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1. Summary and Introduction.

The application of an estimator of a distribution function to a univariate discriminant
problem is presented. The estimator also is utilized to estimate the difference of location
parameters of two distributions which are the same symmetric distributions except for
the locations.

Let X,, X,, ---, X,, be a random sample of size n from a population with an unknown
distribution function F(z). The empirical distribution function F,*(x) can be expressed
as follows,

eolz—Xj),

Fia=5 2

|I Ms

where ¢, is the unit distribution function, i.e.,
@) 0 if <0
eo(x) =
° 1if 2=0.

Now we consider an estimator of the distribution function F(z) given by

(1.1) F,,<x)=%

W Ms

,,(.’ZJ—X]') )

where W, is a given distribution function. In case of the estimation of an absolutely
continuous distribution function, by taking an absolutely continuous distribution function
as W,, F,(x) is again absolutely continuous, which provides an estimator of the density
function f(x) as follows,

uM:

1 n(x'—X j) ’
where w, is the derivative of W,.

Density estimators can be used to approximate the discriminant function and Glick
[2] discussed this problem based on general density estimators including the multivariate
analogue to the estimator of the form (1.2). To estimate the derivatives of a density
function, the derivatives of the above density estimator f,(z) was utilized by Schuster [9].
The density estimator f,(x) and its bivariate analogue were used to estimate a conditional
density and a regression curve by Rosenblatt [8], Nadaraya [6], Watson [9] etc.. An
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estimator of a mode, which is determined by the density estimator f,(x), was discussed
by Parzen [7] and Nadaraya [5]. The applications to compound decision of the density
estimator f,(x) were discussed by Johns and Ryzin [3] etc.. On the other hand with the
density estimator f,(#) its integration over (—oo, z], i,e., the estimator F,(x) of the form
(1.1), was used to estimate a hazard rate by Watson and Leadbetter [11], [12] and Leadbetter
[4]. To estimate a hazard rate Murthy [5] utilized the density estimator f,(x) and its
integration over [z, +oco), which is an estimator of 1—F(z) and is denoted by the similar
form to (1.1). Furthermore he construct two asymptotic equivalent estimators of the
jump S; corresponding to the saltus =u; of the distribution function F(z), which are
denoted as follows: the one is 2[F,*(x;)—F,(z;)] in our notation and the other is f,(x;)/
K(0)B,, where f,(z) is given by (1.2) with w,(z)=B,K(B,z), B, is a positive constant and
K is a symmetric density. We shall propose another applications of the estimator F,(x)
of the form (1.1). ' '

In section 2, we utilize the estimator F,(z) for a univariate discriminant problem in
case two underlying density functions are the same symmetric unimodal function except
for the locations. '

In section 3, we present an estimator of the difference of the location parameters of
two distributions, which are the same symmetric distributions except for the locations.

2. Discrimination.

Suppose that there are two populations 7; and 7, which have densities f(z) and f
(x—0) respectively, where f is symmetric and unimodal, and @ is a location parameter.
Suppose that we have an observation z and we know a priori that it has come from either
of two populations 7; and z,. We assume that the losses due to two kinds of misclassifica-
tion are same, where one misclassification is that if the observation is actually from z; we
classify it as coming from , and the other is that if the observation is actually from 7z, we
classify it as coming from 7. If we know a priori f(z) and &, and no a priori probabilities
are known, then according to the minimax procedure we decide as follows: if f(z)=f(z—0)
then we decide that the observation z has come from 7, and otherwise we decide that the
observation z has come from z,. In case >0, it is equivalent to decide z from 7z, if 2=6/2,
and z from 7, otherwise. In case §<0, we decide conversely.

Now, on the basis of the two random samples of size n, and n,, X}, X}, ---, X} and

i, X3, .-+, X3,, drawn from populations 7, and 7, respectively, we consider an approxima-
tion to the above minimax procedure in case we know nothing about f and @ except that
f is symmetric with respect to the axis of ordinates and unimodal. From the previous
discussion we know that the estimation of the parameter 6/2 presents its approximation.
On the other hand, whether & is positive or negative, z=6/2 satisfies the equation

(2.1) Fy(z)=1—Fy(),
where F; and F, are distribution functions of populations 7, and =, respectively. If the

carriers of f(z) and f(z—@) overlap, then the equation (2.1) has a unique solution z=6/2.
If the carriers of f(z) and f(z—@) do not overlap, then the solution of (2.1) consists of a
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finite interval, whose middle point is 6/2. It stead of setimating #/2 directly, we shall
estimate 6/2 by solving the equation
(2.2) Fy, w0 (@)=1=1F,, ,,(2)

where F,; , (x) and F, , (x) are estimators of Fy(z) and F,(x) respectively, whose form is
denoted by (1.1) with given distribution functions W, and W,, on the basis of the two
samples, i.e.,

By, (@)= -3 W, (a—X;)
1j=1
and
Fy(0)= 23 W, (2 Xp2).

2j=1

The solution of the above equation, in general, can not be expressed in a explicit form.
Especially if n, and n, are equal, which we shall denote by #, and if we take F, ,(x) and
F, . (x) with W,=e, then the n-th smallest value among Xi, ..., X} X% ---,X? is a
solution of (2.2) with n,=n,=n and W,=e, The solution of (2.2) is easily obtained by
drawing curves y=F, , (z) and y=1—F, , (z) on the (2, y) plane and reading the z-axis of
a intersection of the two curves. If the above curves overlap then we shall take an
arbitrary point of the z-axis of the overlapping part as a solution of (2.2). Let z,, ,,
denote such a solution of (2.2). We propose to decide as follows: if

Xy, n, >0 and 2=z,  ,,
then we decide that the new observation z has come from =, and if

T, m, >0 and z<w,, ,,

then we decide that the ovservation z has come from 7z,. In case of z,,  ,, <0 we decide
conversely. Then the probability of misclassification if the observation z is from 7, is

(2.3) P211, A)=1(0,0)(®n, ,n,)[1— Fs(@n, ,n,)]
+I(—OO,O)(wﬂ1,ﬂg)F1(x”1,”2)
and the probability of misclassification if the observation z is from 7, is
(24) P(1]2’ A)=I(1.oo)(xn,,ng)F2(wn1,n 2)
+I(_m,0)(wn1,nz)[l‘—Fz(xn,,nz)] >

where Is denotes the indicator function of a set S.

In what follows, we consider the asymptotic properties of the above approximate
procedure. We assume the same conditions as stated in constructing our approximation
to the minimax procedure and suppose that W, —e, as n;—>co and W,,—e, as n,—oo.

LEMMmA 1.

(2.5) Lm {Fy(@y, n,)—[1—Fy(2s,5,)]} =0 with probability one.

ni,n2—>00
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Proor. We can reduce (2.2) to
[Fl,nl(wnl,nz) __Fl(wnl,ng)]+F1(wnl,ng)
:1—F2(wn1:ﬂ2)_[F2.”2(xﬂ1.”2)—F2(xn1.n2)] .
By Theorem 2 in Yamato [13] and the assumption we have

lim | F; (@0, 0)—Fi@y, )= lim  sup |F;,,(x)—Fiz)]| =0

ny, ng—>0 Ni—>00 —00<Lx <00
with probability one for +=1, 2. Therefore we have (2.5).
From the above lemma the solution of (2.2) is asymptotically a solution of (2.1) with
probability one. ‘

Lemma 2. If the carriers of f(x) and f(x—0) overlap, then
(2.6) lim z,,,, =0/2 with probability one.

ny, N2>

Proor. Under the assumption the equation (2.1) has a unique solution z=@/2 and
in a neighborhood of the point x=6/2 the continuous function F(z)+Fy(x) is strictly
increasing. Consequently the continuous function y==F,(z)—[1—Fy(x)] is strictly increas-
ing in a neighborhood of the point z=8/2 and therefore for any £>0 there exists a §>0
such that

ly] <3 implies |z—8/2]| <€,
Le., |Fyx)—[1—Fy(z)]| < implies |z—0/2]|<E.

On the other hand from (2.5) for the above 38>0 there exists a positive integer N, such
that

|Fl(x,,l,”2)—[1—F2(x,,1’,,,2)]| <8 for n,; ny> N, with probability one.
Henceforth it holds that

| %y, ,n,—0/2] <€ for my, ny>N, with probability one,
which implies (2.6).

LemMA 3. Suppose that the carriers of f(x) and f(x—8) do not overlap. Let [a, b] denote
the closure of the interval which vs sandwiched between the above carriers. Then

a<lim inf z, ,,<lim sup z,, ,, <b with probability ome.

N1, Ng—>00 ni1, Ng—>0
We should note that under the conditions of Lemma 3 the solution of (2.1) consists
of the interval [a, b].

Proor. Suppose that there exists a set C with P(C)>0 such that

lim inf %, ,,<a on C.

ny, Ng—>00
By the continuity of ¥, and F, and by Lemma 1, the equation (2.1) has a solution lim inf
n1,N2>co
%y, ,n, <o on C, which contradicts to the assumption. Similarly we can show that lim sup
N1,N2>c0

%y, ,n,=b with probability one.



Discrimination and Estimation of the Difference of Location Parameters , 11

Let P(2|1, M) and P(1|2, M) denote the probabilities of misclassifications due to the
minimax procedure if the ovservation is from 7, and =, respectively. Then we have

TarorEM 1. According to our discriminant procedure, we have

lim P(2|1, 4)=P(2|1, M) with probability one

n1,N2—>0

and
lim P(1|2,4)=P(1|12,M) with probability one.
n1, Ng—>00
Proor. We prove in case of #>0 and we can prove similarly in case of §<0. At
first we consider the case where the carriers .of f(z) and f(x—@) overlap. Then we have

P(2|1, M)=1—F(0/2) and P(1|2,M)=F,(6/2).
By applying Lemma 2 and using the continuity of ¥, and F, on (2.3) and (2.4) we have
lim P(2]1,4)=1—F,(6/2) with probability one

ni, na—>00

and
lim P(1]2,4)=F,(6/2) with probability one.

n1, Ng—>0

Thus the theorem is proved in this case. Next we consider the case where the carriers of
f(x) and f(z—8) do not overlap. Then we have

P@|1,M)=0 and P(1|2,M)=0,

and we have a, >0, where a and b are constants defined in Lemma 3. By applying
Lemma 3 and using the continuity of ¥, and ¥, on (2.3) and (2.4), we have with probability
one A

lim sup P(2]1,4) =lim sup[l—Fy(z,,, ,,)]

71, Ng—>00 ni, n2—>00
=1—lim inf Fy(z,, ,,)
N1, Ng—>0
<1—Fa)=0
and
lim sup P(1|2,4)=1lim sup Fy(x,, ,,)
N1, Ng—>0 ni, N>R
<F,(b)=0.

Thus the theorem is proved.

3. Estimation of the difference of location parameters.

Suppose there are two populations whose distribution functions are given by F(x) and
F(x—0) respectively, where F is continuous and symmetric and € is a unknown location
parameter. Let X3, X2, ..., X} and X3, X3, ---, X}, be random samples from the two
populations with distribution functions F(z) and F(x—@) respectively. Our aim in this
section is to present an estimator of @ based on the two samples. x=6/2 satisfies always
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F(x)=1—F (x—9).
Similarly to section 2, we can obtain an estimator of #/2 by solving the equation
(3.1) Fyp(@)=1—F,,, (@),
where F, , (z) and F, ,, (z) are estimators of F(z) and F(x—6) constructed by the two

samples respectively, whose form is denoted by (1.1) with given distribution functions W,
and W,,. Let z,,,, denote a solution of (3.1). Then Lemma 2 yields the following

ProrositioN 1. Suppose that the distribution function F(x) s strictly increasing on
{x; 0<F(z)<1} and that the closures of sets {x; 0<F(z)<1} and {x; 0<F(xz—1)<1} overlap.
Let W, —ey as ny—>oo and W, —ey as ny—>oo. Then we have
Iim 2z, ,,,=0
ny, Ny—>0

with probability one.

The above proposition shows that under the conditions of Proposition 1, 2z, ,,, 1s a
consistent estimator of 4. The above problem is equivalent to the estimation of a quantile.
If we put

() %{F(x)+[f‘(m—0)}

then the parameter 6/2 is a median of the distribution G(x). We estimate G(x) by

—t

G(CI")= {Fl,nl(w)'*'Fz,ng(x)}

2
and we construct an estimator of 8, 2z,,,,,, where G(z,,,,,)=1/2, which is equivalent to
(3.1).

For practical purposes it arises a question what W, we should take. In case of
absolutely continuous distributions, following Epanechnikov [1] we propose to take

W ()= 1 3z xd (/87 < S
(@) = 9 T 4Vbh,  20VBh,5 V'bh, <®<v/bh, ) ;

1 (@=V5h, )

where {h,} is a sequence of positive numbers. The optimum sequence {%,} depends on
the unknown density and therefore it may be unavoidable to take h,=1/n", where r is a
suitable constant between 0 and 1.

The author wishes to thank Prof. A. Kudo of Kyushu University for his kind encourage-
ment and suggestions.
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