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Abstract

This article is a revised note of the lecture [1] presented by the authors to "The XXIst

National Symposium on Finsler Geometry" held at Yokosuka during October 15-18, 1986.

We discuss some aspects of the treatment as a Finsler metric of a non-homogeneous general-

lzed metric.

Introduction

In the previous Symposium on Finsler Geometry held at Kagoshima in the summer

of 1985, Professor R. Miron emphasized the importance of a generalized metric which is

not necessarily assumed to be positively homogeneous. In fact, a lot of results in Finsler

geometry remain valid without the assumption of homogeneity, (cf. R. Miron 【141, Gh.

Atanasiu-M. Hashiguchi-R. Miron 【21 which were also presented to the above Sympo-

sium.)

"Since the term (Finsler geometry) sounds as if the geometry is antiquated, it does

not yet attract a general attention in spite of our modern approaches."said he, "On the

other hand, non-homogeneous geometrical objects like Lagrangians are important from

the standpoint of applications. So the term (Finsler geometry) should be replaced by

(Lagrange geometry) which was first termed by J. Kern 【7】." Then he proposed the foト
●

lowing definitions.

Let M be an n-dimensional differentiable manifold, and T{M) its tangent bundle. A

coordinate system x-(xl) in M induces a canonical coordinate system (x, y)-{x¥ yl) in

T{M). We put ∂,-aOx', ∂,-dldyl, and T-(M)-|(x,ォ)∈ T(M)¥ y≠OL

A Finsler tensor field gu¥x9 y) of type (0, 2) in M is called a generalized Lagrange

metric if it is symmetric and non-degenerate: gu-gn, detigu)キ0. Especially, a general-

ized Lagrange metric gu¥x, y) is called a Lagrange metric when gu is given by

gu-∂idjL for some Finsler function L(x, y) in M.

A generalized Lagrange metric gu¥xt 2/) is called a generalized Finsler metric if it is

positively homogeneous of degree 0: gu¥xy ky)-g¥xy y) for A>0. Especially, a Lagrange

metric gu(x, y) is called a Finsler metric when gu is given by gu-{∂tdjV)/2 for some

Finsler function L(x, y) in M which is positively homogeneous of degree 1: L(x, Xy)
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-AL(x, y) for A>0.

Let it be the real line, considered as a one-dimensional differentiable manifold, with

a fixed global coordinate t. A differentiable function L(t, x, y) defined on a domain D

of Rx T (M) is called a Lagrangian. It is not necessarily to be 3L/3t#=0. A Lagrangian

L is called柁gular if det(∂tdjL)≠0. Since a Lagrangian L is usually assumed to be reg-

ular, the above terminology proposed by Prof. Miron seems to be reasonable.

On the occasion of his visit to the University of Bari, in the autumn of 1985, M.

Hashiguchi, one of the authors, introduced the above terminology in his lecture 【51. Then

0. Amici and B. Casciaro, the other authors, gave a remark that the geometry based on

Lagrangians has a long tradition since C. Caratheodory [41 with various interesting ap-

plications, e. g., B. Segre 【171, but we need careful consideration in order to make the

teminology establish fully, because every regular Lagrangian上, even non-homogeneous,

can be treated as a fundamental function L* of a Finsler space of dimension n+1 (cf. C.

Lanczos 【12, pp. 280-2901).

The present lecture is a report of our discussion about the above remark. In the

first section the result remarked above is shown (Theorem 1.1), and in the following sec-

tion an example of a special Finsler space is given from this standpoint (Example 2.1).

In the last section two kinds of regularity and other types of Finslerization are discus-

sed for a Lagrangian (Theorem 3.1, Theorem 3.3). The terminology and notations follow

those in 【11, with slight modifications.

1. A Finsler metric associated with a regular Lagrangian

For an n-dimensional differentiable manifold M we consider the product manifold

M*-RxM. A coordinate system x-(xl) in M induces respective coordinate systems

x*-(xa)-(f, xl) and (x*, y*)-(xa, 2/-)-U, x¥ t, yl) in M* and T{M*¥ where and in

the following we assume that Latin indices take values 1, 2,�"�"�", n and Greek 0, 1, 2,

n. We put for y-i=0

(1.1)　　　　　　　　　　　　　　z*-yW.
Now, with a Lagrangian Lit, x, y) defined on a domain D of Rx T¥M) we associ-

ate a differentiable function L (x , y ) given by

(1.2)　　　　　　　　　　L*(x*, y*)-Ux¥ x, z)y¥

which is defined on the domain ¥(x*, y*)^T(M*)¥y-=t=0, (x-, x, z)^D¥. It should be

noted that L* is homogeneous of degree 1 with respect to t/*:

1.3)　　　　　　　　　L*{x*, ¥y*)-¥L*(x*, y*) for ¥=hO.

We shall show that L* gives a Finsler metric function in M* if L is regular.

Putting

ll- ∂*L, hij-L{∂tdjL),



On Finsler metrics associated with a Lagrangian

1.5 g芝β -(∂α∂βL*2)/2,

35

we have by direct calculations

1.6　　　　　　　　　gUx*, y*)-U-2Lltzl+{ltlj+hu)zlz¥

1.7　　　　　　　　　　　g%(x*, y*)-Lli-(lilJ+ hiJ)zJ,

1.8　　　　　　　　　　　　　gfj(x*, y*)- ltlj+hu,

and

(1. 9　　　　　　　　　　　　det(g苦β(x*. y*))-Vdet(hiJ¥

where L, lu hu in the right-hand sides mean the respective values at (x-, x, z).

We can see from (1.9) that the matrix (g芝β) is regular at {x*t y*) if and only if

Ldetihu) does not vanish at the corresponding point (x , x, z). In the following we shall

consider L at the points such that L≠0. Then, since the condition detihu)≠O is equiva-

lent to the regularity condition det(∂tdjL)≠0, we have

Theorem 1.1. Let L(t, x, y) be a Lagrangian defined on a domain D of RXT¥M).

Then the function L*(x*, t/*) defined by (1.2) an the domain D*-|(x*, t/*) ∈ T(M*)

yo≠O, (x-, x, z)∈D, L*(x*, 2/*)>Ot is a Finslermetricfunction in M* if and only if L is

regular.

The functionエ　given in Theorem 1.1 for a regular Lagrangianエis called the

Finsler metric (function) associated with L.

A simple example of a regular Lagrangian is given in a simple dynamical system as
●

the difference between the kinetic energy T-a2/2 and the potential one U:

1.10　　　　　　　　　　　　　L(x, y)-T(x, y)-U(x),

where α(oc, y)-z(Q>ij(oc)yiyJ) is a Riemannian metric. In this case we have hu-Laij.

Since (毎) is regular, we have a Finsler metric of Kropina type (cf. C. Shibata 【181):

1. 11　　　　　　　　L*(x*, y*)-(atAx)ytyJ-2U(xW)t)/2w-

For a regular Lagrangianエ-α　we have a Finsler metric

1.12　　　　　　　　　　　　L*(x*. y*)-(atAx)ytvJ) y¥

If we consider this Finser metric in the section given by y--0> where /9(x, y) is a non-

vanishing 1-form, we have a Kropina metric α2/β 【10, 111. If 6£ is a gradient vector

∂`′(∫), the Kropina space (〟, α2/β) is considered as a subspace J0-∫(∫) of the Finsler

space (〟*,エ*).

In general, for a regular Lagrangian L(t, x, y) we put

(1.13)　　　　　　　　(hu)-(hu)-¥ V-huh,A-l+ /l㌘.

Then the inverse matrix (g*朗) of　芝β) is given by

1.14)　　　　　　　　　　　　　g*--(x*, y*)-刃L2,

(1.15)　　　　　　　　　　　g*サ(x* y*)-入z'W- VIL,
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(1.16)　　　　　　g*"(x*, y*)-入z'z'IV-irz'+ FzyL+h",

where A, L, l¥ hlJ in the right-hand sides mean the respective values at (x-, x, z). These

formulas will be useful for the study of Finsler metrics of Kropina type.
●

2. Projectivity of the Finslerization of a Lagrange space

Let L(t, x, y) be a regular Lagrangian, and L (x , 2/*) the Finsler metric associ-

ated with L. We shall call (Af, L) a Lagrange space, and the change from (M, L) to the

Finsler space (Af , L*) the Finslerization of the Lagrange space (M, L), and investigate

an invariant by this change.

For a differentiate curve C: xi-x¥l) in (Af, L) we can define a curve C in (AT

L*) called the lift of C by x--t, xl-x¥t). Then･the length s* of C defined by

(2.1)　　　　　s*-/L*(x*(t), x*(t))dt

coincides with the integral

(2.2 s=/ Lit, x(t¥よ(t))dt,

because ofよ-1. We shall call the integral 5 given by (2.2) the length of C. In general,

the lift C of C depends on the choice of a parameter of C, and the length of C does

also so.

Conversely, any differentiable curve C*: x--/(r), xi-xi{r) in (Aft, L*) may be

considered as the lift of some curve in (M, L), provided /'(r)=#0, because we can take

x--t as a parameter of C*. It should be noted that the length of C is independent on

the choice of a parameter of C*, sinceエis homogeneous of degree 1 in the sense of (1.

3). In the following, taking ∬　as a parmeter of a curve in 〟　we shall express it as

xo- t, xl-xw.
The relation between extremals of 5 and 5 is given by

(2.3)　　　　　　　d(∂ ｣�")/dt-∂,L*- -(a(∂Mldt-∂*L)x¥t¥

(2.4)　　　　　　　　d{∂*L*)/dLー∂ =L*-d(∂ iDldt- ∂kL

where ∂αL*, a fL*in the left-hand sides mean the functions of x*U),よ*(t), and ∂hL,

∂kL in the right-hand sides mean the functions of t, x{l),よ{I). Thus, since the Euler

equations for (2.2) are equivalent to the ones for (2.1), if we call an extremal of (2.2) a

geodesic of a Lagrange space (Af, L), we have the following well-known theorem (cf. [16]):

Theorem 2.1. A curve C of a Lagrange space (M, L) is a geodesic if and only if the lift

C* is a geodesic of the associated Finsler space (M*, L ).

Therein 2.1 shows that a Lagrange space may be treated geometrically as a Finsler

space on some aspects. Paying attention to the projectivity of the Finslerization shown in
●　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　●
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Theorem 2.1, we shall consider the following special Finsler space.
●

A Finsler space is called with rectilinear geodesies, if the underlying manifold is

covered by coordinate neighborhoods such that the geodesies can be represented by

{n-1) linear equations of the coordinates x¥ or equivalently by the equations of the

form x'-a'i+61 (al, 6'∈R). For a Lagrange space we also use the same terminology.

Then from Theorem 2.1 we have

Theorem 2.2. Let (M, L) be a Lagrange space with rectilinear geodesies. Then the

associated Finsler space (M , L*) is also with rectilinear geodesies.

As an application of the above theorem we can derive a welトknown example of a

Finsler space with rectilinear geodesies due to L. Berwald 【3】. In a two-dimensional

euclidean space R2, let k{x , xl) be a solution of the differential equation

2.5　　　　　　　　　　　　　　　　　dok-kdlk-0.

Then the function

(2.6)　　　　　　　　L*(x-, x¥ y¥ yl)-(k(x-, xV+2/W

is a Finsler metric in i?2, and the Finsler space (J?2, L ) is with rectilinear geodesies.

In fact,エis associated with a Lagrangian

(2.7)　　　　　　　　　　L(t, x¥ yl)-(k(t, xl)+yl)2

in which /in-2L#=0. Since L is regular, L is a Finsler metric in R2. Now, let C:

x -f(t) be a geodesic of a one-dimensional Lagrange space (R, L). By the condition (2.

5) the Euler equation d{∂Midト∂iL-O becomes d2xlldt2-0, from which we have

f{t)-at+b (a, &｣/?). Since {R, L) is with rectilinear geodesies, {R¥ L*) is also so.

In the similar way we can get examples of Finsler spaces with rectilinear geodesies.

For example, since a Riemannian space (〟, α) with rectilinear geodesies is nothing but a

space of constant curvature, and an extremal
of /α2

dt becomes an extremal of /adt,

we have by the Finslerization of a Lagrange space (〟, α2)

Example 2.1. Let (〟, α) be a Riemannian space of constant curvature. The Finsler

space (M , L ) endowed with the Finsler metric L* given by (1.12) is with rectilinear

geodesies.

3. F-regular Lagrangians

A Finsler metric L(x, y) is not regular as a Lagrangian. We hope to find a concept

generalizing both of a regular Lagrangian and a Finsler metric. Suggested by the defini-

tion of a Finsler metric, for a Lagrangian L¥t, x, y) we put

(3. 1)　　　　　　　　　　　　　gu-(∂tdjV)/2,

and call L to be F-regular if detigu)≠O, that is, L2 is regular. An F-regular Lagrangian
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L¥t, x, y) is a Finsler metric, in the case that L is independent on t and is positively

homogeneous of degree I with respect to y.

With an F-regular Lagrangian L(J, x, y) we associate a function L (x , 1/ ) de-

fined by (1.2), and define g苦β by (1.5). If L(x, y) is a Finsler metric, we have an in-

teresting result L*(x*, y*)-L(x, y¥ but since L* is independent on y-, the matrix (g苦β)

is not regular, that is,エis not a Finsler metric. In order to get the condition thatエ*

becomes a Finsler metric, we use the following lemma (cf. 【13, Proposition 30.ll).

Lemma 3.1. Let (su) be a regular symmetric matrix of degree n, and a≠0,

ciu bi∈R. Putting

(3.2)

where {slJ)-(su) ¥ we have

3.3

lij-CLSij-CLibu t-a-slJa,ibj,

det{ tu)- atl-1 tdet{su).

The matrix (tu) is regular if and only if t≠0, and then the inverse matrix (tlJ) is given

tu-(tsii-aibJ)lat,

where al-slJajy bl-siJbj.

Proof. (3.3) is derived as follows:

det{ tij)-det{asu- Qibj)

-i<　6, l)-det(6,号i)bj 1 /　　　bj

蝣an-1S"ai6,+det(asw)- an-1 ｣det(su),

where the third equality follows from the additions of the last row multiplied by αi tO

the i-th row U-l,�"�"�", n¥ the fourth by the expansion with respect to the last row, and

the last from siJ-siJ det(su), where SiJ is the co factor of su in (s`j). The last statement

follows directly by verifying tut　-S字from (3.2) and (3.4). Q. E. D.

Now, for an F-regular Lagrangian, if we put

(3.5)　　　　　　　　(gu)-(gu)-¥ ll-gulJ, p- l- ltli,

since hu-gij- Ulj, we have from Lemma 3.1

(3. 6)　　　　　　　　　　　　det(Aw)- odette`A

and so from (1.9)

(3.7)　　　　　　　　det(g*e)(x*, 2/*)-(L2pdet(gu))(x-, x, z).

Thus we have proved the following theorems.
●

Theorem 3.1. Let Lit, x, y) be a Lagrangian. If L is regular, then L is F-regular.

Conversely, when L is F-regular, L is regular if and only if p≠0.
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Theorem 3.2, Let L¥t, x, y) be an F-regular Lagrangian defined on a domain D of

Rx T-(M). Then the function L*(x*, y*) defined by (1.2) on the domain D*-¥{x*, y*)

∈ T(M*)¥ y-≠0, (x-, x, z)∈D, L*(x*, 2/*)>0[ is a Finsler metric in M* if and only if

p=hO.

For a Finsler metric we have p-0. Denoting by n the dimension of the underlying

manifold M, we can see that the set Gn of F-regular Lagrangians has two important dis-

joint subsets, that is, the one Hn is the set of regular Lagrangians and the other Fn is the

set of Finsler metrics. By the Finslerization (1.2), Hn goes into Fn+i, but the rest goes

outof G桝l

There exists an F-regular Lagrangian belonging out of HnUFn

Example 3.1. Let α(x, y)-"{aij(x)yiyJ)1/2 be a Riemannian metric. Then the follow-

ing function is an F-regular Lagrangian which is neither regular nor Finslerian:

3.8　　　　　　　　　　　　　　L(x, y)-a(x, y)+l.

Proof. The matrix (gy) is given by

(3.9)　　　　　　　　　　　　gu-(Lau- αlαj)lα,

where α戸∂lα Putting (a")-(au)-　α'-a"α　we have t-L-αiαl-α. Since t≠0, we

can see from Lemma 3.1 that (gy) is regular, and ¥glJ) is given by

(3. 10)　　　　　　　　　　　　g"- α(a"+ αiαj/α)/L.

Thus we have lt-α ll-a¥ from which we have p-0. Q. E. D.

The function L*(x , y ) associated with L in Example 3.1 is given by

3.ll)　　　　　　　　　　　L*(x*, y*)-a(x, y)+y¥

provided 2/->0. Since p-0, it is not a Finsler metric. However, if we consider this L

in the section given by y -β (-bi{x)yl), we have a Randers metric α+β 【15] (cf. R. S.

Ingarden 【61).

In general, for an F-regular Lagrangian L(t, x, y) we put

(3.12)　　　　　　　　zi-guzJ, qt- lt-zjL, ql- lL*'/L.

Then g芝β given by (1.6), (1.7), (1.8) are rewritten as

(3.13)　　　　　　　　　　　ォ｣(**, y*)-U{p+ qtq¥

(3.14)　　　　　　　　　　　　　g%(x*, y*)-Lqu

(3.15)　　　　　　　　　　　　　gfAx*, y*)-gu,

and especially, in the case that L is regular, corresponding to (1.14), (1.15), (1.16) the

inverse matrix (g*朗) of (g芝β) is given by

(3. 16)　　　　　　　　　　　　g*oO(x*, y*)-llpV,

(3.17)　　　　　　　　　　　g*tO(x*, y*)- - gilp上,
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(3. 18)　　　　　　　　　　　g*tJ(x*, y*)-gtJ十q'q'lp.

where p, L, qu Q¥ gu, glJ in the right-hand sides mean the respecitve values at (x-, x,

z).

It is noted that (3.7) is also derived from (3.13), (3.14), (3.15), and then (3.6) is de-

rived from (1.9), (3.7).

Lastly, we consider other methods which convert any Lagrangians to Finsler met-

rics. For example, we have

Theorem 3.3. Let L(J, x, y) be an F-regular Lagrangian defined an a dの犯ain D of

Rx T (M), and f(L) be a differentiable function of L, satisfying //(L)#=0. Then the func-

tion L血, y*)defined by

(3.19)　　　　　　　　　　　舟　y*)-f{Ux¥ x, z))y¥

on the domain D*-¥{x*t y*)∈T(M*) y-≠0, (x-, x, z)∈D, L舟　2/*)>0} is a Finsler
metric in M if and only if

(3.20)　　　　　　　　　　　p-l-(l-Ltff′)liV≠O.

For example, for f{L)-L2 we have a Finsler metric

(3.21)　　　　　　　　　　　舟¥ y*)-L¥x¥ x, z)y-.

If L(x, y) is a Finsler metric, then (3.21) becomes

(3.22)　　　　　　　　　　　　舟　y*)-L¥x, y)ly-

provided y >0, which is a generalization of (1.12).

We hope to consider changes of a Lagrangian L(x, y) to Finsler metrics in M (not

in M ) such that L is invariant if it is a Finsler metric. For example, let /(x, y) be a

non-vanishing differentiable function which is positively homogeneous of degree 1, and

we put

(3.23)　　　　　　　　　　′舟, y)-L(x, yjfix, y))f(x, y).

Does this L/become a Finsler metric for some /, e. g., a, J3?

The Finslerization of a Lagrange space can be applied to the Kostant-Souriau gauge

theory (cf. 【8.91) by obtaining interesting Finsler structures as we will show in a next

paper.
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