, etc. Measure sugar quality in the field monthly 

using a portable Vis-NIR spectrometer and capturing multispectral image reflectance 

of sugarcane leaves using UAS might lead to finding a correlation between these data 

might be a direct or indirect correlation, which will be able to create a sugar quality 

map, sugarcane maturity map, health map, etc., and will be very useful for both the 

sugar industry and farmers. 

 

 

Figure 1.10: Visual imagination of expected benefit 
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Chapter 2: Literature Review 

The literature review chapter serves as the foundation for this study, providing 

a comprehensive understanding of the subject matter and supporting the research 

focus. The primary aim of the literature review chapter is to explore the existing 

theoretical concepts and research findings in order to develop a conceptual 

framework that can generate hypotheses and address the research problem. The 

literature review chapter includes a discussion of sugarcane (section 2.1), sugar 

processing (section 2.2), the use of Near-infrared spectroscopy in sugarcane (section 

2.3), spectral correction and pre-treatment techniques (section 2.4), the use of 

multispectral images and vegetation indices (section 2.5), multivariate analysis 

(section 2.6), and an overview of related studies (section 2.7). 

 

2.1 SUGARCANE 

Sugarcane is a member of the grass family that is known for its high production 

of sugar. It serves as a vital source of food, renewable energy, and income for 

millions of people worldwide, occupying over 20 million hectares of land1. Typically 

grown in warm-temperature, tropical, or sub-tropical regions, sugarcane is native to 

South Asia, Southeast Asia, New Guinea, and South America. At the ripening stage, 

sugarcane can reach a height of 2-6 meters, with a stalk diameter of approximately 

30-60 mm. Historically, people would chew or suck on sugarcane for its natural 

sweetness, but over time, techniques were developed to extract sugar from the plant. 

Today, sugarcane agriculture is primarily driven by global demand for sugar.  
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Sugarcane agriculture is a crucial economic activity in more than 100 countries, 

especially in developing economies where poverty and unemployment are prevalent. 

By providing income and employment, sugarcane-based agriculture plays a vital role 

in the economic growth of these countries, particularly in uplifting under-skilled 

rural populations. The industry not only supports farmers and laborers but also 

provides opportunities for related businesses such as transport, storage, and 

processing. With its ability to generate economic opportunities and contribute to 

poverty reduction, sugarcane-based agriculture is a significant contributor to 

sustainable development in many developing economies. 

In Japan, sugarcane (Figure 2.1) is an economically significant crop in the 

southern region12 because most of the local people are working in the sugar industry 

for the main work since the increasing of sugarcane production in 2015 along with 

increasing of the human population. In recent several-year, sugarcane roles in Japan 

are starting to change after the worker ageing and becomes rarer, which were 

contrary to the demand for sugar production in the daily of the sugar industry. 

Sugarcane is a long-term crop that requires a growth period of approximately 10-18 

months per harvest13 and was mostly grown around March and harvested around 

January on a small island located on the south subtropical island arc of Japan called 

“Nansei Island”. Growing sugarcane on Nansei island is difficult due to the season of 

tropical cyclones called “Typhoon", which damages the sugarcane, make weakening, 

and makes sugarcane fall into the soil. Vulnerable cane can be easier to infect by 

several diseases and invade by pests that lead to abnormal physiological processes 

that disrupt its structure, growth, functions, and other activities. Furthermore, 

unhealthy or infected sugarcane can infect nearby crops, which adversely affects 

farmers and sugar factories. The diseases in sugarcane are caused mostly by 
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pathogenic organisms such as fungi, bacteriam, mycoplasma, viruses, viroids, and 

nematodes.14, 15 Red-rot is one of the most commonly observed diseases in sugarcane 

which is caused by the fungus, Colletotrichum falcatum Went recently known as 

Glomerella tucumanesis Speg.14-16 Red-rot can cause a significant loss in the yield as 

it is difficult to detect in the field through non-destructive testing or through the 

naked eye. New tools and faster and more accurate methods are crucial in predicting 

the quality of sugarcane in the field. Extensive research has been conducted to 

identify unhealthy conditions in sugarcane, including the diagnosis by an expert 

system application17, identification using image processing18, and use of sequence-

characterized amplified region (SCAR) markers19. In 2022, a portable Vis-NIR 

spectrometer can also detected unhealthy in sugarcane stalk without damage the 

sugarcane. 

These circumstances make sugarcane difficult to reach the maximum yield of 

growing and lowers the quality of sugarcane. As a result, around 40 sugarcane 

cultivars have been developed, and approximately 10 popular cultivars are currently 

used. One of the most popular is Ni2720, as shown in Figure 2.2.  
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Figure 2.1: Sugarcane field in Minami-Daito, Okinawa, Japan 

 

 

Figure 2.2: Japanese sugarcane (cultivar Ni27) 

In the past, sugarcane generally was harvested by labour with a cutting tool 

(sugarcane knife). Harvesting by labours required a lot of labours and time to harvest 

in one area21. Moreover, some sugarcane cultivars with hairy stalks are caused a 
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problem in harvesting by resistance to a cutter. This problem makes labour chose to 

burnt sugarcane before harvest to make it more accessible to cut by labour but burnt 

cane can produce low payloads and increased losses in the field. 

Currently, the burnt cane was reduced by used mechanical harvesting 

(sugarcane harvester). Sugarcane harvester was performed for harvesting for in a big 

area, cost-efficiency for labour, and time-efficient, but depends on areas, geography, 

climates, weathers, labour condition, etc. which are the factors of causing the losses 

of sugarcane yield in a field. Sugarcane harvesters have 3 major types; harvester 

equip on tractor, small size harvester, and large size harvester22. (Figure 2.3) 

 

 

Figure 2.3: The sugarcane harvester small type (left) and large type (right) 

 

During the sugarcane harvesting, most of the sugarcane trash are separate with 

sugarcane harvester de-trashing mechanism, and ditch on the sugarcane field. Then, 

the sugarcane billet with the rest of the trash that wasn’t correctly separated by 

harvester mechanism will conveying from sugarcane harvester to the truck and 

delivery to the sugar mill.  

2.2 SUGAR PROCESSING 

After being harvested in the southern region of Japan, sugarcane is typically 

transported to a sugar mill via truck. The sugar mill then undergoes three primary 
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processes: payment, raw sugar production, and refined sugar production. During the 

payment process, farmers are compensated for their crop before it is processed. Next, 

the sugarcane undergoes a raw sugar production process, where it is crushed and 

boiled to extract the raw sugar. Finally, the raw sugar is further processed and refined 

to produce the final sugar product.  

 

2.2.1 The payment processes 

The payment process for sugarcane involves objective methods of valuation, 

which typically include weighing and conventional techniques. Before the sugarcane 

is processed by milling, the truck carrying it is driven to the sugarcane dump yard (as 

shown in Figure 2.4 and 2.5). At this point, the truck is stopped, and the farmer's 

registration number is identified. The sugarcane is then weighed, and a sample is 

randomly extracted from the truck using a core sampling crane. Typically, around 5-

15 kg of the sample is collected and sent to a laboratory for testing to determine the 

sugar quality and trash ratio, which are used to establish the price (as shown in 

Figure 2.6). This process ensures that farmers receive a fair and objective price for 

their sugarcane, based on its quality and quantity.  
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Figure 2.4: The sugarcane dump yard 

  

Figure 2.5: Picture of sugarcane at sugar cane dump yard 

 

In the payment processing room, the sugarcane sample is first weighed, which 

includes both sugarcane and non-sugarcane components. The sample is then sent to a 
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table where a group of 4-10 workers clean and separate the sugarcane from any trash. 

The workers use a sickle (known as a "カマ; Kama") to remove green leaves, dry 

leaves, soft tops, and to cut suspicious sugarcane in half to check for any 

fermentation or disease. They divide the sugarcane billets from the non-sugarcane 

parts such as dirt, rocks, and other plants. After the cleaning process, the sugarcane is 

weighed again, and then shredded using a cutter grinder. The shredded cane sample 

is then analyzed for sugar quality using a benchtop Vis-NIR spectrometer. The 

truck's registered account is updated with data on the sugarcane yield, trash ratio, and 

sugarcane quality to determine the price. Once the payment processing is complete, 

the truck dumps the sugarcane in the courtyard and waits for milling. The entire 

process takes around 10-15 minutes per truck, but this time frame may vary based on 

several conditions and factors. 

 

 

Figure 2.6: Payment processes in Japan sugar mill 

 

During the process of separating the sugarcane from the trash, many different 

types of sugarcane trash (as shown in Figure 2.7) are found, including green 

sugarcane leaves, dry sugarcane leaves, sugarcane roots, sugarcane soft-tops, dirt, 

stones, and sugarcane infected with disease or fermentation. These sugarcane trash 

items can cause problems with sugar quality during the manufacturing process. Some 
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of the sugarcane trash can still produce sugar, but in low amounts, while others 

cannot produce any sugar at all. 

 

 

Figure 2.7: Sugarcane trash that was removed by labour 

 

After the completion of the payment processes, the truck moves to the 

sugarcane courtyard to dump the sugarcane. Depending on the amount of sugarcane 

delivered in a day, it may have to wait for a day or even a week before processing 

into raw sugar. This waiting period can affect the quality of the sugarcane. 

In addition, labor costs have affected the profitability of sugarcane 

production. Consequently, this reduced efficiency affects sugarcane quality, yield, 

and value. Including trash such as green sugarcane leaves, dry sugarcane leaves, 

parts of the root parts, and soil23 in the sugar mills causes problems in the payment 

processes as sugar content and trash percentage are critical indices in determining 

prices for the farmer. Trash separation from the sugarcane sample is a labor-intensive 

task. Human errors24 may arise due to the subjectivity of the process and as a 

consequence of the 100–300 deliveries to the sugar mills daily. Each sugar mill in 
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Japan requires 4–10 workers to separate the trash. The industry needs to explore new 

tools and methods that function faster and more accurately than manual methods to 

assess the quality of the sugarcane delivered. 

 

2.2.2 Raw sugar process 

The production of raw sugar involves several complex and interdependent 

processes that require careful attention to detail and a deep understanding of 

chemistry and engineering principles. The five major steps in the process are juice 

extraction, juice purification, evaporation, crystallization, and centrifugation. 

The first step is juice extraction, where sugarcane is passed through a set of 

crushing rollers to obtain the sugarcane juice. This juice contains various impurities 

such as fibers, minerals, and non-sugar organic compounds that need to be removed 

to produce high-quality raw sugar. 

The next step is juice purification, which aims to remove the impurities from 

the juice. This is done through mechanical methods such as filtration and chemical 

methods such as heating and adding lime. The goal is to obtain a clear, pure juice 

that is suitable for the next steps in the process. 

The third step is evaporation, where the purified sugarcane juice is heated and 

concentrated to remove most of the water. This is typically done using a series of 

evaporators, which progressively remove water until the juice becomes a 

concentrated syrup. 

In the fourth step, crystallization, the syrup is sent to a vacuum pan, where it is 

boiled to remove more water until it reaches the point of saturation. At this point, 

sugar crystals begin to form and are mixed with molasses, a thick, dark syrup that 

contains residual sugars and impurities. 
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The final step is centrifugation, where the massecuite mixture of sugar crystals 

and molasses is separated using a centrifuge machine. The sugar crystals are 

separated from the molasses and dried, resulting in the production of raw sugar. 

Throughout the entire process, there are numerous challenges that must be 

overcome to ensure high-quality raw sugar production. These challenges include 

maintaining the correct temperature and pressure in the evaporators, ensuring that the 

juice is properly purified, and controlling the crystallization process to achieve the 

desired crystal size and purity. 

In addition, the quality of the sugarcane itself can have a significant impact on 

the final product. Factors such as soil quality, climate, and pest control can all affect 

the sugar content and purity of the sugarcane, which in turn affects the quality of the 

raw sugar produced. 

Overall, the production of raw sugar is a complex and challenging process that 

requires a combination of scientific knowledge, engineering expertise, and careful 

attention to detail. Despite these challenges, raw sugar production remains a critical 

industry, providing an essential ingredient for many food and beverage products 

around the world. 

 

2.2.3 Refine sugar process 

After the raw sugar is obtained from the manufacturing process, it is sent to the 

refined sugar factory to be processed into white sugar. The production of white sugar 

is a complex process that involves several steps, each designed to remove impurities 

and improve the quality of the sugar. 

The first step in the production of white sugar is melting. This involves mixing 

the raw sugar with hot water or green molasses from spinning using sugar centrifugal 
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machine. The mixture obtained is called magma, which will later be centrifuged to 

remove the green molasses or molasses. The Affiliated Syrup obtained from the 

centrifuge will then be dissolved again to dissolve any remaining crystals that might 

have been undissolved from the churning process. 

The next step is clarification, which is necessary to remove any impurities that 

may be present in the Affiliated Syrup. The syrup is passed through a sieve to mix 

with lime access bleaching in a bleaching pot. Then, it will filtrate by a pressure filter 

to separate the sediment and be bleached again for the last time by the Ion Exchange 

Resin process to obtain Fine Liquor. This ensures that the syrup is completely clear 

and free from any unwanted particles. 

After the syrup has been clarified, it undergoes crystallization. The syrup will 

be fed into a vacuum pan to evaporate the water until the syrup reaches a saturation 

point and centrifuged to get refined sugar crystals and white sugar. The resulting 

sugar crystals are then separated from any remaining molasses using a centrifugal 

machine. The centrifuged sugar crystals are then rinsed and washed to remove any 

remaining impurities. 

The final step in the production of white sugar is drying. The refined sugar 

crystals are baked by a dryer to remove any remaining moisture and ensure that the 

sugar is completely dry. The dried sugar crystals are then packed into sacks for sale. 

This process is essential in maintaining the quality of the sugar and ensuring that it is 

suitable for consumption. 

In conclusion, the production of white sugar involves several complex steps 

that are necessary to remove impurities and improve the quality of the sugar. The 

refining process ensures that the sugar is pure, free from impurities, and suitable for 

consumption. It is important to note that the quality of the sugar produced is 
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dependent on the quality of the raw sugar, and any defects or impurities in the raw 

sugar can affect the final quality of the white sugar. Therefore, it is essential to 

ensure that the raw sugar is of high quality and free from any defects. 

 

2.3 SPECTROSCOPY 

Spectroscopy is a powerful analytical tool that is widely used in many fields, 

including chemistry, physics, biology, and material science. It provides valuable 

information about the structure, composition, and properties of materials based on 

the way they interact with light. Spectroscopy techniques have evolved over the 

years, and today, there are many different methods available, including infrared 

spectroscopy, ultraviolet-visible spectroscopy, Raman spectroscopy, and X-ray 

spectroscopy, among others. Each of these methods has its own strengths and 

limitations, and they can be used to study a wide range of materials, from small 

molecules to complex biological systems. 

In spectroscopy, the spectrum is a critical piece of information that provides 

insight into the material being studied. The spectrum is a graph that shows how much 

light is absorbed, reflected, or transmitted by the material at different wavelengths. 

The intensity of the light is plotted on the y-axis, while the wavelength is plotted on 

the x-axis. By analyzing the spectrum, scientists can identify the spectral signature of 

the material, which is unique to that substance3.  

Equation (1), The Beer-Lambert law is a fundamental equation that is used to 

describe the relationship between the amount of light absorbed by a material and the 

concentration of the analyte in the material. The equation states that the absorbance 

of a material is proportional to the concentration of the analyte and the path length of 
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the light passing through the material. This law is widely used in spectroscopy to 

determine the concentration of a substance in a sample. 

In conclusion, spectroscopy techniques are essential in many scientific fields, 

and they provide valuable information about the properties and composition of 

materials. By analyzing the spectral signature of a material, scientists can gain 

insight into its structure and behavior, and the Beer-Lambert law provides a 

fundamental equation that is used to determine the concentration of analytes in 

materials. As technology advances, new spectroscopy techniques and methods will 

continue to emerge, further expanding our understanding of the world around us.  

 

A = εCl = log (
I0

I
)  = -log(

I

I0
)                                   (1) 

 

Where A is absorbance, 𝜀 is absorptivity (L mol
-1

cm-1) that is used for measure 

of how well a compound absorbs a given wavelength of light, C is concentration (in 

mol L-1), l is path length (cm) or distant length that light has to travel through the 

sample, I0 is intensity of incident energy as it enter the sample, and I is the intensity 

of reflected light or intensity as it leave the sample.  

 

2.3.1 Overtone band 

Overtone bands play an important role in the analysis of vibrational spectra of 

molecules. These bands arise due to the transitions of molecules from their ground 

state to the second excited state. This transition results in an increase in vibrational 
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quantum number (v) by 2. In comparison to fundamental bands, overtone bands 

occur at higher energies and shorter wavelengths. 

Overtone bands are used to identify the presence of molecules in a sample and 

provide information about their vibrational modes. The intensities of overtone bands 

are generally weaker than fundamental bands, making them more challenging to 

detect. However, advancements in instrumentation and signal processing techniques 

have made it possible to detect and analyze these weak signals. 

Moreover, overtone bands can also provide insights into the physical and 

chemical properties of the sample. For instance, the positions and intensities of 

overtone bands can be affected by factors such as hydrogen bonding, solvent 

interactions, and molecular symmetry. Therefore, the analysis of overtone bands can 

be used to study molecular interactions and understand the behavior of molecules in 

various environments. 

In summary, overtone bands are an essential component of vibrational spectra 

and provide valuable information about the molecules in a sample. The study of 

overtone bands can be used to identify molecules, understand their vibrational 

modes, and investigate their physical and chemical properties. As a result, overtone 

bands are widely used in various fields, including chemistry, physics, and material 

science. 

 

2.3.2 Main spectrometer components in present 

In industrial settings, the spectrometers used for various applications usually 

have electronic components. 
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Detectors 

One of the critical components of a spectrometer is the detector, which is 

responsible for detecting the light signals transmitted from the sample. Detectors can 

be divided into two main types: photo-emissive and solid-state detectors3. Photo-

emissive detectors are typically represented by photomultiplier tube detectors, which 

are known for their high sensitivity and fast response times. On the other hand, solid-

state detectors include photodiode detectors, pyroelectric detectors, and infrared 

detectors. The choice of detector depends on the specific requirements of the study or 

application, such as the wavelength range of interest or the required sensitivity. 

Light source 

Another important component of spectrometers is the light source, which is 

responsible for producing the electromagnetic radiation that interacts with the 

sample. Several materials can emit electromagnetic radiation, such as quartz 

tungsten-halogen monofilament lamps, pulsed xenon arc lamps, carbon arcs, and 

mercury lamps. The selection of the light source is based on the specific 

requirements of the study or application, such as the wavelength range of interest or 

the required intensity of the light. For example, a halogen lamp may be used for the 

visible to near-infrared (Vis-NIR) range, while other sources may be more suitable 

for other wavelength ranges. 

In addition to detectors and light sources, spectrometers also contain other 

components such as optical fibers, gratings, and lenses. Optical fibers are used to 

transmit light signals from the sample to the detector, while gratings and lenses are 

used to separate the different wavelengths of light and focus the light onto the 

sample, respectively. The selection of these components is also based on the specific 
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requirements of the study or application. For instance, the choice of grating depends 

on the wavelength range of interest and the required resolution of the spectrometer. 

Overall, the choice of components for spectrometers depends on various 

factors such as the specific application, the required sensitivity, the wavelength range 

of interest, and the required resolution. Advancements in technology have led to the 

development of more sophisticated components and instruments, enabling more 

accurate and reliable measurements in a variety of industrial and scientific settings. 

 

2.4 NEAR-INFRARED SPECTROSCOPY IN SUGARCANE 

Spectroscopy widely used in food and agricultural industries because they are 

fast, accurate, and cost-efficient. Normally spectroscopic techniques used the 

instrument call “spectrometer” to splits the incoming light into a spectrum for 

analytics, developing a calibration model, detection, and identification. The peak of 

absorbance spectrum line mean light source cannot receive much through the 

detector due to most of the light absorbed by the sample. Sugarcane mostly has O–H 

bonds overtone within 700–970 nm25 of absorption ranges, and C-H overtone within 

1700-1800 nm4, 26 of absorption ranges which correspond to the biological signatures 

of materials such as water and sugar content3, 25 Nowadays, some spectrometers are 

smaller and can work outside the laboratory.  

 

2.5 SPECTRA CORRECTION AND SPECTRA PRE-TREATMENT 

Spectral pre-treatment techniques play a crucial role in spectroscopic analysis 

as they help in improving the accuracy and reliability of the data. The pre-treatment 

technique involves many analytical methods that aim to correct the variables 

measured for a given sample that are subject to overall scaling or gain effects. These 
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effects are caused by various factors, including pathlength effects, scattering effects, 

source or detector variations, or other general instrumental sensitivity effects. The 

relative value of variables is often used in multivariate modelling rather than the 

absolute measured value to account for these scaling differences. Additionally, 

spectral pre-treatment methods also help to reduce unwanted noise and interference 

from the signals obtained from the sample. Some commonly used spectral pre-

treatment methods include baseline correction, smoothing, normalization, and 

derivative transformation. These methods aim to enhance the spectral signals and 

improve the signal-to-noise ratio, thereby improving the accuracy and precision of 

the analysis.  

 

2.5.1 Spectra correction (Absorbance) 

The raw spectra collected from the portable Vis-NIR spectrometer were transformed 

into absorbance spectra using Eq. (2). 

 

A = Sa=-log[
Sr-Sd

Sw-Sd
]                                                           (2) 

 

where Sa is the absorbance spectra, Sr is the raw spectra, Sd is the dark reference spectra, and 

Sw is the white reference spectra scanned on the Teflon white reference plate. 

 

2.5.2 Noise, Offset, and Baseline Filtering 

Noise, offset, and baseline filtering techniques were performed to remove noise 

(high frequency) or background (low frequency) by utilizing the relationship 

between variables (Variables that are related to each other and contain similar 

information) in a data set. 
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Differentiation 

Derivatives are the most common spectral pre-treatments technique. That is 

mainly used to resolve peak overlap (or enhance resolution) and eliminate constant 

and linear baseline drift between samples. Spectral derivatives calculated by 

obtaining the differences between two consecutive points or by 

smoothing/differentiating, specified gap distance, or Savitzky-Golay polynomial 

fitting27. However, the derivatives are noise enhancement and difficult spectral 

interpretation. 

 

2.5.3 Normalization 

The normalization methods attempt to give all samples an equal impact on the 

model28. Without normalization, some samples may have such severe multiplicative 

scaling effects that they will not be significant contributors to the variance and will 

not be considered necessary by many multivariate techniques. The ability of a 

normalization method to correct for multiplicative effects depends on how well one 

can separate the scaling effects, which are due to properties of interest from the 

interfering systematic effects. 

Standard Normal Variate 

Standard Normal Variate (SNV) is a pre-treatment method that effective in 

minimizing baseline offsets, compensate for light scattering effects, changes in path 

length, and multiplicative effects from absorbance spectra. The outcome of SNV, in 

many cases, is very similar to Multiplicative Scatter Correction (MSC). The SNV 

can be applied on absorbance by using equation (3). 

 

Aij
snv

=
Aij-zi̅

SD
                                                      (3) 
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Where; i
th

 is the spectrum of the collection used for calculation, j
th

 is 

absorbance value counter of i
th

  spectrum, Aij
snv

 is corrected absorbance value with 

SNV, Aij  is measured absorbance value, zi̅  is the mean absorbance value of the 

uncorrected i
th

  spectrum, SD is standard deviation of the absorbance values of i
th

  

spectrum.  

 

2.6 MULTISPECTRAL IMAGES AND VEGETATION INDEX 

Multispectral imaging is a technique used to capture images of a scene in 

multiple spectral bands or wavelengths. It is widely used in remote sensing 

applications to study vegetation, including crop monitoring, land-use mapping, and 

forest monitoring. Vegetation reflects and absorbs light differently at different 

wavelengths, allowing for the development of vegetation indices to quantify 

vegetation health and density. Multispectral images and vegetation indices provide 

valuable information for precision agriculture, environmental monitoring, and land-

use management. 

 

2.6.1 Multispectral imaging 

Multispectral imaging is a spectroscopic technique that combines spectroscopy 

with digital imaging technologies. By capturing the light reflected from objects using 

a multispectral camera, spectral and spatial information of the object can be obtained, 

resulting in an image with wavelengths ranging from the visible to near-infrared 

spectrum. Multispectral imaging has become widely accepted as a fast, visual, and 

non-destructive technique in food and agricultural research. 
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Image processing techniques are typically used for learning the presence of 

objects, detecting and measuring them, and identifying them. An image can be 

defined as a two-dimensional function, f(x,y), where x and y represent spatial (plane) 

coordinates, and the amplitude of f at any pair of coordinates (x,y) is referred to as 

the intensity or brightness. In more advanced cases, an image can be defined as a 

three or more-dimensional function that is used for measurement and analysis 

(Figure 2.8). 

The quality of an image is directly proportional to the quality of the settings 

applied to it. To use a camera as a measuring device, it must be calibrated to the 

physical world. This is done by performing geometric calibration to correct lens 

distortion and color calibration using reference colors. In most cases, the acquired 

image from the camera is not directly processed within the application. Instead, it is 

pre-processed to reduce noise and enhance brightness and contrast, which improves 

the image quality for the specific task at hand. 
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Figure 2.8: Example of RGB image 

 

2.6.2 Vegetation index 

Vegetation indices (VIs) are combinations of surface reflectance at two or 

more image bands that highlight specific vegetation properties9. NDVI, for example, 

is an index that distinguishes vegetation from other natural objects as it is moderately 

sensitive to leaf area index, high soil, and atmospheric background changes. 

CIRedEdge is used to calculate the chlorophyll content of plants, where RedEdge band 

are typically responsive to slight variations in chlorophyll content. NDVI, CIRedEdge, 

and SRPIb are calculated using equations (4-6) as shown in Figure 2.9-2.11. 

 

NDVI = 
(NIR-R)

(NIR+R)
                                                             (4) 
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CIRedEdge = (
NIR

RedEdge
) -1                                                     (5) 

 

SRPIb = 
B

R
                                                                    (6) 

 

Where R is the red band, G is the green band, B is the blue band, RedEdge is 

the RedEdge band, and NIR is the near-infrared band. 

 

Figure 2.9: Example of NDVI image 

 

Figure 2.10:Example of CIRedEdge image 
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Figure 2.11:Example of SRPIb image 

 

2.7 MULTIVARIATE DATA ANALYSIS (CHEMOMETRICS) 

Multivariate data analysis is a crucial aspect of research in various fields, 

including chemistry, biology, economics, and more. This analytical approach 

involves analyzing and interpreting datasets with multiple variables simultaneously. 

Multivariate data analysis techniques provide an opportunity to extract more 

information from the data, including descriptive analysis, discrimination, and 

classification, and regression and prediction. Depending on the objectives of the 

study, various methods can be used. In this study, the aim was to develop regression 

models, and two methods were employed: Partial Least Squares Regression (PLS-R) 

and Multiple Linear Regression (MLR).  

 

2.7.1 PLS-R and MLR 

PLS-R generates a model by maximizing the covariance between the predicted 

and observable variables. This approach is particularly useful when the number of 

variables is large, and there is a potential for multicollinearity. On the other hand, 

MLR generates a model by fitting a linear equation to the data. It is particularly 
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sensitive to small changes in the data and can result in drastic changes in the 

regression coefficients. In summary, multivariate data analysis is a powerful tool that 

enables researchers to extract valuable insights from complex datasets. By selecting 

appropriate techniques, researchers can generate robust regression models that can 

help them make informed decisions. 

The developed regression models were evaluated using the coefficient of 

determination (R2), root mean square error of calibration (RMSEC), root mean 

square error of cross-validation (RMSECV), root mean square error of prediction 

(RMSEP), and bias.  

 

Y=XT+E                                                              (7) 

 

where Y is the predicted Pol value, X is the sugarcane spectrum, T is the regression 

vector, and E is the residual. 

 

y = β
0
+β

1
x1+…+β

n
xn+ε                                              (8) 

 

where y is the predicted Pol value, β
0
 is the intercept regression coefficient, β is the 

regression coefficient, x is the selected wavelengths, ε is a model error, and n is the number 

of factors selected by a step-up method. 

 

2.7.2 Validation 

The prediction accuracy and precision could not know without checking it first 

when creating a model for calibration. The practical validation is the method to 

check how good the calibration by using a test set (external validation) when to have 

enough data or cross-validation (internal validation). Set of data can be select 
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manually or using algorithm up on user, Kennard-stone algorithm29 to select the train 

and test set. In the case of cross-validation (CV), many techniques can be applied. 

For example, in the case of low number of data, leave-one-out-CV was the most 

useful for due to not complicate algorithm but have to careful when using with large 

data size due to it can result in overfit. Venetian blinds CV is an easy and relatively 

quick method appropriate for a large number of samples.  

Coefficient of determination (R2) 

The coefficient of determination is a number between 0 and 1 that measures 

how well model predicts. The coefficient of determination (equation 9) can be 

calculated by square root of pearsons correlation coefficient (r) formular. 

 

R2 = 
n( ∑ xy)-( ∑ x)( ∑ y)

√[n ∑ x2-( ∑ x)
2][n ∑ y2-( ∑ y)

2
]

                                    (9) 

 

Root Mean Square Error (RMSE) 

RMSE, in equation 10, is defined as the average of the squared differences 

between predicted and measured Y-values of the validation one of the factors used to 

find the best model.  

 

RMSE =√∑ (y
i
meas-yi)

n
i=1

n

2

                                    (10) 
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Bias 

Bias is commonly used measure of the accuracy of a prediction model and use 

to check difference between calibration and validation set. The bias can be computed 

by using equation (11). 

 

Bias=
∑ (yi

meas-y
i

pred
)n

i=1

n
                                            (11) 

 

2.8 REVIEW RELATED WORK 

The success of any research project is often built upon the foundation laid by 

previous studies in the same field. In this section, we aim to provide a comprehensive 

review of related works that have inspired the research at hand. By examining the 

previous studies, we can gain insights into the gaps and limitations of existing 

methods, identify areas where further research is needed, and ultimately build upon 

the knowledge and findings of previous researchers. 

 

2.8.1 Networking system for sugarcane payment in Japan 

The study conducted by Prof. Dr. Eizo Taira on the use of near-infrared 

spectroscopy for sugarcane in 2013 has led to significant advancements in the 

analysis of sugarcane samples. This study demonstrated the effectiveness of using 

NIR spectroscopy as a rapid and reliable method for quantitative analysis of 

shredded cane samples. As a result, an NIR network system for sugarcane was 

developed, which has since been adopted as the official method for determining cane 

prices in all raw sugar factories in Japan. The NIR network system provides accurate 

and efficient measurements of cane quality, allowing for quick and informed 
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decision-making by sugarcane producers and processors. The use of NIR 

spectroscopy in sugarcane analysis has revolutionized the sugar industry, offering a 

cost-effective and reliable alternative to conventional methods of analysis.  

 

2.8.2 A portable Vis-NIR spectrometer for sugarcane research 

In 2013, Prof. Dr. Eizo Taira conducted a collaborative study with HKN 

company to develop a portable Vis-NIR spectrometer specifically for sugarcane6. 

This study aimed to provide a portable and efficient method for the quantitative 

analysis of sugarcane quality, which can be measured both in the field and laboratory 

without causing any damage to the crop. The development of the portable Vis-NIR 

spectrometer has shown to be a significant advancement in the sugarcane industry as 

it has allowed for easy and rapid monitoring of sugarcane quality, thus improving 

harvest schedules and overall crop yield. The results of this study have been widely 

implemented in the sugarcane industry, resulting in better-quality sugar products and 

increased efficiency in the production process. Additionally, this technology has 

opened up opportunities for researchers to further explore the applications of Vis-

NIR spectroscopy in other agricultural industries, leading to the development of 

more portable and accurate devices for field and laboratory analysis. 

 

2.8.3 Unhealthy sugarcane detection using Vis-NIR spectra 

In recent years, plant health monitoring has emerged as a promising application 

of spectroscopy. In 2022, the author conducted a study that revealed the potential of 

using spectroscopy for monitoring the health of sugarcane plants. The results of the 

study indicated that an unhealthy sugarcane can be detected using a portable Vis-NIR 

spectrometer with great accuracy and speed30. This discovery opens up new 
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possibilities for the development of a fully integrated monitoring system that could 

revolutionize the sugar industry. By leveraging the power of spectroscopy, such a 

system could offer real-time control over the monitoring of sugar industry 

operations, allowing for faster and more informed decision-making. The author's 

findings have laid the foundation for this idea, and further research in this direction 

could lead to significant advancements in the field of agricultural monitoring and 

management. 

 

2.8.4 Hyperspectral imaging in sugarcane research 

During their master's degree program in 2018, the author conducted a study on 

the use of hyperspectral cameras to identify and classify sugarcane trash, such as 

green leaves, dry leaves, rock, soil, and other materials. The findings of this research 

demonstrated the differences between the spectra of sugarcane and trash, 

highlighting the potential for using spectroscopy to separate or classify these 

materials based on their spectra31. This study served as inspiration for the author to 

pursue further research using spectroscopic imaging techniques, which led to the 

discovery of possible ways to spatially map sugar parameters on hyperspectral 

images of sugarcane32.  

 

2.8.5 Sugar quality prediction in sugarcane fields using UAS 

Chea Chanreaksa conducted a study on sugar yield parameters and fiber 

prediction in small experimental sugarcane fields using a multispectral camera 

mounted on a small UAS. The research findings showed that three out of six 

vegetation indices (NDVI, CIRedEdge, and SRPIb) had a strong correlation with sugar 
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yield parameters11, which served as inspiration for the author to conduct a similar 

experiment in a real sugarcane field.  
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Chapter 3: Research Design 

This chapter outlines the research design adopted to achieve the aims and 

objectives stated in Section 1.3 of Chapter 1. The design includes several 

components, as follows: 

Section 3.1: Experimental schematic 

Section 3.2: Materials to be used in this study for data acquisition and analysis 

Section 3.3: Acquisition of NIR spectra using a benchtop Vis-NIR 

spectrometer 

Section 3.4: Acquisition of NIR spectra using a portable Vis-NIR spectrometer 

Section 3.5: Reference analysis of sugar quality 

Section 3.6: Preparation of datasets for the development of regression models 

for predicting sugar quality (first experiment) 

Section 3.7: Preparation of datasets for the development of regression models 

for predicting sugar quality (second experiment) 

Section 3.8: Field measurement and flight mission 

Section 3.9: Background removal and region selection 

Section 3.10: Preparation of datasets for the development of regression models 

for predicting sugar quality (third experiment). 

This research design will provide a comprehensive framework for conducting 

experiments and analyzing data to achieve the research objectives.  
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3.1 EXPERIMENT SCHEMATIC 

The objective of this study was to develop an evaluation system for sugarcane 

quality in Japan using a combination of instruments, including a polarimeter, 

refractometer, benchtop Vis-NIR spectrometer, portable NIR spectrometer, and a 

multispectral camera mounted on an unmanned aerial vehicle. To achieve this 

objective, the experimental methods were divided into three parts (see Figure 3.1): 

In the first part of the study, a sugarcane quality calibration model was 

developed for the benchtop Vis-NIR spectrometer using spectral analysis results of 

sugarcane juice and sugarcane quality as measured by conventional methods. 

The second part involved developing a sugar quality calibration model for a 

portable Vis-NIR spectrometer using stalk spectra and the sugar quality predicted 

from sugarcane juice using the benchtop Vis-NIR spectrometer.  

In the final part of the study, a sugarcane quality map was developed for a 

multispectral camera mounted on a UAS using various cropped sizes of sugarcane 

canopy reflectance at the region of interest images and sugarcane quality as 

measured by a portable Vis-NIR spectrometer. 

By developing these calibration models, the study aimed to provide an efficient 

and cost-effective way of evaluating sugarcane quality in Japan. 
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Figure 3.1: Experimental Schematic 
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3.2 MATERIALS 

In the first experiment, Sugarcane billet samples from 16 sugar mills from the 

south of Japan were sent to the University of the Ryukyus, Okinawa for calibration 

during the 2020/2021 harvest season. The sugarcane billet samples were prepared, 

cut into 30-cm pieces, and pressed using a hydraulic press (Matsuo, Kagoshima, 

Japan) at 25.5 MPa for 1 min to extract a total of 213 sugarcane juice samples. Their 

absorption spectra and sugar quality were measured using both the benchtop Vis-NIR 

spectrometer and conventional method (Figure 3.2). In the second experiment, 103 

sugarcane stalks were scanned at the sugarcane field using a portable Vis-NIR 

spectrometer and then harvested, cut into halves (approximately 30 cm each), and 

moved to the laboratory to press using the same settings as in the first experiment to 

extract sugarcane juice for obtaining sugarcane spectral information using the 

benchtop Vis-NIR spectrometer (Figure 3.2). This experiment was first conducted in 

the sugarcane experimental field at the University of the Ryukyus, Okinawa, Japan 

(Oct–Dec 2020).  

In the last experiment, 103 sugarcane stalks were scanned at the sugarcane 

field using a portable Vis-NIR spectrometer and then harvested, cut into halves 

(approximately 30 cm each), and moved to the laboratory to press using the same 

settings as in the first experiment to extract sugarcane juice for obtaining sugarcane 

spectral information using the benchtop Vis-NIR spectrometer (Figure 3.2). This 

experiment was first conducted in the sugarcane experimental field at the University 

of the Ryukyus, Okinawa, Japan (Oct–Dec 2020). 
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Figure 3.2: First experiment design outline: (a) Sugarcane billet samples were 

prepared by (b) pressing the stalks using a hydraulic press to extract (c) sugarcane 

juice to (d) measure Brix, Pol, and sugarcane spectra using a refractometer, 

polarimeter, and a benchtop Vis-NIR spectrometer. 

 

3.3 ACQUISITION OF NIR SPECTRA OF THE BENCHTOP VIS-NIR 

SPECTROMETER 

A 4.1-cm diameter measuring cup (slurry cup made of quartz) was filled with 

approximately 2 mL of each sugarcane juice sample and covered with a gold 

reflector (0.5 mm in size). Spectroscopic measurements were carried out twice for all 

samples using a benchtop Vis-NIR transmission spectrometer (DS2500; FOSS, 

Hillerød, Denmark). Distilled water was used for the zero (i.e., reference) setting. 

The Vis-NIR absorption was measured within the 400–2500-nm range in 0.5-nm 

increments. In the second experiment, the sugarcane juice measured twice was 

averaged into one spectrum. 

 



 

Chapter 3: Research Design 64 

3.4 ACQUISITION OF NIR SPECTRA OF A PORTABLE VIS-NIR 

SPECTROMETER 

A portable Vis-NIR spectrometer (H-NIR-SC-01, HKN Engineering Co., Ltd., 

Wakayama, Japan) was used to scan the internode surface of the sugarcane stalk, 

once on the bottom and once on the top of the sugarcane stalk (Figure 3.3). This 

spectrometer was operated using a 25-W halogen lamp directly on a sugarcane stalk. 

A silicon array detector (spectral resolution of 462 channels) was used to detect the 

reflected light (Figure 3.4(b,c)). The spectral data are automatically transferred via 

Bluetooth to a Panasonic Toughbook (FZ-T1; Panasonic Corporation, Japan), where 

they are stored and displayed using a portable Vis-NIR spectrometer application. 

Figure 3.4(a) shows a portable Vis-NIR spectrometer of size 15.5×10.5×17 cm3 

(height×width×depth) and weight 1.19 kg. It contains a hand holder as well. The 

spectrometer is powered by four rechargeable lithium-ion batteries (NCR18650PF, 

Panasonic Corporation, Japan) and can measure spectra up to 5000 times. After the 

sugarcane was measured, it was harvested, pressed to extract the sugarcane juice 

samples to be quantified by the benchtop Vis-NIR spectrometer, and used as a 

validation set to test the calibration model of the first experiment (Figure 3.3). Next, 

the sugar quality was predicted using the calibration model and paired with the 

spectra determined using the portable Vis-NIR spectrometer, which was then used to 

develop calibration and validation models. NIR absorption was measured from 570 

to 1031 nm in 1-nm increments. The spectra were measured with an integration time 

of 200 ms. 
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Figure 3.3: Second experiment design outline: (a) Scanning sugarcane stalk using a 

portable Vis-NIR spectrometer for sugarcane spectra. Then, (b) the sugarcane was 

harvested and prepared for (c) use in a hydraulic press to extract (c) sugarcane juice 

to (d) measure sugarcane spectra using a benchtop Vis-NIR spectrometer. 

 

3.5 REFERENCE ANALYSIS OF SUGAR QUALITY 

After the sugarcane samples were pressed and the NIR spectral data were 

collected, approximately 2 mL of the sugarcane juice from each sample was used to 

measure the Brix value (%Brix) twice using a refractometer (Abbemat-WR; Anton 

Paar GmbH, Graz, Austria), using distilled water for the zero setting. Next, 

approximately 100 mL of the sugarcane juice was mixed with 1.5 g of lead acetate to 

separate the other organic and non-sugar components from the sugarcane juice 

(Horne’s method). The sugarcane juice was then filtered using a 150-mm filter paper 

circles (filter paper qualitative No. 2; Advantec, Toyo Roshi Kaisha, Ltd., Tokyo, 

Japan)2. Pure sugarcane juice was analyzed twice using a polarimeter (MCP500; 

Anton Paar GmbH, Graz, Austria) to obtain Pol (%Pol). In the second experiment, 

the two measurements of the sugar quality were averaged into one value. 
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Figure 3.4: Portable NIR spectrometer. (b) Top view example of light transmission 

through sugarcane stalk. (c) An example of how a portable Vis-NIR spectrometer 

operates. 
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3.6 DATASET PREPARATION FOR THE DEVELOPMENT OF 

REGRESSION MODELS FOR PREDICTING SUGAR QUALITY 

(FIRST EXPERIMENT) 

MATLAB R2021b (version: 9.11.0.1837725, The Math Works, Inc., USA) 

with PLS_Toolbox (version: 9.0, Eigenvector Research, Inc., USA) was utilized for 

data processing and analysis. 

In the first experiment, 213 sugarcane juice spectra measured by the benchtop 

Vis-NIR spectrometer, and 213 sugar quality measurements obtained using the 

conventional method were used to develop six partial least square regression (PLS-

R) models (no treatment, SNV, first derivative (D1), second derivatives (D2), 

D1SNV, and D2SNV). This dataset was then split into two groups: the first group 

contained 107 paired spectral and sugar quality values used as the calibration set, and 

the second group contained 106 paired spectral and sugar quality values used as the 

validation set according to the Kennard–Stone algorithm.  

The number of data splits for venetian blinds cross-validation was set to two 

and the sample per blind was set to one, i.e., the samples were split into two test sets 

based on even and odd number of samples. Each test set was determined by selecting 

every data split in the dataset, starting at the first number of data splits.  

The first experiment was developed only for the PLS-R model because the 

spectra of the benchtop Vis-NIR spectrometer exhibit high variability that can affect 

the regression coefficient of the MLR. The MLR technique used step-up search to 

select the wavelength in the ascending order based on the highest coefficient of 

regression between the actual sugar quality and the predicted one. However, this 

method removes a large amount of variable data from the spectra of the benchtop 
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Vis-NIR spectrometer, which might cause overfitting of the data. PLS-R model for 

prediction the sugar quality can be compute using equation (6). 

 

3.7 DATASET PREPARATION FOR THE DEVELOPMENT OF 

REGRESSION MODELS FOR PREDICTING SUGAR QUALITY 

(SECOND EXPERIMENT) 

The best regression model was then selected based on the highest coefficient of 

determination (R2) with the lowest root mean square of prediction (RMSEP) and 

used for predicting the sugar quality of 103 sugarcane-juice spectral values 

determined in the second experiment. These 103 spectral values of the sugarcane 

stalk measured with the portable Vis-NIR spectrometer were paired with the 

predicted sugar quality to develop six PLS-R and multiple linear regression (MLR) 

models (no treatment, SNV, D1, D2, D1SNV, and D2SNV), where the samples of 

each model were divided into 52 calibration and 51 validation sets according to the 

Kennard–Stone algorithm. This experiment was developed using both PLS-R and 

MLR. It allowed the prediction of the sugar quality using equation (7) in the case of 

the PLS-R model and equation (8) in the case of the MLR. 

 

3.8 FIELD MEASUREMENT AND FLIGHT MISSION 

This study was conducted on three sugarcane fields on Minamidaitō Island, 

Okinawa, Japan, to gain data on sugarcane Pol and sugarcane canopy reflectance 

every month from September to December 2020. The sugarcane fields A, B, and C 

were 2.23, 2.40, and 1.00 ha, respectively. The sugarcane cultivar in fields A and B 

is Ni28 and RK97-14 in field C. At the start of the experiment, the sugarcane ages 

were approximately 8-11 months old. 
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Figure 3.5 shows six sugarcane stalks in the field were marked using ribbon as 

collection points to collect data of Pol and sugarcane canopy reflectance images at 

the same stalk. A portable Vis-NIR spectrometer was used to scan the internode 

surface of the sugarcane stalk (Figure 3.6) two times on the bottom and two times on 

the top to collect Pol of sugarcane and then average into one. A Panasonic 

Toughbook installed with a portable Vis-NIR spectrometer application was used to 

store and display data. Figure 3.7, The UAS (Phantom 4 multispectral, DJI, China) 

consists of one visible light camera and multispectral camera array with five cameras 

covering blue (450 ± 16 nm), green (560 ± 16 nm), red (650 ± 16 nm), red edge (730 

± 16 nm), and NIR (840 ± 26 nm). The multispectral image was TIFF-format, and 

the image size was 1600 x 1300 pixels with 16-bit depth. Figure 3.8, The DJI GS Pro 

application on an iPad was used to plan the flight mission, the height of the flight 

was set at 60 m above the ground, and the speed was set at seven m/s. A total of four 

flight missions were conducted during the experiment period: September 18th, 

October 15th, November 17th, and December 16th, 2020. All four flights were 

scheduled between 11:00 am and 3:00 pm. By the end of the experiment, a total of 

72 (six points × four flights × three fields) data of sugarcane Pol and sugarcane 

canopy reflectance images were collected. 
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Figure 3.5: Example of the flight contour and details of using a portable Vis-NIR 

spectrometer to scan the sugarcane stalk twice on the bottom and top at the collection 

points. 
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Figure 3.6: Photo of using a portable Vis-NIR spectrometer to scan the 

sugarcane stalk. 

 

 

Figure 3.7: Photo of deploying drone. 

 



 

Chapter 3: Research Design 72 

 

 

Figure 3.8: Photo of drone control using DJI GS Pro application. 

 

3.9 BACKGROUND REMOVAL AND REGION SELECTION 

Calculate the VIs ( NDVI , CIRedEdge , and SRPIb ) using sugarcane canopy 

reflectance image bands. After calculating the VIs, the soil background of all images 

was removed by the NDVI value and then cropped into four sizes of the image as 

shown in Figure 3.7: 50×50, 100×100, 150×150, and 200×200 pixels on the area of 

interest by manually selecting coordinate numbers at the collection points for ten 

times and averaging into one. 
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Figure 3.9: Example of cropped multispectral images. 
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3.10 DATASET PREPARATION FOR THE DEVELOPMENT OF 

REGRESSION MODELS FOR PREDICTING SUGAR QUALITY 

(THIRD EXPERIMENT) 

This research has two main datasets. In the first set, 72 sugarcane Pol and VIs 

were averaged by six collecting points into 12 sugarcane Pol and VIs to develop the 

twelve simple linear regression (SLR) models. In the second set, 72 sugarcane Pol 

and image bands were averaged by six collecting points into 12 sugarcane Pol and 

image bands to develop the twenty MLR models. 
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Chapter 4: Results and Discussion 

This chapter presents the results and discussion of the study, which followed 

the research design stated in Chapter 3. The sections below outline the findings of the 

study: 

Section 4.1: discusses the absorbance spectra of sugarcane juice. 

Section 4.2: describes the regression models developed using Brix and 

sugarcane juice spectra. 

Section 4.3: presents the regression models developed using Pol and sugarcane 

juice spectra. 

Section 4.4: presents the absorbance spectra of sugarcane stalk. 

Section 4.5: describes the regression models developed using Brix and 

sugarcane stalk spectra. 

Section 4.6: presents the regression models developed using Pol and sugarcane 

stalk spectra. 

Section 4.7: examines the monthly trend of measured sugar quality using a 

portable Vis-NIR spectrometer. 

Section 4.8: provides a summary of sugarcane canopy reflectance images. 

Section 4.9: analyzes the monthly trend of vegetation indices. 

Section 4.10: explores the correlation between sugar quality and three 

vegetation indices. 
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Finally, section 4.11: discusses the correlation between sugar quality and five 

image bands. 

These sections provide a comprehensive analysis of the data and the findings, 

which will help in evaluating the sugarcane quality in Japan. 

 

4.1 ABSORBANCE SPECTRA OF SUGARCANE JUICE 

Figure 4.1 shows the average absorbance spectra of the sugarcane juice 

measured using the benchtop Vis-NIR spectrometer. The spectra have significant 

peaks at 480, 680, 970, 1190, 1450, 1790, 1930, and 2450 nm. The peak at 480 nm is 

a green band that at 680 nm is characteristic of the chlorophyll band, and those at 

970, 1190, 1450, 1790, 1930, and 2450 nm show the water content of the sugarcane 

sample33. A previous study considered the main absorption peaks at 970, 1190, 1450, 

and 1790 nm for the analysis and developed a calibration model to measure sugar 

quality4. Therefore, our study used a band within 700–1850 nm. Figure 4.2 shows the 

average second derivative of the sugarcane juice absorbance spectra in the 

wavelength range of 700–1850 nm. The second derivative filter fixes the spectral 

baseline and enhances the peaks of sugarcane juice absorbance spectra, thereby 

aiding in a better visual comparison. 
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Figure 4.1: Average absorbance spectra of sugarcane juice in full wavelength range 

(400–2500 nm). 

 

Figure 4.2: Second derivative of sugarcane juice absorbance spectra.  
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4.2 REGRESSION MODELS USING BRIX AND SUGARCANE JUICE 

SPECTRA 

Characteristics of the Brix and Pol values of the sample set are listed in Table 

4-1. Six regression models were developed: no treatment, SNV, D1, D2, D1SNV, and 

D2SNV. Table 4-2 shows the results of the regression model for Brix measurement. 

All models have high R2
c (≥0.98) because the NIR spectrum from the benchtop Vis-

NIR spectrometer had low noise, and the spectrum line showed clear peaks. A 

comparison of the results of this calibration showed that the RMSEC of no-treatment 

and SNV-treatment models had slightly lower values than those of other models (no 

treatment = 0.2%, SNV = 0.2%, D1 = 0.3%, D2 = 0.3%, D1SNV = 0.2%, D2SNV = 

0.3%). The RMSECV of no-treatment and SNV-treatment models were also lower 

than those of the other models (no treatment = 0.3%, SNV = 0.3%, D1 = 0.3%, D2 = 

0.3%, D1SNV = 0.3%, D2SNV = 0.3%). Validation results indicated that the model 

developed with SNV had the lowest RMSEP (0.2%). Hence, SNV pre-treatment is 

effective for Brix calibration. Figure 4.3 shows the regression vector of the model 

with SNV pre-treatment. The key wavelengths employed to evaluate the Brix value 

using the sugarcane juice spectra were approximately 1102.5, 1125.5, 1433, 1579.5, 

and 1754.5 nm, which were close to the previous key wavelengths used to measure 

the sugar quality. 
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Table 4-1: Brix and Pol of juice used for calibration and validation. Samples were 

measured using a conventional method. 

 

N: number of samples; Std: standard deviation 

 

Table 4-2: PLS-R results for predicting Brix using sugarcane juice spectra 

 

LV: latent variable; R2: coefficient of determination of calibration; RMSEC: root 

mean square error of calibration; RMSEP: the root mean square error of prediction; 

SNV: standard normal variate; D1: first derivative; D2: second derivative. *%Brix 

Component Indicators N Average Minimum Maximum Std. 

Brix 

(%Brix) 

Calibration set 107 20.3 15.0 24.9 2.1 

Validation set 106 20.3 15.3 24.8 2.1 

Pol 

(%Pol) 

Calibration set 107 17.9 12.0 22.6 2.2 

Validation set 106 17.9 12.0 22.5 2.2 

 

Pre-treatment LVs 

Indicators 

Calibration Validation 

R2
c RMSEC* R2

cv RMSECV* R2
p RMSEP* bias* 

None 8 0.99 0.2 0.99 0.3 0.99 0.3 -0.03 

SNV 7 0.99 0.2 0.99 0.3 0.99 0.2 -0.05 

D1 6 0.99 0.3 0.98 0.3 0.98 0.3 -0.03 

D2 7 0.99 0.3 0.98 0.3 0.97 0.4 -0.03 

D1SNV 7 0.99 0.2 0.98 0.3 0.99 0.3 -0.03 

D2SNV 6 0.98 0.3 0.98 0.3 0.98 0.3 -0.02 
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Figure 4.3: SNV pre-treatment regression vector of Brix.  

 

4.3 REGRESSION MODELS USING POL AND SUGARCANE JUICE 

SPECTRA 

The R2
c of all models for Pol prediction are ≥0.96 (Table 4-3). A comparison 

of the calibration results showed that the RMSEC of the models with the second-

derivative treatment (D2 and D2SNV) is slightly lower than that of the other models 

(no treatment = 0.5%, SNV = 0.4%, D1 = 0.3%, D2 = 0.2%, D1SNV = 0.2%, D2SNV 

= 0.2%). The RMSECVs of D1SNV and D2SNV treatments were also lower than 

those of the other models (no treatment = 0.6%, SNV = 0.5%, D1 = 0.4%, D2 = 0.5%, 

D1SNV = 0.3%, D2SNV = 0.4%). The validation results indicated that the model 

developed with the second-derivative pretreatment had the lowest RMSEP (0.3%). 

Hence, the second-derivative pretreatment is effective for Pol calibration. Figure 4.4 

shows the regression vector of the model with the second-derivative pretreatment. 
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The key wavelengths to evaluate the Pol using the sugarcane juice spectra were 911, 

1197.5, 1387, 1440.5, 1565.5, 1701, 1754.5, and 1779.5 nm, which are close to those 

required to measure the sugar quality. 

 

Table 4-3: PLS-R results for Pol using sugarcane juice spectra 

 

 

Figure 4.4: D2 pre-treatment regression vector of Brix in the wavelength range of 

700–1850 nm. 

 

Pre-treatment LVs 

Indicators 

Calibration set Validation set 

R2
c 

RMSEC 

(%Pol) 

R2
cv 

RMSECV 

(%Pol) 

R2
p 

RMSEP 

(%Pol) 

bias 

(%Pol) 

None 10 0.96 0.5 0.92 0.6 0.95 0.5 -0.00 

SNV 10 0.97 0.4 0.96 0.5 0.97 0.4 0.02 

D1 10 0.99 0.3 0.97 0.4 0.98 0.3 0.04 

D2 10 0.99 0.2 0.95 0.5 0.99 0.3 0.01 

D1SNV 10 0.99 0.2 0.98 0.3 0.98 0.3 0.02 

D2SNV 10 0.99 0.2 0.97 0.4 0.98 0.3 0.00 
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4.4 ABSORBANCE SPECTRA OF SUGARCANE STALK OBTAINED 

FROM THE PORTABLE VIS-NIR SPECTROMETER 

As the starting and ending sections of the spectra obtained by the Vis-NIR 

spectrometer do not exhibit any peaks and show a similar trend, spectra in the 

wavelength range of 600–1000 nm were used. Figure 4.5 shows the average 

absorbance spectra of the sugarcane stalk measured each month with the portable 

NIR spectrometer. Figure 4.6 shows the average second derivative of the sugarcane 

stalk absorbance spectra in the wavelength range of 600–1000 nm. The second-

derivative filter fixes the spectral baseline and enhances the peaks of the sugarcane 

juice. As a result, significant peaks at 650, 680, 740, 770, 846, 900, and 960 nm were 

obtained. The peaks at 650 and 680 nm are characteristic of the chlorophyll band, 

while those at 740, 770, 846, and 960 nm can be mainly attributed to the water33, and 

that at 900 nm to the sugar content34 of the sugarcane sample. 

 

 

Figure 4.5: Average absorbance spectra of sugarcane stalk for each month.  
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Figure 4.6: Average second derivative of sugarcane stalk absorbance spectra for 

three months. 

 

4.5 REGRESSION MODELS USING THE PREDICTED BRIX AND 

SUGARCANE STALK SPECTRA 

The predicted Brix and Pol values of the sample set obtained from the best 

calibration models of each value developed in the first experiment are listed in Table 

4-4. Here, 24 regression models for Brix and Pol have developed: no treatment, 

SNV, D1, D2, D1SNV, D2SNV per PLS-R, and MLR. Table 4-5 shows the results of 

the regression models for Brix measurement using the Brix predicted from the best 

Brix model from the first experiment and the sugarcane stalk spectra measured by the 

portable Vis-NIR spectrometer. The R2
c of all models is ≥0.70. A comparison of the 

calibration results showed that the RMSEC of the models with the MLR with the 

second-derivative treatment (D2, D2SNV) had the lowest value among the models 
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(D2 = 1.0%, D2SNV = 1.0%). Validation results indicated that the MLR model 

developed with the second-derivative pretreatment had the lowest RMSEP (1.4%). 

These results demonstrated that MLR with the second-derivative pretreatment is 

considerably effective for Brix calibration (R2 = 0.70).  

The MLR model with the second-derivative pretreatment indicates that five 

key wavelengths (944, 788, 653, 911, and 827 nm) can be used to predict the Brix 

using the sugarcane stalk absorbance spectra. Wavelengths of 944, 788, and 827 nm 

can be attributed to the water content, 653 nm to the chlorophyll content, and 911 nm 

to the sugar content of the sugarcane. 

 

Table 4-4: Characteristic of Brix and Pol in juice values of calibration and validation 

development. Samples were measured from sugarcane juice spectra using benchtop 

Vis-NIR spectrometer 

 

Component Indicators N Average Minimum Maximum Std. 

Brix Calibration set 52 20.3 14.0 25.3 2.6 

(%Brix) Validation set 51 20.3 15.6 24.8 2.5 

Pol Calibration set 52 17.9 11.0 22.6 2.6 

(%Pol) Validation set 51 17.9 12.8 22.6 2.5 
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Table 4-5: Result of PLS-R and MLR for predicting Brix in sugarcane stalk using 

sugarcane stalk spectra. 

 

PLS-R: partial least-squares regression; MLR: multiple linear regression; Nf: number 

of factors. 

 

4.6 REGRESSION MODELS USING THE PREDICTED POL AND 

SUGARCANE STALK SPECTRA 

The R2
c of all PLS-R and MLR models of Pol developed using the Pol 

predicted from the best Pol model from the first experiment and the sugarcane stalk 

spectra measured by the portable Vis-NIR spectrometer were ≥0.63 and ≥0.64, 

respectively (Table 4-6). A comparison of the results for this calibration showed that 

the RMSEC of MLR models with the second derivative (D2 and D2SNV) had the 

lowest value (D2 = 1.2, D2SNV = 1.0%) and validation results. The PLS-R model 

with D2SNV had the lowest RMSEP (1.4%). These results demonstrate that the MLR 

model with the second-derivative SNV pre-treatment is the most effective model for 

Model Pre-treatment LVs/Nf 

Selected wavelengths 

(nm) 

Indicators 

Calibration set Cross-validation Validation set 

1 2 3 4 5 R2
c 

RMSEC 

(%Brix) 

R2
cv 

RMSECV 

(%Brix) 

R2
p 

RMSEP 

(%Brix) 

bias 

(%Brix) 

PLS-R 

None 4      0.72 1.4 0.70 1.4 0.57 1.7 -0.06 

SNV 5      0.75 1.3 0.69 1.5 0.60 1.6 -0.06 

D1 3      0.70 1.4 0.68 1.5 0.62 1.5 -0.11 

D2 4      0.75 1.3 0.67 1.5 0.63 1.5 -0.15 

D1SNV 5      0.76 1.3 0.71 1.4 0.64 1.5 -0.11 

D2SNV 4      0.72 1.4 0.67 1.5 0.57 1.7 -0.18 

MLR 

None 2 665 962    0.66 1.5 

 

0.58 1.7 0.08 

SNV 2 938 697    0.57 1.7 0.55 1.7 -0.10 

D1 5 667 982 768 793 621 0.78 1.2 0.59 1.6 -0.04 

D2 5 944 788 653 911 827 0.84 1.0 0.70 1.4 0.03 

D1SNV 5 834 817 683 778 663 0.71 1.4 0.58 1.6 0.01 

D2SNV 4 956 869 756 679  0.85 1.0 0.70 1.4 0.14 
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Pol calibration. The MLR model with the second-derivative SNV pre-treatment 

shows that four key wavelengths (954, 869, 758, and 629 nm) can be used to 

evaluate the Pol in the sugarcane stalk absorbance spectra. Most of the selected 

wavelengths (954, 869, and 758 nm) can be attributed to the water and sugar contents 

of sugarcane. 

 

Table 4-6: Result of PLS-R and MLR for predicting Pol in sugarcane stalk using 

sugarcane stalk spectra.  

 

4.7 THE MONTHLY TREND OF MEASURED SUGAR QUALITY USING 

A PORTABLE VIS-NIR SPECTROMETER 

The changes in Pol value for sugarcane fields from September to December are 

displayed in Figure 4.7-4.9. As evident from the figures, the Pol value decreased 

across all fields from September to October due to the damage caused by tropical 

cyclones. In November, there was a noticeable improvement as the fields started to 

recover, leading to an increase in Pol value. However, it is important to note that the 

Model Pretreatment LVs/Nf 

Selected wavelengths  

(nm) 

Indicators 

Calibration set Cross-validation Validation set 

1 2 3 4 5 R2
c 

RMSEC 

 (%Pol) 

R2
cv 

RMSECV 

(%Pol) 

R2
p 

RMSEP  

(%Pol) 

bias 

(%Pol) 

PLS-R 

None 4      0.74 1.3 0.70 1.4 0.63 1.6 -0.01 

SNV 2      0.63 1.6 0.59 1.7 0.61 1.6 -0.09 

D1 3      0.72 1.4 0.68 1.5 0.67 1.4 -0.04 

D2 4      0.76 1.3 0.68 1.5 0.68 1.4 -0.07 

D1SNV 5      0.77 1.3 0.70 1.4 0.67 1.5 -0.04 

D2SNV 4      0.76 1.3 0.66 1.6 0.63 1.6 -0.09 

MLR 

None 2  600 978    0.73 1.4 

 

0.62 1.6 0.10 

SNV 2 936 697    0.64 1.6 0.61 1.6 -0.06 

D1 5 975 665 830 877 916 0.78 1.2 0.63 1.6 -0.13 

D2 5 942 787 832 655 981 0.80 1.2 0.67 1.5 0.02 

D1SNV 5 832 815 685 781 749 0.75 1.3 0.55 1.8 -0.03 

D2SNV 4 954 869 758 629  0.84 1.0 0.70 1.4 0.05 
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error bars for Pol value across all fields during this period were highly variable, with 

six collecting points showing significantly different distributions. This variability can 

be attributed to the prolonged impact of the tropical storms in October and 

November, which persisted despite the recovery of the fields in November. By 

December, however, the effects of the storms had entirely disappeared, leading to a 

more consistent distribution of Pol value across all collecting points. 

 

 

Figure 4.7: Average monthly trend of predicted Pol using a portable Vis-NIR 

spectrometer at Field A  
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Figure 4.8: Average monthly trend of predicted Pol using a portable Vis-NIR 

spectrometer at Field B  

 

 

Figure 4.9: Average monthly trend of predicted Pol using a portable Vis-NIR 

spectrometer at Field C 
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4.8 SUMMARY OF SUGARCANE CANOPY REFLECTANCE IMAGES 

The reflectance image bands for all sugarcane fields showed a consistent trend, 

although some slight differences were observed depending on image size. Figures 

4.10-4.12 demonstrate that in September, the NIR image band value was lowest in 

Fields A and C, likely due to the greater damage caused by tropical cyclones in these 

fields, resulting in reduced cane density and changes to the sugarcane leaves. 

However, from October to December, the NIR image band value showed a similar 

pattern across all fields, indicating that the impact of the cyclones on Pol value varied 

depending on the location and level of damage within each field. Furthermore, our 

analysis revealed that most error bars for the 50×50 and 200×200 image sizes 

showed inconsistent results after ten rounds of manual selection, leading to 

instability in developing a calibration model. This finding highlights the need for 

more reliable image selection methods to ensure accurate calibration and reliable 

results. 
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Figure 4.10: Bars of averaged NIR pixel values of each image cropped size 

displayed from September to December 2020 on field A 
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Figure 4.11: Bars of averaged NIR pixel values of each image cropped size 

displayed from September to December 2020 on field B 
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Figure 4.12: Bars of averaged NIR pixel values of each image cropped size 

displayed from September to December 2020 on field C 

 

4.9 THE MONTHLY TREND OF VEGETATION INDICES 

Figure 4.13 displays the monthly trends in NDVI for the three sugarcane fields. 

Fields B and C show similar NDVI trends, indicating that they might have 

experienced similar levels of damage from the tropical storm. In contrast, Field A 

exhibits steep increases in NDVI in October and slight increases in November, which 

may be attributed to the growth of new green sugarcane leaves. All fields 

demonstrate a decrease in NDVI in December, which can be linked to the onset of 

sugarcane senescence. Notably, the image size had a significant impact on the 
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observed NDVI trends. The 50×50 and 200×200 groups showed lower overall NDVI 

values than the 100×100 and 150×150 groups, reflecting the impact of image 

resolution on NDVI measurement. These findings underscore the importance of 

selecting an appropriate image size when analyzing NDVI trends. 

 

 

Figure 4.13: Monthly trends of NDVI 

 

Figure 4.14 displays the monthly trends in CIRedEdge for the three sugarcane 

fields. Initially, CIRedEdge increased at different rates in October, as sugarcane leaves 

grew to recover from the stalk damage caused by the tropical cyclones. Field B and 

C both showed slight decreases in CIRedEdge from October to November, with the rate 

of decrease varying might depending on the extent of the damage and recovery 

energy in each field. Field A, which may have experienced lower levels of damage 

from the tropical cyclones than Fields B and C, exhibited an increase in CIRedEdge 
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during October and November. In all three fields, a downward trend was observed in 

the last month due to the onset of sugarcane senescence. Notably, the image size had 

a significant impact on the observed CIRedEdge trends, with the data dividing into two 

distinct groups: the 50×50 and 200×200 group and the 100×100 and 150×150 group. 

These findings suggest that image size should be carefully considered when 

analyzing CIRedEdge trends. 

 

 

Figure 4.14: Monthly trends of CIRedEdge 

 

Figure 4.15 illustrates the monthly trend of SRPIb in the three sugarcane fields. 

Initially, most of the image sizes showed an increase in SRPIb values in October, 

followed by a mostly decreasing trend from October to November. The decline in 

SRPIb in October could be attributed to the sugarcane plants trading nitrogen in 

leaves to recover from the damage caused by the tropical cyclones. From October to 

November, the SRPIb values varied across the fields, likely reflecting differences in 
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the levels of damage and recovery energy. In the last months, a steep downward 

trend was observed across all sugarcane fields, as the plants fully recovered and 

started senescent. Notably, the data divided into two distinct groups based on image 

size: the 50×50 and 200×200 group and the 100×100 and 150×150 group. These 

findings suggest that image size should be carefully considered when analyzing 

SRPIb trends. 

 

 

Figure 4.15: Monthly trends of SRPIb 

 

4.10 CORRELATION BETWEEN SUGAR QUALITY AND THREE VIS 

The 12 SLR models were developed using Pol and three VIs (NDVI, CIRedEdge, 

SRPIb), as shown in Table 4.7. The accuracy of overall models (R2) was 0.34 – 0.87. 

The SRPIb had correlations with Pol (0.56 ≤ R2 ≤ 0.87), whereas CIRedEdge and NDVI 

shows a poor correlation with Pol (0.34 ≤ R2 ≤ 0.63). Therefore, the best model for 
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Pol prediction is SRPIb of 150×150 image size model (R2 = 0.87, RMSECV = 0.6%) 

since Pol in sugarcane might be directly or indirectly sensitive to nitrogen in 

sugarcane leaves.  

The scatter plot in Figure 4.16 shows that sugarcane in October and November 

has the lowest Pol but highest SRPIb values in October and November due to damage 

from tropical storms. Conversely, the highest Pol and SRPIb values were observed in 

December, indicating that sugarcane had fully recovered and was producing more 

sugar. Furthermore, the difference in Pol or SRPI between September (Crystal 

marker) and October (Triangle marker) can be used to estimate the damage caused 

by the tropical storm. Finally, the y formula from the best correlation model was 

applied to develop a Pol map using SRPIb images, as shown in Figure 4.17. 

 

Table 4-7: R2, RMSEC, and RMSECV of simple linear regressions between 

averaged vegetation indices and Pol (n = 12) 

 

R2, coefficient of determination of calibration; RMSEC, root mean square error of 

cross-validation; SLR, simple linear regression. 

Indicators Image size NDVI CIRedEdge SRPIb 

R2 50x50 0.34 0.40 0.56 

RMSEC 50x50 1.3 1.3 1.1 

R2 100x100 0.61 0.39 0.86 

RMSEC 100x100 1.0 1.3 0.6 

R2 150x150 0.63 0.39 0.87 

RMSEC 150x150 1.0 1.3 0.6 

R2 200x200 0.53 0.55 0.62 

RMSEC 200x200 1.1 1.1 1.00 
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Figure 4.16: Correlation between Pol and SRPIb  of 150×150 image size  

 

 

Figure 4.17: Example of Pol map 
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4.11 CORRELATION BETWEEN SUGAR QUALITY AND FIVE IMAGE 

BANDS 

In Table 4-8, the 20 MLR models were developed using Pol and five image 

bands (R, G, B, RE, and NIR bands). The accuracy of overall models (R2) was 

distributed within the range of 0.1–0.95 while most of the models could be used for 

Pol prediction except the 50×50 and 200×200 image size model because these 

models show low accuracy (R2
CV ≤ 0.27) while test by leave one out cross validation 

and the RMSECV of the model started to increase when using more than three 

factors. The MLR model shows that the first and second-best factors for Pol 

prediction were NIR and RE. Since these sugarcane reflectance canopy bands were 

near the wavelength ranges of chlorophyll content (approximately 680 nm)10 and 

sugar content (approximately 910 nm)11 which were keys to predicting sugar quality 

for a portable Vis-NIR spectrometer2-4. The best model for Pol prediction was the 

150×150 image size model with five factors (R2
 = 0.95, RMSECV = 0.7%). In 

descending order, Pol was more affected by NIR, RE, G, R, and B bands. The R and 

B band combination was used to calculate SRPIb, which improves this MLR model 

accuracy according to the best SLR model showing SRPIb correlates to Pol.  
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Table 4-8: R2 and RMSE of multiple linear regression models developed using the 

averaged value of image bands and Pol (n = 12) 

 

 

Image Size 

(Pixels) 

Factor (Band) Indicators 

1 2 3 4 5 R2 

RMSEC  

(%) 

R2
cv 

RMSECV  

(%) 

50 × 50 NIR     0.1 1.5 0 1.8 

50 × 50 NIR RE    0.32 1.3 0.1 1.7 

50 × 50 NIR RE G   0.59 1 0.13 1.7 

50 × 50 NIR RE G B  0.6 1 0.1 1.8 

50 × 50 NIR RE G B R 0.62 1 0.1 1.9 

100 × 100 NIR     0.15 1.5 0 1.7 

100 × 100 NIR RE    0.63 1 0.49 1.1 

100 × 100 NIR RE G   0.75 0.8 0.57 1.1 

100 × 100 NIR RE G R  0.85 0.6 0.67 0.9 

100 × 100 NIR RE G R B 0.95 0.4 0.73 0.9 

150 × 150 NIR     0.19 1.4 0 1.7 

150 × 150 NIR RE    0.64 1 0.5 1.1 

150 × 150 NIR RE G   0.78 0.7 0.61 1 

150 × 150 NIR RE G R  0.88 0.6 0.72 0.9 

150 × 150 NIR RE G R B 0.95 0.3 0.79 0.7 

200 × 200 B     0.17 1.4 0 1.7 

200 × 200 B R    0.63 1 0.3 1.5 

200 × 200 B R G   0.69 0.9 0.3 1.5 

200 × 200 B R G NIR  0.73 0.8 0.25 1.7 

200 × 200 B R G NIR RE 0.82 0.7 0.27 1.7 
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Chapter 5: Concluding Remark 

From measuring sugar quality and getting various data of sugarcane spectra 

and multispectral images to develop calibration models for predicting sugar quality 

in sugarcane. The results of the study can be summarized as follows. 

 

5.1 CONCLUSION 

The sugarcane industry plays a crucial role in many economies, and the quality 

of sugarcane is essential for efficient production. Traditionally, the sugar content in 

sugarcane is measured using the Pol and Brix tests, which require samples to be 

taken to a laboratory for analysis. This process can be time-consuming and costly, 

and there is a risk of errors during transportation and handling of the samples. 

To address this issue, researchers have explored the use of portable 

spectrometers for in-field measurements of sugar quality. A benchtop Vis-NIR 

spectrometer can accurately measure sugar quality in sugarcane juice in a laboratory, 

and a portable Vis-NIR spectrometer can collect spectra from sugarcane stalks in the 

field and predict the sugar quality. While the portable spectrometer approach has 

shown promise, there are still factors that can affect the accuracy of the model, such 

as sugarcane wax, skin thickness, and skin diameter. Therefore, there is a need for 

further research to improve the accuracy of the prediction models.  

In this context, the use of unmanned aerial systems (UAS) and multispectral 

cameras has also been explored to monitor sugarcane fields. The multispectral 

camera can collect image bands and calculate vegetation indices (VIs) such as NDVI, 

CIRedEdge, and SRPIb , which can be used for sugarcane field analysis. The results of a 
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study showed that in four different image sizes, cropped sugarcane canopy image 

bands and VIs correlated with Pol can be used to develop a Pol prediction model for 

UAS. However, the recommended image size is between 100×100 to 150×150 due to 

the spread out values in a 50×50 image size and the higher unwanted pixels in a 

200×200 image size. 

The SRPIb showed the best correlation with Pol, indicating that changes in 

nitrogen in sugarcane leaves might be directly or indirectly sensitive to the shift in 

Pol. Additionally, the combination of portable spectrometers and multispectral 

cameras shows the potential of smart agriculture, enabling quick and accurate 

measurement of the quality of sugarcane in the field. This can help farmers monitor 

the trend of Pol, estimate the health of sugarcane, and know the appropriate time for 

harvesting. 

Overall, the use of portable Vis-NIR spectrometer and UAS technology has the 

potential to revolutionize the sugarcane industry, reducing costs and time associated 

with traditional laboratory testing, and enabling more efficient and accurate 

measurement of sugarcane quality in the field. 

 

5.2 SUGGESTIONS 

Various factors, including cultivar, weather, temperature, and soil type, can 

influence sugarcane stalk spectra and leaf canopy reflectance. However, chemical 

analysis is expensive, and multispectral images are affected by uncontrollable 

factors. Despite these challenges, it is possible to develop a robust calibration model 

for a portable Vis-NIR spectrometer and UAS through sufficient experimentation. To 

enhance the accuracy of sugarcane quality models, it is recommended to remove the 

sugarcane skin or wax before measuring the stalk spectra using a portable Vis-NIR 
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spectrometer. Additionally, developing a sugar quality database with different 

sugarcane varieties and conditions can improve the calibration model and enable it to 

be shared with other sugar mills could reduce the time to be succeed in developing 

model. Furthermore, implementing more sampling and analysis techniques for a 

portable Vis-NIR spectrometer and UAS can effectively minimize sample bias. 

Combining these instruments to address their weaknesses can lead to the 

development of sugar quality, sugarcane maturity, and health maps for UAS, which 

can provide valuable information to the industry and farmers for optimizing 

sugarcane production. By increasing efficiency and yield, such a system could 

greatly benefit both the sugar industry and farmers. 
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