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0. Introduction

There are known some convenient categories for topology. We consider two of
them here. In [6] R.M. Vogt established the category % consisting of k-spaces and
continuous maps, and proved the exponential laws in #. On the other hand, Y.
Kawahara and T. Kudo [3] offered the category 4% consisting of topological spaces
and - maps. They proved #% to be cartesian closed, i.e., there is a function space
functor k: 48P X J&—>JZ such that k(-,X): J&¥—>JZ is a right adjoint for —-XX:
JC—>JZ.

It is remarkable that in J% we can treat every topological space without changing
its topology.

In this note we study the category 4% and the relation between J% and %.
Our purpose is to find another function space functor k': JZ°F X J&—>J& which has
the similar properties to that of k. Furthermore it enables us to get the cartesian
closedness and exponential laws of % in the sence of R.M. Vogt.

1. Categories (4%, 4¢) and functors (k, k)

Let & be the category of topological spaces and set maps, let & be of topological
spaces and continuous maps. Let J be a full subcategory of € containing at least one
non-empty space. In addition, J is required in Sec. 3 and 4 to have two properties
(Axiom (a) and (b)). A map f: X—>Y in « is called J-map if fae? for any ae®’(4, X)
with Aed. By J% we denote the category of topological spaces and J-maps. It is
trivial that fe® means fed¥. A space Xe is called J-generated if JZ(X, Y)=
Z(X, Y) for all Yer. By J¢ we denote the full subcategory of @ with objects o-
generated spaces. (Note that J¢=%.) The inclusion relations of these categories are
as follows,

J
4% < o
Jull U Ve
4d C ¢ C &
Sfull  full
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We can easily verify that the finite products in &, in 4% and in & coincide (because
1, 4 and ji preserve finite limits).

Let k: ——>J% be the functor in the sence of R.M. Vogt [6], i.e., for any Xe®
k(X) is the set X with the induced topology determined by the family {4—>X|xe®,
Aed} and for any fez(X, Y) k(f)(ed<(k(X), k(Y)) ) is equal to f as set maps. It is
an easy consequence of the definition that £(X)=X for all XeJ¥ and the identity func-
tion dx: k(X)—>X lies in & for all Xe@.

The following proposition is due to R.M. Vogt.

ProrosiTioN 1. For any Bed and Xe@ there is a natural isomorphism €(B, X)
=J¥(B, k(X) ); fl—>f" where f'=f as set maps.

ProrosiTioN 2. For any X, Yes there is a natural isomorphism, «: J2°(X, Y)—>
4 (k(X), k(Y)); «(f) =f as set maps for any fedZ(X, Y).

Proor. We need only prove that «(f) lies in J%. It suffices to show that
k(f)o'eg for any o'e@(B, k(X)) with Bed. Consider the following commutative
diagram,

«(f)
' RX) —— s WY
Ba/ (l@-fix (i@'?zy
a\ X —f—> Y

By Proposition 1 ae@. Therefore foe®. Using Proposition 1 again, we get that
k(f)o' €.

The last result enables us to extend the functor k: ¥—>d4% over J%, i.e., there is a
functor «: J&—>J% and k=«i. On the other hand we have the fact as follows (due
to R.M. Vogt).

ProrosiTioN 3. J¥¢ is complete and cocomplete.
To combine Proposition 3 with Proposition 2 yields the following.
ProrosiTioN 4. 4% s complete and cocomplete.

The next properties follow immediately from [6] (1. 2), [3] (example 1) and Proposi-
tion 2.

ProrosiTioN 5. (i) X s isomorphic to Y in JZ if and only if «(X) ts wsomorphic to
k(Y) in 4%.
(i) «(X) vs isomorphic to X in JZ. More precisely id: «(X)—>X lies in & and id-!
lies in 4.
(iii) w(X)=X for any Xed¥.
(iv) Let X be isomorphic to Y in &, then the homotopy groups and singular(co) homology
groups of them are isomorphic for suitable d.

2. Function space k'(X, Y)

In this section we shall define a function space functor k': JF9P X J&—>JF and
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two natural transformations related to ¥’. They play the important roles in this note.
Let k': JZOPXJEZ—>JZ be a functor defined by

F(X,Y)=F«X),«(Y)) X,Yed%
E(f,9) =F(x(f), «(9)) (f,9) e4°P(X, X')XJE(Y, Y')
where F(—, —) means the ordinal function space functor with compact open topology.
Let L, M, N, P: J&°PXJZOP X J&—>Set be the functors defined by the equations,

LX,Y,Z)=4%(XXY, Z)
MX,Y,Z2)=o(X,k (Y, Z))
NX,Y,Z) =42 (X, k' (Y, Z))
PX,Y,Z)=+(XXY,Z).

By @: L—>M we denote a natural transformation as follows, ex v z(f)=/1; f(2)(y)=
f(z,y) with feL(X, Y, Z) zeX and yeY. By ¢f: N—>P we denote a natural trans-
formation as follows, {x v z(h) = 7 ; (=, y)=h(x)(y) with heN(X, Y, Z), xeX and yeY.

It is easy to see that ¢ and ¢ are well defined and natural.

Remark. The naturalities of ¢ and ¢ yield the formulas (B. 1)~(B. 6) of [3]. They are
used frequently to prove many properties.

(B.1) fa=f(axY) (B.2) fK(b,Z)=f(Xxb) (B3) K(Y,c)f =cf
(B4) ha=i(axY) (B5) Kb, 2)h=i(Xxb) (B6) K(Y,0h=ch
where feL(X,Y,Z), heN(X, Y, Z), a c4Z(X’, X), bedZ(Y", Y) and c ¢ JZ(Z, Z').

3. (d4-) admissible and (J-) proper

DeriniTION 6. (i) 4 space Y in of is said to be J-admissible if
bx v 282X, K(Y,Z)) C JZ(XXY,Z) for all X,Z .
(i) 4 space Y in o is said to be admissible if
Vxv.2(@ X, E(Y,2)c € XXY,Z) for oll X,Z e.

Let ¥ = {Txyvz: X, F(Y,Z) »> A(XXY,Z)}x,v,ze« be a natural transformation
defined by Py z(h)=h, where h(z, y)=h(z)(y) with z € X,y e Y and h e ¥(X, F(Y, Z)).
(i) 4 space Y in o is said to be F-admissible if
vz (@X,F(Y,2)c¥(XXY,Z) for all X,Z eA.

PropostTioN 7. (1) 4 space Y is J-amdissilbe if and only if &y zed€ (k' (Y, Z)X Y, Z) for
all Zest, where &y z=k'(Y, Z).

(i) 4 space Y is admussible if and only if €y 2e€ (k' (Y, Z)X Y, Z) for all Zed.

(iii) A space Y is €-admissible if and only if ey zeZ(F(Y,Z)X Y, Z) for all Zest, where
ey, z=F(Y, Z).

Proor. (i) &,z has the following (universal) property: For any hed@(X, k'(Y, Z))
fi=€y z(hXY). Hence, if &y 7 lies in JZ, then  lies also in J%. “Only if” part is
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trivial from the definition. In similar fashion (ii) and (iii) are easily verified.
This leads to the next. |
ProrositioN 8. If Y s admissible, then Y s J-admissible.
ProrosiTioN 9. If Y is in 49 and &-admissible, then Y s admissible.
Proor. By Proposition 7, it suffices to show that &y, 7 lies in & for any Zes/. Since

e(k(Y,2), K'Y, 2))=% (¥ (Y, Z), F(Y, «(Z))), k'(Y,Z)" lies in €(k'(Y,Z)X Y, «(Z)).
On the other hand, we have ¢y z=1d;k'(Y, Z)¥. It completes the proof.

Axiom (a) Any A in J is admissible.
Prorosition 10. If J satisfies (@), then any Y in of vs J-admissible.

<wnB>
Proor. By Proposition 7 we need only prove that the composite 4 — k'(Y, Z)
XY 2% 7 Ties in & for all (o, By e 2(4, ¥(Y, Z)X Y) with 4 e, where (o, f) is the
unique map determined by aeZ(4,k(Y,Z)) and feZ(4,Y).” By (B.4) ~ (B.6) we
TR ’
have, &y,z( ) — &v.2(F (¥, 2)X B) (a, A) = F(B, Z) (o, A) = €4,z (K(B, Z)x 4) (s, A).
Since €4,7 €% (Axiom (a)), we get the desired consequence.

The last result means that if «f satisfies (a) then ¢ is a natural transformation from N
to L.

DeriniTION 11. (1) 4 space Y in of is said to be J-proper if
Px,v,2(d€(XXY, Z)) c € (X, k'(Y, Z)) for all X, Z e A.
(i) 4 space Y in o is sard to be proper if
Pxyv,2(Z (XXY,Z))c (X, kY, Z)) for all X,Z e A.
Let &= {0xyz: CXXY,Z)>A(X,F(Y,Z)}x,v.zex be a natural transformation
defined by ®x.y z(f) = f, where f(z)(y) =f(z,y) with ze X,y e Y and fe (XX Y, Z).
(i) 4 space Y in o is said to be F-proper if
Oxyv2(Z2 (XXY,Z2) c (X, (Y, Z)) for oll X,Z €.
It is a well known fact that any Y in & is @-proper.

ProrosiTioN 12. (i) 4 space Y s S-proper if and only if
1x,ydZ (X, (Y, XX Y)) for all Xest, where nxy=XX7Y.
(i) A4 space Y is proper if and only if nx,veZ(X,k' (Y, XXY)) for all Xest.

Proor. (i) 7x,y has the following (universal) property: For any fed&(X XY, Z)
F=1xvk'(Y,f). Hence, if nxy lies in 4%, then [ lies also in JZ. “Only if” part
follows immediately from the definition. The proof of (ii) is similar to that of (i).

Axiom (b). If A, Bed, then A X Bed¥.
ProrosiTioN 13. If J satisfies (a) and (b), then K X Aed¥ for any Aed and KedZ.

Proor. We have to prove fe# for any fed@ (KX A4,Z). If fez (K, k' (A, Z)), then
7=f€g by (a). Hence we need only verify that fedZ (K, k'(4, Z) )=% (K, k'(4, Z)).



On a Cartesian Closed Categry 41

Suppose that Bed and ae#(B, K), then fa=f(aX4) by (B. 1). On the other hand
f(axA)eZ by (b). We have the following commutative diagram,

JEBXAZ) ——> A(BF

(
JZ(BXA, id;?) l » |
IZ(BX A,K(Z)) —> (B, F(4, x(2))
| 45 U
@(BxAw(Z) —> ¥(B,F(4,(Z)).

o /\
Therefore fo=f(axAd) =1d;'f(ax4)e?.

PropositioN 14. If J satisfies (a) and (b), then any Y in o s J-proper.

4, 7))

Proor. By Proposition 12 we need only prove that nx yed% for any Xes. Let Aed
and ae?(4,4(X)). It follows from Proposition 13 that 42 (4 X «(X), «(Z))=& (4 X (X),
K(Z))=F(AX«(X), x(Z)). Therefore we get the commutative diagram,

JZ(AXK(Y), (XX Y)) — 5 st(d, K(Y, XX Y))

| y
@(Ax «(Y), (XX Y)) — (4, K (Y, XX Y)).

idx X idy idxxy

Let f(e4%) be the composite «(X)X«(Y) > XXY —>«(XXY). Using the

. T o _
diagram, we have f(aX«(Y))=f(aX«(Y)). By (B.l) f(aX«(Y))=fa. Hence [¢
4% (x(X), k'(Y, XX Y)). Since nxy = fid;!, we get the desired consequence.

The last result means that if o satisfies (a) and (b), then o isa natural transforma-
tion from L to N.

It is obvious that Y)p=L and @i)=N under the conditions (a) and (b).

4. Exponential laws

Throughout this section we require that J satisfies (a) and (b). The results of
section 3 are summarized below.

THEOREM 1. JZ s cartesian closed.
From this, we get the exponential laws.
THEOREM 2. There are natural isomorphisms in 4%,
(1) FAXY,Z2)xk'(X,K(Y,Z)
(i) KX, YXZ2)=kX,Y)XE X, Z).

Proor. (1) Let A: JE(W,E(XXY,Z))—> J&€(W, k' (X, k' (Y,Z))) be a natural
isomorphism. It is a well known fact that any natural transformation A is JZ(W,l)
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for some ledZ(K'(XX Y, Z), kK'(X,k'(Y,Z))), and ! is isomorphic if and only if A is.
Combining this fact with the naturality of A, we can easily verify that [ is a natural
isomorphism. We may take A to be the following composite of natural isomorphisms
JE(W, K(XXY, Z))—> 47 (WX (XX Y), Z) —> d&((WX X)X Y, Z)—> JE(WXX, k'
(Y,Z))——>d&(W,k (X, k'(Y,Z))), where u=2<€(x, Z) determined by the natural isomor-
phism o: (WXX)X Y—sW X (XX Y).

(ii) We have only to verify the existence of a natural 1s0morph1sm B: 4E (W, k'
(X, YXZ))—>d42(W, k' (X, Y)XE'(X, Z)). There are natural isomorphisms JZ(W,k’

X

(X, YXZ) )——gé"b’(WXX YXZ)&J%’(WXX Y)XJZ(WXX, Z)y—4F (W, k' (X, Y))
XIZ (W, k'(X, Z) )—%J?(W E'(X, Y)XK (X, Z)), where (*) and (*)" are determined by
the products Y x Z and ¥'(X, Y) X k'(X, Z) respectively. It completes the proof. (cf.
[3] Theorem 1 and 2)

Using Theorem 2, we can easily verify the following.

THEOREM 3. J¥ s cartesian closed.

k-1

Proor. The composite JZ(XRY, Z) JZ(X XY, Z)—>J2(X, I

B (Proposition 2)

(Y, 2)) — 49(X, % (Y, Z)) 1s a natural isomorphism. Hence we get
(Proposition 2) &

the desired consequence.
By the similar fashion to the proof of Theorem 2, we get the next.

TarEoREM 4. There are natural tsomorphisms in J4¥,

(i) FUX®Y,Z)=wYX, 7Y, Z))

i) X YL =7(X, V)X, Z),
where —R— denotes the product in 4 and ¥ (-, -)=«(F(-,-)).

Remark. (i) Combining Proposition 5.(i), Theorem 2 and the trivial observation
that «(UXV)=«(U)Q«(V) for any U, Ve#, we can verify Theorem 3 and Theorem 4.

(i) In this section it was shown that Theorem 1 yields Theorem 3. Conversely it
is easy to verify that if J¥ is cartesian closed, then J% is also cartesian closed.

5.

Here we shall consider the relations among the function spaces. If X and Y are in
4%, then k'(X, Y)=F(X,Y) and k' (X, Y)=% (X, Y) in J%. Moreover, id: #(X,Y)
—>k'(X,Y) is in € and ¢d-! is in JZ.

Let k: J&0P X J&—>J% be the functor in the sence of Y. Kawahara and T. Kudo
[3]. That is, let  be some full subcategory of & with JC # CJ¥, then k(X, Y) is the
set J&(X, Y) with the induced topology determined by the family of set maps {J&(X, Y)
i)F( U,Y)|Ue#,nez (U, X)}. On the other hand, according to Proposition 2 we may
take as k'(X, Y) the set J2°(X, Y) with the induced topology determined by the bijection
k: JE(X, Y)—>F(«(X), x(Y)). Then id: k'(X, Y)—k(X, Y) is in & and 4d-! is in JZ.
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(Since k'(X,-) and k(X,-) are right adjoints for —X X: J&——J%, we can directly
obtain that %'(X, Y) is naturally isomorphic to k(X, Y) in 42.) Let P be a one point
space, then k'(P, X)=X in 4%, really k'(P, X)=«(X).

Finally, there are some examples of which hold the Axioms (a) and (b) (cf. [6] ).

Let #& be the full subcategory of ¢ consisting of all locally compact spaces.
Combining Proposition 9 with the well known fact that any Y in &% is #-admissible,
we get that any full subctaegory of % holds (a).

The followings hold (b) too.

(i) The full subcategory consisting of a one point space only;

(i) the full subcategory consisting of all compact Hausdorff spaces;
(iii) the full subcategory consisting of all locally compact Hausdorff spaces;
(iv) 2% itself.
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