ON AN INEQUALITY OF RAY-CHAUDHURI AND WILSON
FOR t-DESIGNS WITH GROUP ACTION

00 ATSUMI Tsuyoshi

journal or OO00000O0O000. 0oooooooo
publication title

volume 21

page range 33-38

googooogad D000D00O«-00000000unn-Kreherd
ooggoood

URL http://hdl .handle._net/10232/00001763




Rep. Fac. Sci.,Kagoshima Univ., (Math., Phys., & Chem.),
No21, p33-38, 1988,

ON AN INEQUALITY OF RAY-CHAUDHURI AND WILSON
FOR t-DESIGNS WITH GROUP ACTION

Tsuyoshi ATsumr*

(Received September 10, 1988)

Abstract

We shall extend an inequality of Ray-Chaudhuri and Wilson for #-designs with
group action.

1. Introduction and Summary

Throughout this paper X denotes a finite set of v elements called points and
(X

s ) denotes the set of all subsets of X containing s points ; members of this set are

called s-subsets of X.
Let B be a subset of <),§ ) (whose elements called blocks). A ¢- (v, &, 1) design

(or simply a ¢-design) is a pair (X, 8B) satisfying the following requirement :
any ¢-subset of X is contained in exactly A blocks.
The cardinality of 8 will be called 5. Note that the number of blocks which

contain all of 7 points is
_ v — 1 k—1
be=a(y27),(527)
It is well known (cf, Wilson [ 6 ]) that for ¢ + j < ¢, the number of blocks of a ¢
-(v, k, 1) design (X, B) which contain 7 given points but are disjoint with any of

a set of j otherpoints is
o v—1—7J Z)“t)
f’—l< E— i )/(k—t'

Notice that b; = b,° and b = b, = b".
For i = 0,1,2,-, the higher incidence matrix N; of a t-design (X, 8) is
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the ( 1; ) X b whose rows are indexed by the 7-subsets of X and whose columns are

indexed by blocks, with the entry in row S and column g being 1 if SC g and 0
otherwise. An automorphism group G of #-design (X, % ) is a group satisfying
the following : (1) G actson X,(2) g € Bforallg € G, B € B, if x € B,

then xg € Bg. Here we note that if G acts on X, then G acts on (X

s) for any s.

Suppose that a finite group G acts on X and that P is a normal subgroup of G. Let
QF denote the set of points in Q fixed by P. Then, QF is G-invariant. Q/G denotes
the set of orbits of G on Q. Noda [ 4] and independently Kreher [ 3] proved
the following

Proposition 1. Suppose that (X, B) is a 2s-(v, k, L) design which admits an
automorphism group G. If v > k + s, then the following holds

18/ > | (%)/c1.

This result is an extension of the following proposition which is proved
by Ray-Chaudhuri and Wilson [5] .

Proposition 2. Suppose that (X, B) is a 2s-(v, k, 1) design with v~ > k + s.
Then

181 > | (%)].

But their proof suffices for the version stated below.

Proposition 3. Suppose that (X, B) is a 2s-(v, k, 1) design with v > k + s.
Let p be a prime number which does not divide bs' for 0 < i < s. Then we have
over p-element field Fp,

rank N; = <v>

N

The purpose of this paper is to generalize Proposition 1 as follows.

Theorem. Suppose that (X, B) is a 2s-(v, k, L) design which adwmits an
automorphism group G. Let p be a prime number which does not divide bs* for
0 < i< sand let P be a normal p-subgroup of G. If v > k + s, then the following
holds
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182/G | > | (5)7/G1.

The above inequality is also an extension of Yoshida’s inequality for 2-design

[7].

2. Lemmas and Propositions

To prove Theorem we need some lemmas and propositions. In this section K
denotes a p-element field F,.

Lemma 1. If a matrix A with entries in K is non-singular, then the inverse A=
is expressible as a polynomial of the matrix A.

Proof. We omit a proof.

Lemma 2. Let N be a m X n matrix of rank m with entries in K. Then
rank N = rank NN

Proof. We use the fact that rank NNt = rank N!N. So we must show that
rank N = rank N'N. It is clear that there exist two non-singular » X % matrices
U, V such that

a O
UNtNV=< R ) )
o

, Where for every j a; + 0.
Let v, v,, . . .,v, be the row vectors of UN®. Then by (1) we see that v, v,,
. .,v; are linearly independent. Since rank UN*® = m, we can find m — ¢ linearly
independent vectors vy, Viszs o o o v , Umin {01, . . ., vs). Let W be the
matrix whose row vectors are v;, . . ., v;, ¥4, . . ., U'm. Note that W is
non-singular. By (1) we see that

(54 0,).

From this it is clear that rank WNV = vank N = i. Hence i = m.

In order to state Higman’s result we shall follow the first section of Higman
[2]. Let R be a commutative ring with identity, and X, Y, Z, be finite non-empty
sets. We define Mz (X, Y) to be the totality of maps A : X X Y — R and we call
A an X by Y matrix over R.If A € Mr(X, Y) and B € M(Y, Z), then
AB € Mr(X, Z) is defined by
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AB(x, z) = S,cyA(x, y)B(y, z2) (x€X, z€EZ).

Then Mr(X, X) is a R-algebra.
If #, 2 are partition of X, Y, respectively, then we say that A € Mr (X, Y)
has property (# 2) if forall S € #, T € 2,

S.r A(s, t) is independent of s € S.

If A€ Mr(X, Y) has property (£.2),and S €2, T € 2, weset 6(A4) (S, T) =
Sier A(s, t), for some s € S. Higman [ 2] proved the following :

Proposition 4. If A € Mk (X, Y) has property (# 2) and B € Mr(Y, Z) has
property (2,%), then AB € Mgr(X, Z) has property (£ %) and
0(AB) = ¢(A)s(B).

Corollary. % = {A € Mr(X, X) | A has property (#,F)} 1is a subalgebra
of Mx(X, X), and the map & is an algebrva homomorphism of U onto a subalgebra
A of Mr(Z7).

3. Proof of Theorem

Our proof is similar to that of Theorem [1]. Now we shall prove Theorem.
Since P is a normal subgroup of G, (X ) g and B are G-invariant.

Also (‘)S( > ( ) and B — BF are G-invariant. Hence we see that

(f) = 5,6US,6U - - - US,S, 87 = 8,SUBSU - - - UBS,
( > ( ) = m+IGUSm+ZGU s USm+m'G (Sm+i$ (f) P),
B~ 8" = £in®UBU -+ - UBi® (81.,€87),

where S;° and B,° are the G-orbits of S; and B, respectively. Clearly S;°
(m+ 1< ¢ <m+m’) is an union of P-orbits and so is 8,¢ ({+ 1< 7 <[+1).
Now we note the following trivial lemma.

Lemma 3.p | | S?| for any SE <‘§>—<)§>Pandp] | B |
for any BEB — BL.

Hence we see that p | | S;¢| (m+ 1< i <m+m’).
Also,wegetp | | B¢ (U+1LZ 7 LI1+70).

Let N be the higher incidence matrix of the ¢#-design (X, 8).
The following Lemma 4 is important for our proof.

Lemma 4. The number of 1’s in every row of the submatrix Nj | S,EX 8,6

(1<i<m I+1< 7 <I+410’) is a multiple of p, where Ny | S,6x g, 1S the
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restriction of mapping Ns on S;¢X ;°.
Proof. See the proof of Lemma 10 [1].

Similarly the following holds :

Lemma 5 .The number of 1's in every vow of the submatrix

Nt | (1L 7LZ1, m+1LZ i <m+m’) is a multiple of p.

B;6XS,©

Let7 = {S% S° - * +, Smn®} and2 = {85 £S5+ + *, fus}. F and 2

X

S> and B, respectively. It is easy to prove the following -

are partitions of <

Lemma 6. The higher incidence matrix Ny of the t-design (X, B) has
property (%, 2). Also Nt has property (2,7).

By the above lemma we may apply ¢ in Proposition 4 to N; and N
From now on we consider integral matrices as ones with entries in the
p-element field F,. Let #, = {S.¢, + « +, Sp¢}, 5 = {SniC * * *, Smem®),
9, = {B%- -+ +,B8° and %, = {Bu.¢* * *, Bus}. From Lemma 4, ¢(Ny)
has the form
_(An 0 >
sy = (4" 4 (2)
, where A, is a.#, by 2, matrix, and A,, is a %, by -2, matrix. From Lemma 5,
0 (N has the from
) — B, 0 )
sy = (B 3 3
, where B, is a 2, by.#, matrix, and B,; is a .2, by ¥, matrix. By applying
Proposition 4, we obtain that N;N;¢ has property (#,%)

and ¢ (N,) 8 (Nt) = 6 (N.N,Y). (4)

Put M = N:Ni'. From Proposition 3 and Lemma 2, it follows that M is non-
singular. By Lemma 1 M~ = f(M), where f (x) is a polynomial. By Corollary
M~ has (#,%) property. By applying Proposition 4 to I=MM™!, we obtain that
0(I)=6(M)o(M~"). (The notation “I” denotes the identity matrix.) It is clear
that 6 (/) = the identity matrix of size m + m’. Thus ¢ (M) is non-singular. From
(2),(3)and(4) it follows that A,, By, is non-singular. Then rank A,, B, = m.
A,;, must have rank at least m. Since A,, has size m X [. we have
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m < [, which proves Theorem.
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