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§0. Introduction.

The purpose of the present paper is to treat conformal transformations of
generalized Berwald spaces (esp. Wagner spaces) and to show the following three
theorems.

Theorem A. A generalized Berwald space (esp. a Wagner space) remains to be a
generalized Berwald space (esp. a Wagner space) by any conformal transformation.

Theorem B. The condition that a Finsler space be conformal to a Berwald space
18 that the space becomes a Wagner space with respect to a gradient alx).

Theorem C. The condition that a Finsler space be conformal to a locally Minkowskian
space is that the space becomes o Wagner space with respect to a gradient o x) and s
h-curvature tensor (in the sense of the Wagner space) vanishes. (In the above statement
“h-curvature” may be replaced by “‘(v)h-torsion”.)

Recently, M. Hashiguchi (one of the authors) [7] treated the conformal theory of
Finsler metrics and obtained the respective conditions that a Finsler space be conformal
to a Berwald space and to a locally Minkowskian space. These conditions were,
however, given in terms of very complicated systems of differential equations, for which
appropriate geometrical meanings have been wanted. Theorems B and C give an
answer about it by showing that the spaces in question construct a special class among
Wagner spaces.

A Wagner space is the generalized Berwald space defined by V. Wagner [12], where-
as a generalized Berwald space was defined by M. Hashiguchi [6] in a broader sense
- than Wagner’s. On the other hand, Y. Ichijyo (the other author) [9, 10] obtained the
" notion of a {V, H}-manifold from the study about Finsler spaces modeled on a Minkowski
space and showed that such a manifold is just a generalized Berwald space in the standard
sense of M. Hashiguchi’s. The generalized Berwald spaces contain various interesting
examples [8,9] and are thought to be important Finsler spaces.

In §1 we shall first treat conformal transformations of a Berwald space. The
consideration suggests us a typical transformation of a generalized Cartan connection,
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based on which Theorems A and B are proved (§2). Such a transformation is a
generalization of the so-called one-sided projective transformation of a linear connection
[5, 13] to the Finsler case, and is characterized as a transformation of a Finsler connec-
tion preserving wvectors parallel in direction. Theorem C follows from the fact that such
a transformation preserves the A-curvature tensor (resp. the (v)h-torsion tensor) under
some conditions (§3). We shall provide §4 to state the relations between our theorems
and the corresponding ones in [7] and to improve one result about two-dimensional
Landsberg spaces.

This paper is a continuation of [7], and we shall usually retain the terminology and
notation of [7] without comment, which is essentially based on the recent standard book
[11] by M. Matsumoto.

The authors wish to express their sincere gratitude to Prof. Dr. M. Matsumoto for
the invaluable suggestions and encouragement, who has organized the symposium of
Finsler geometry every year and stimulated their joint studies.

§1. Berwald spaces and Wagner spaces.

1.1. An affinely connected Finsler space defined by L. Berwald [2, 3] is also
called a Berwald space, which is the space whose connection coefficients (in the sense of
L. Berwald [1]) depend on position alone. Such a space is also the one whose connec-
- tion coefficients (in the sense of K. Cartan [4]) depend on position alone. V. Wagner
[12] generalized the notion of the Cartan connection and called a Finsler space a gener-
alized Berwald space if it is possible to introduce a generalized Cartan connection in
such a way that the connection coefficients depend on position alone. A generalized
Berwald space and a generalized Cartan connection introduced by V. Wagner have
been called a Wagner space and a Wagner connection respectively in our papers [6,8].

1.2. Let L(z,y) be a Finsler metric function, whose Finsler metric tensor is
given by g¢;;/=(L?2)(5(». A Finsler connection is generally denoted by the coefficients
(Fig, N, C%p).  Asshown in [6], a Wagner connection is characterized by the following
four axioms.

(C1) It is metrical, i.e.,

(C1%) gijr=0, (Clv) gijle=0.
(C2) The deflection tensor D vanishes identically, i.e.,
Dj =y Fi,—Ni=0.
(C3:s) It is sema-symmetric, i.e.,
Tiy = Fip—Fi ;= 8is,—5is;
for some convariant vector field s;.
(C4) The (v)v-torsion tensor S' vanishes identically, i.e.,

iy =Ch—Cl;=0.
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We shall call this the Wagner- connection with respect to s;. From Theorem 5 of
[6] we have

Proposition 1.1. Given a covariant vector field s; on a Finsler space, there exists o
unique Wagner conmection with respect to s; which we denote by (Fiy(s), Ni(s), C%p).
The coefficients are given by

(1.1) F;:k(s) = ]k"‘D]ksr ,
(1.2) Ni(s) = Gi+Dijs,
(1.3) Cix=1/29" gjrcn) »

where (I'*5,, Gi, C%;) are the coefficients of the Cartan connection, and Dii, D'} are
expressed as

(1.4) / ]k = U§£+3 3 »
(1.5) D’r Bk +y 5%
by conformal invariants Uy, Bi' defined wn [T].

1.3. Let L be the metric function of a Berwald space, and let us consider whether
the Berwald space may become a Wagner space by a conformal transformation a:

(1.6) IL—eL.
In the Finsler space with L a Wagner connection (Fi,(s), Ni(s), C%;) is given by
(L) Fj(s) = T*ju+ Dis
(1.8) Ni(s) = Gi+ D's, ,
(1.9) Cir =1/2" Giat -

We shall express these in terms of L. Since Dif, D} are conformal invariants,
and it holds that

(1.10) I}, =1*,—Ujja,,
(1.11) Gi = Gi—Bja,,
where a,=da/dz’, the above (1.7) and (1.8) become
(1.12) Fiy(s) = I*5—Ujia,+Diis, ,
(1.13) Ni(s) = Gs—Bj"a,+Da,
respectively. If we choose a, as s,, we have from (1.4) and (1.5)
(1.14) Fiy0) = I'*}p+ 8ty
(1.15) Ni(a) = Gi+y'as .
On the other hand, (1.9) becomes
(L.16) Cle=Ca.

Since I"*i, depend on position alone, Fi,(a) depend on position alone. We shall
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call a Finsler space a Wagner space with respect to s; if it is possible to introduce a

Wagner connection with respect to s; in such a way that the coefficients Fi\(s) depend

on position alone. In this case s; should depend on position alone by virture of (C3:s).
The above consideration tells us

Proposition 1.2. By any conformal transformation a o Berwald space becomes a
Wagner space with respect to the gradient oj(x).

§2. Conformal transformations of Wagner spaces.

2.1. A generalized Cartan connection is by the definition of M.Hashiguchi a Finsler
connection satisfying the axioms (Cl) and (C4). The axiom (C2) is imposed in the
standard case, but not in this paper. By generalizing the transformation (1.14), (1.15),
(1.16) of the Cartan connection, we can obtain

Proposition 2.1. Let a generalized Cartan conmnection (Fi, Ni, C%,) be gwen
wm a space with a Finsler metric L. If for a conformal tmnsformatwn L=eL we put

(2.1) F;k = F}k""s;ak )
(2.2) Ni=Ni+y'as,
(2.3) O =0,

the coefficients (F'iy, Ni, Oi,) define a generalized Cartan connection in the space with the
Finsler metric L.
The proof is easily obtained by checking the axioms (C1) and (C4).

2.2. Theorem A follows directly from Proposition 2.1 as follows. If F?,
depend on position alone, F %z depend on position alone, too. A Finsler space is
called a generalized Berwald space if it is possible to introduce a generalized Cartan
connection in such a way that the coefficients ',
have proved that a generalized Berwald space remains to be a generalized Berwald
space by any conformal transformation.

Especially, if (F;k, Nj, Ci,) satisfies the axioms (C2), (C3:s) moreover, (F Y
Ni, O’ .) satisfies the axioms (C2), (C3: s+a). Hence, as the rest of Theorem A, we have

depend on position alone. Thus we

Proposition 2.2. By any conformal transformation a o Wagner space with respect
to s; becomes a Wagner space with respect to s;+ a;.

2.3. Theorem B is proved by considering the converse of Proposition 1.2 as
follows. Let us assume that a space with a Finsler metric L is a Wagner space with
respect to a gradient a;(z). By Proposition 2.2 a Finsler space with L=e~L becomes
a Wagner space with respect to the vanishing covariant vector field, which is nothing
but a Berwald space. Thus the converse of Proposition 1.2 holds good, and Theorem
B has been proved.
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§3. One-sided projective transformations of Finsler connections.

3.1. For a moment we shall leave Finsler metrics and consider any Finsler con-
nection (Fi,, Ni, C%;) on a differentiable manifold M. It is noted that a Finsler
connection is also given by the coefficients (I'%;, Ni, C%;), where

(3.1) r'iy=Fu+Ci.NP.
Let C=(z%(¢) ) be a differentiable curve in M and C=(z'(t), ¥’(¢) ) be a differentiable

curve over C in the tangent bundle of M. Tangent vectors X(f) along C are called
parallel in direction along C with respect to C, if the system of differential equations

(3.2) X4+ Tix(x, y) Xiak+Cllz, y) Xigh = A X7
is satisfied for some A, where a dot means d/dt.

Suggested by the transformation (2.1), (2.2), (2.3) of a generalized Cartan connec-
tion, we shall consider a transformation of a Finsler connection as follows:

(3.3) Fiy=Fi+8js:,
(3.4) Ni = Ni+y's;,
(3.5) Oty =Chu,

where s; is some covariant vector field. Assuming the Cj-condition Ciyy*=0 for the
given Finsler connection, it is easily seen that the above transformation of a Finsler
connection preserves vectors parallel in direction. '
Conversely, if two Finsler connections (Fi,, Ni, Ci)) and (Fi;, Ni, 0i;) make
any vectors parallel in direction at the same time, we have in the same way as in [5,13]
(3.6) Ti=Tju+8is,
(3.7) Cip = Ch+335
where s;=(I'hy—I"h3)/n, §k=(5§,'k—0;'}k)/n. Assuming the axiom (C4) for these Finsler
connections, it is shown that (3.7) becomes (3.5) and s; is a covariant vector field. If
we assume the axiom (C2) and the Cy-condition moreover, the Cj-condition yCj,=0 is

also satisfied by (C4) and we have (3.4), and the C,-condition yields (3.3). Thus we
have proved

Proposition 3.1. Let us assume that the used Finsler connections satisfy the axioms
(C2), (C4) and the C,y-condition. Transformations of a Finsler connection given by (3.3),
(3.4), (3.5) are the most general ones preserving any vectors parallel in direction.

Returning to general Finsler connections, we shall call a transformation of a
Finsler connection by (3.3), (3.4), (3.5) the one-sided projective transformation with
respect to s;.

3.2. We shall investigate how the torsion tensors and the curvature tensors change
by an one-sided projective transformation. From Proposition 3.1 of [7] or directly
from the definitions (2.11)~(2.18) of [7] we have

Proposition 3.2. By an one-sided projective transformation of any Finsler connec-
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tion, the torsion tensors Tjp, Ry and the curvature tensor Rjj; are changed as follows:

(3.8) Th=T;+Sp{8%ss)

(3.9) Rip = Riy+3uly’ 9sjfon*—(Nim y"—N7) si}
(3.10) Riir = R ju+Siu (85 08;[00" —(Fs jomy Y+ CrN T 5y y*—NT)) 81,

and the others C;:k, P;:k, ka, P;f,-k and S; j& remain unchanged.
If the Finsler connection ts positively homogeneous, (3.9) and (3.10) become

(3.10) Riji = Riju+ 85, Sy {0s;fon*)
respectively. Especially, in the case that the transformation is with respect to a gradient
sj» Rix and Rj ;3 remain unchanged also:

(3.9) Ri =R},

(3.10") Rijn=Ris.

3.3. Theorem C is obtained directly from Theorem B if we pay attention to the
last case in Proposition 3.2.

A locally Minkowskian space is a Berwald space whose h-curvature tensor Rjjz (in
the sense of the Cartan connection) vanishes. In the previous paper [7] we called
such a space a Minkowski space briefly, but in order to avoid the confusion with the
global one by Y. Ichijyd, we use the above terminology.

Now, let us assume that a space with a Finsler metric L is a Wagner space with
respect to a gradient a;(z), which becomes a Berwald space with L by the conformal
transformation L=e—=L as shown in 2.3. Let R;fjk and R;‘;]-k(q) be the respective A-
curvature tensors of the Berwald space ( in the sense of the Cartan connection) and of
the original Wagner space (in the sense of the Wagner connection).

The Berwald space is a locally Minkowskian space if and only if Rj;z=0, which is
equivalent to Rj;z(a)=0 because of (3.10”). Thus Theorem C has been proved. (In a
Berwald space Rj;3=0 is equivalent to R;k=0. Hence, in Theorem C the A-curvature
tensor Rj;z(a) may be replaced by the (v)h-torsion tensor R}:k(a) because of (3.9”).)

§4. Some remarks on the previous paper [7].

4.1. In Theorem 4.7 of [7] the condition that a Finsler space be conformal to a
Berwald space was given as the existence of a solution o of the system of differential
equations ,

(4.1) G;:kt—B%zar =0,
which expresses, in terms of the Berwald connection, the condition that the coefficients
Fi(-a) of the Wagner connection with respect to —a; depend on position alone. Thus
Theorem B restates Theorem 4.7 of [7].
4.2. In Theorem 4.8 of [7] the condition that a Finsler space be conformal to a
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locally Minkowskian space was given as the existence of a solution a of the system of
the differential equations (4.1) and the following (4.2):

4.2) Ri—%i{(B} o))+ BinBi*a,a) =0.

The left-hand member of (4.2) is the (v)k-torsion tensor R;:k(—a) of the Wagner connec-
* tion with respect to —a; written in terms of the Berwald connection. Thus Theorem C
restates Theorem 4.8 of [7].

4.3. Wandering from our subject, we shall remember two theorems of [7] that
of a two-dimensional Landsberg space remains to be a Landsberg space by a non-homothetic
conformal transformation, the main scalar I is at most a point function (Theorem 4.5) and
of a two-dimensional Berwald (esp. locally Minkowskian) space remains to be a Landsberg
space by a non-homothetic conformal transformation, the main scalar s constani
(Theorem 4.6).

In a two-dimensional Landsberg space, however, it is known that the main
scalar becomes constant if only it is at most a point function. So, the conclusion of
Theorem 4.5 should be replaced by “the main scalar I is constant”’. Hence, Theorem 4.6
1s contained in Theorem 4.5 and is omitted.
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