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Abstract

A Finsler metric L on a differentiable manifold M is called an («, 8)-metric, when
L is a positively homogeneous function of degree 1 of a Riemannian metric a and a
non-vanishing 1-form 8 on M. In the present paper, we generalize the notion of (a, 3)
-metric by replacing 8 by a singular Riemannian metric, and for such a generalized
(o, B)-metric L satisfying some assumptions: e.g, a generalized Randers metric
L=a+p, we give a condition that L be locally flat and a condition that L be

conformally flat, in the tensorial form expressed in terms of the given metrics « and 5.

Key words: Finsler metric, Generalized (a, B)-metric, Generalized Randers metric,

Locally flat, Conformally flat.

1. Introduction

On a differentiable manifold M we shall consider a Finsler metric L(a, 8) which is a
positively homogeneous function of degree 1 of a Riemannian metric « and a singular
Riemannian metric 8 on M. Denoting a point of M and a tangent vector at that point by
x=(x') and y= (y’) respectively, we put

(1.1 alz, y) = (a;(X)y' y)'"2 Bz, y)=(b;(x)y' y)"2

In the case of b;;=b; b;, where b; is a non-vanishing covariant vector field on M, it is reduced
to an (a, B)-metric. So we shall call such a Finsler metric a generalized (a, B)-metric.

An interesting example is given by
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(1.2) Lz, y) = (ai;(x)y’ y) "2+ {(b:i (x) y) 2+ (i () 5 (2) y) 272

where a(x, y) = (a;;(x)y' y’) /% is a Riemannian metric on M, b; is a non-vanishing covariant

vector field on M, and f'; is an almost Hermitian structure of the Riemannian manifold (M, «):

(1.3) fofri==0%, ai fafv=an.

This metric is called an (a, b, f)-structure, and gives an important example of a Rizza
manifold (cf. [4]1). A Rizza manifold (M, L, f) is by definition a Finsler manifold (M, L),

endowed with an almost complex structure f;(x) on M: f', f";=—4§';, satisfying the condi-
tion
14) L(x, ¢oy)=L(x, y),

where ¢,';= (cos 0)d';+ (sin 0) f';, or equivalently, the condition

(1.5) gi(x, ) fi.(x)y" ¥y’ =0,

where g;; is the fundamental tensor field.

On a differentiable manifold M endowed with a generalized (a, B)-metric L(a, B), we
have the Cartan connection CI'= (I'*/;, G%, C;x) and the Berwald connection BI'=
(G, G', 0) of the Finsler manifold (M, L) and further the Levi-Civita connection I'= ({;';})
of the Riemannian manifold (M, «). With respect to I" we denote the covariant differentia-
tion and the curvature tensor field by V. and R,';; respectively.

A Rizza manifold (M, L, f) is called a Kaehlerian Finsler manifold if f';;,=0 is satisfied,
where |, denotes the A-covariant differentiation with respect to the Cartan connection CI.
An (a, b, f)-structure L(a, B) on M satisfying

(16) Vk bz=0, Vk f’}=0

gives an example of a Kaehlerian Finsler manifold. In fact, the Finsler connection FI'= ({;';},
v’ {;’«}, Ci'y) is just the Cartan connection CI" of (M, L), because FI satisfies the axiomatic
system for CI" due to Matsumoto [11] (cf [3]).

Now, a Finsler manifold (M, L) or a Finsler metric L is called locally flat if for any point
p of M there exists a local coordinate neighbourhood (U, x) containing p such that L is a
locally Minkowski metric on U.

For a Randers space (M, a+pB), where

1.7 alz, y) = (a;()y' y)'2 Bz, y)=bi(x)y’
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we have the following theorem due to Kikuchi [9].

Theorem 1.1. A Randers space (M, a+pB) is locally flat if and only if
(18) Rhi;k=0, Vk b,:()

A Finsler manifold (M, L) or a Finsler metric L is called conformally flat if L is locally
conformal to a locally flat metric, that is, for any point p of M there exist a local coordinate

neighbourhood (U, x) containing p and a function o(x) on U such that ¢’ L is a locally
Minkowski metric on U.

In our previous paper [6], we discussed the condition that a Randers space (M, a+3) be
conformally flat. We put
1.9 M= /) {b" (W, b)) — (V, b)) b;/ (n—1)},

where (a”)=(a;)”, b'=a" b,, b>=a' b; b;, and n=dim M. Putting

(1.10) M= A"} + 0 Mi+0 M—au M,

; ; . . . . m ;
where M'=a'" M,, we have a conformally invariant linear connection I'= (M;,). We denote

its curvature tensor field by M,';;, which is also conformally invariant. Then from Theorem
1.1 we obtained

Theorem 1.2. A Randers space (M, a+B) is conformally flat if and only if
(111) Mhijk=0, Vij=Vij, Vi b,~=bij'—byM’a,-k.

The above results were generalized in the lectures [7], [8] to the case of generalized
(a, B)-metric. The present paper is a revised note of the lectures. Putting A=pL./aL;,

where L,=0L/da, L;=0L/dp, and p=a" b;;, v=>b" b;;, where (a’) = (a;;) 7%, b';=a" b,;, b=
@'’ b',, we assume the following, if necessary.

Assumption 1.1. A is an irrational function of y'.

Assumption 1.2. ny—py2#0.
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2. Locally flat generalized (a, 3)-metrics

We shall obtain a condition that a generalized (a, 8)-metric L(a, 8) on M be locally flat,
under Assumption 1.1.

The h-covariant differentiation with respect to the Berwald connection BI" of a Finsler
manifold (M, L) is denoted by ., and the Ah-curvature tensor field by K,'jz. Since BI satisfies
L.,=0and y*,,=0, we have L ,y=a ., Lo+, Ls= (Lo/2a) (aij . y' v’) + (Ls/2B) (bij .« y' y’)
=0, that is,

@n Aaijny'y) + (b y' y?) =0.

If (M, L) is a Berwald space, then the coefficients G;; of BI" are functions of x’ alone.
Since ai;j.x y'y’ and bij.. y' y’ become polynomials of y’, from Assumption 1.1 we have
aij;v ¥ y=0 and by, y' y’=0, that is, @;;;,=0 and b;;;,=0, the former of which yields G;,=
{;’. Then we have V, b;;=0, and also K,';y=R,';.. Further, if (M, L) is locally flat, then
from K,';;=0 we have R,';;=0.

The converse is also true. In fact, if V, b; =0 is satisfied, then the linear Finsler
connection FI'= ({;";}, y’{;’}, 0) is just the Berwald connection BI" of (M, L), because FI"
satisfies the axiomatic system for BI" due to Okada [12]. Hence (M, L) is a Berwald space,
and we have K,';s=R,' ;. Further, if R,';;=0 is satisfied, then we have K,';x=0, so (M, L) is
locally flat. Thus we have the same result as Theorem 1.1 for a Randers space.

Theorem. 2.1. A Finsler manifold with a generalized (o, B)-melric satisfying Assumption
1.1 s locally flat if and only if

(22) Rhijk=0, Vk bij=0.

We shall give an example of a generalized (a, 8)-metric satisfying Assumption 1.1. A
generalized (a, B)-metric L of type L=a+p is called a generalized Randers metric, and a
Finsler manifold (M, a+8) a generalized Randers space. For such a metric L we have
A=p/a, so L satisfies Assumption 1.1 because of the regularity of @ and the singularity of j.
Thus we have

Theorem 2.2. A generalized Randers space (M, a+B) is locally flat if and only if R,'jx=0,
Vk b,-,:O.

Remark 2.1. In the case of Kropina type L=a?/8 we have 1=—28%/a? so Assumption
1.1 is not satisfied. On the other hand, in the case of Matsumoto type L=a?/(a—pB) (cf. [1])
we have A=B/a—28%/a? so Assumption 1.1 is satisfied.
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From the proof of Theorem 2.1 we have

Theorem 2.3. A Finsler manifold with a gemeralized (a, B)-metric satisfying Assumption
11, e.g., a generalized Randers space, is a Berwald space if and only if Vi b;;=0.

Remark 2.2. In the above theorems we need not assume Assumption 1.1 for the converse
statement.

Remark 2.3. A generalized (a, 8)-metric is also called a Finsler metric of type (a, ),
which is introduced in [2] from some physical consideration. A generalized Randers space is

then called a 2nd-order Randers space. In general, a Finsler metric of type (a, Bn) is
considered by taking S as the m-th root B, of an m-form in M.

3. A conformally invariant linear connection

In order to obtain a condition that a generalized (a, 8)-metric be conformally flat, we
shall first find a conformally invariant symmetric linear connection, under Assumption 1.2.
We need not here assume Assumption 1.1. ‘

Let (M, L) be an n(=2)-dimensional Finsler manifold with a generalized (a, B8)-metric
L=L(a,B). By a conformal change

3.1 L=L(a,B) — L=e’L(a, P),
we have also a generalized (a, 8)-metric L=L (&, B), where @=e’ o, B=¢° 8. Putting a@(z, y)
= (a;(x)y' y)V2 Bz, y)= (b (x)y' y'}"2 we have a;=e> ai;, bi;=e* b;;.
Since the Christoffel symbols {ﬁ} constructed from @; are written as
(3.2) {ﬁ} ={' +0; ox+0,' 0;—aji o',
where o,=0do/0x* o'=a'" g,, we have
3.3) Vk 5{;‘:620{ Vi b,‘j*bk,‘ 0;— by O'j+dik (bjr o”) +ajk (bir o") },
from which we have

(34) b5V, bs;=b"°V, bs;— v, +u (b, 07),

(3.5)

S0

EijVy b’,-—uaj-l-n(bj, 0'7),
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If we eliminate the term b, 6" from (34), (3.5), we have
(3.6) nb" V, bsy— uV, "3 =nb"* V, bs;—uV, b’;— (nv—p?) 0;.

It is noted that ¢ and v are conformally invariant. If we assume Assumption 1.2, we can
put

(37 Li=(n/ (ny—p®)) (b7 V, by— (u/n)V, b7},

and from (3.6) we have

(3.8) o;=L;—L;.
Substituting ¢, from (3.8) into (3.2), and putting

(39 Liv=A/}+0; Li+0' Li—a L',

where L'=a" L,, we have L =L;,. L, define a conformally invariant symmetric linear
connection on M. Thus we have shown
" Theorem 3.1. In a Finsler manifold with a generalized (a, B)-metric satisfying Assumption

l .
1.2 there exists a conformally invariant symmetric linear connection I'=(L;},).

!
We shall call the linear connection I' the conformally invariant linear connection of a

generalized (a, B)-metricc. We denote its curvature tensor field by L,'j,, which is also
conformally invariant.

Remark 3.1. In the case of b;;=b; b;, where b; is a non-vanishing covariant vector field on
M, a generalized (a, B8)-metric is reduced to a usual (@, §)-metric. Then we have u=05?

v=>* where b*=a" b; b;. Thus we have nyv—pu?= (n—1) b*#0, so Assumption 1.2 is satisfied.
Further, we have

(3.10) Li=M;+ (n/ (n—1)b*) (b" b°V, by) b;,

where M; is given by (1.9). M; is also a geometrical object satisfying o;=M,—M,, from
m :
which in [6] we have obtained the conformally invariant linear connection I'= (M;';) of an

!
(a, B)-metric, but from (3.8) we obtained another conformally invariant linear connection I” of
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an (o, B)-metric. It is noted that the additional term in (3.10) is a conformally invariant
covariant vector field of an (a, 8)-metric. A geometrical object L; which obeys (3.8) is not
unique (cf. Ichijyo [5], Kikuchi [10]).

4. Conformally flat generalized Randers metrics

!
In the same way as shown in [6], using the conformally invariant linear connection /" and
Theorem 2.2 we can obtain a condition that a generalized Randers metric be conformally flat,
under Assumption 1.2.

Let (M, L) be a generalized Randers space, where L=a+f. By a conformal change
(31) we have a generalized Randers metric L=a&+j8, where @a=e¢’a, B=¢’B. If (M, L) is
locally flat, from Theorem 2.2 we have R,';x=0 and V, 5;;=0, from the latter of which we have
L;=0. Then from (3.9) we have L= {;4}, so we have L,;,=R,';;=0, that is, L,/;+=0. On
the other hand, from (3.8) we have 0;=L;, so L; is locally gradient: V, L;=V; L;, and from
(3.3) we have V, b;j=by; Li+bii Li—ai bjy L'—aj biy L”.  Since the conditions locally obtained
above are expressed in the tensorial form in terms of the given Finsler metric, we have
globally

(41) Lhijk:(), Vk LjZVj Lk, Vk bjjzbkj Li+bki Lj_aik bjr Lr_aik bz‘r Lr-

Conversely, if (4.1) is satisfied, then we locally have a function o(x) such that g;=L;.

Then L=e¢° L satisfies R,;;=0, Vi b;;=0, so it follows from Theorem 2.2 that L is locally flat.
Thus we have proved

Theorem 4.1. A generalized Randers space (M, L) with a metric L=a~+ 3 satisfyving
Assumption 1.2 is conformally flat if and only if the condition (4.1) is satisfied.

1
We can express (4.1) in terms of the linear connection I' itself as follows:

! ! !
(4.2) Ly'=0, Vi L;=V; Ly, Vi bi;=—2Ly by,

! !
where V, denotes the covariant differentiation with respect to I.

An advantage of (4.2) is suggested by the proverb “Do your own business for yourself”,

! !
but I' is not metrical with respect to a: V; @;;j=—2L,a;;. If we want to express (4.2) in
terms of a metrical linear connection of the Riemannian manifold (M, «), by the well-known

metrization method we may change L' to
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4.3) Viv=Ljx+a” (Vi an) /2,

which is written as

(4.4) Vi'e=Lj'x—0;' Ly,
that is,
(4.5) Vjikz {jik} +5ki Lj_ajk L.

. v . .
Vi'i define a semi-symmetric metrical linear connection I'= (V). It is shown that the
condition (4.2) is equivalent to

4.6) Vi'=0, ﬁk Lj:&j Ly, ‘v7k bi;=0,

v
where V. and V,'; denote the covariant differentiation and the curvature tensor field with

v
respect to I.
v v
The linear connection I" is not necessarily conformally invariant, but it satisfies V a;;=0,

v v v
Vi b;;=0. Thus it is at a glance shown that V, u=0, V, v=0, that is, ¢ and v are constant on
each connected component of M.

From the proof of Theorem 4.1 we have

Theorem 4.2. A generalized Randers space (M, L) with a metric L=a~+ S satisfying
Assumption 12 is conformal to a Berwald space if and only if

(47) Vk szv_j Lk, Vk bijz bkj L,““bk,' Lj_az'k bjr Lr_ajk bz‘r Lr’

which is equivalent to each of the following:
! ! 1
4.8) Vi Li=V; Ly, Vi bij=—2Ly by,

4.9) Ve L=V, L. Vi byy=0.

Now, the discussion in this section is generally valid for a Finsler manifold with a
generalized (a, B)-metric L, provided L satisfies Assumption 1.1 and Assumption 1.2. On the
other hand, by Remark 2.2 we need not assume Assumption 1.1 for the converse statements
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of the above theorems. Thus we have generally

Theorem 4.3. Let (M, L) be a Finsler manifold with a generalized (a, B)-metric L
satisfving Assumption 1.2. If one of the equivalent conditions (4.7), (4.8), (4.9) is satisfied, then
(M, L) is conformal to a Berwald space. Then y and v are constant on each connected
component of M. If one of the equivalent conditions (4.1), (4.2), (4.6) is satisfied, then
(M, L) is conformally flat.

Theorem 4.4. Let (M, L) be a Finsler manifold with a generalized (a, B)-metric L
satisfying Assumption 1.1 and Assumption 1.2. If (M, L) is conformal to a Berwald space, then
the conditions (4.7), (4.8), (4.9) are satisfied. If (M, L) is conformally flat, then the conditions
4.1), (4.2), (4.6) are satisfied.
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