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Abstract

A Finsler metric L on a differentiable manifold M is called an (α, β)-metric, when

L is a positively homogeneous function of degree 1 of a Riemannian metric a and a

non-vanishing 1-form β on M. In the present paper, we generalize the notion of (α, β)

-metric by replacing β by a singular Riemannian metric, and for such a generalized

(α, β)-metric L satisfying some assumptions: e.g., a generalized Randers metric

L-α+β, we give a condition that L be locally flat and a condition that L be

conformally flat, in the tensorial form expressed in terms of the given metrics α and β.

Key words: Finsler metric, Generalized (α, β)-metric, Generalized Randers metric,

Locally flat, Conformally flat.

1. Introduction

On a differentiable manifold M we shall consider a Finsler metric L(α, β) which is a
●

positively homogeneous function of degree 1 of a Riemannian metric a and a singular

Riemannian metric B on M. Denoting a point of M and a tangent vector at that point by

x- ¥xl) and y- (yl) respectively, we put

1.1)　　　　　　α(x, y)- (aijix)^1yj)1/2　β{x,y)- (bii{x)yiy>)1/2

In the case of ba-bi bjf where bt is a non-vanishing covariant vector field on M, it is reduced

to an (α, β)-metric. So we shall call such a Finsler metric a generalized (α, β)-metric.

An interesting example is given by
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(1.2)　　　　L(x, y) - (aii(x)yi */01/2+ {(bi(x)yi)2+ (bi(x)fij(x)yi)2}1/2

where α(x, y) - (aij(x)yl yJ) is a Riemannian metric on M, bt is a non-vanishing covariant

vector field on M, and A is an almost Hermitian structure of the Riemannian manifold (M, α):

(1.3)　　　　　　　　　　　frfri--d'h auf^ V^a^.

This metric is called an　¥ay b, f)-structure, and gives an important example of a Rizza

manifold (cf. [4]). A Rizza manifold (M, L, f) is by definition a Finsler manifold (M, L),

endowed with an almost complex structure flj(x) on M: f¥frj- --8lj, satisfying the condi-

tion

1.4 L(x,如y)-L(x,y),

where <pdlj- (cos 6)∂j+ (sin 0)ffj9 0r equivalently, the condition

(1.5)　　　　　　　　　　　　　gij(x, y)fir(x)yr y'-O,

where gtj is the fundamental tensor field.

On a differentiable manifold M endowed with a generalized (a, /?)-metric L(a, /3), we

have the Cartan connection CF- (F*/*サ　G¥y Cj¥) and the Berwald connection BF-

(G/k, Glk, 0) of the Finsler manifold (M, L) and further the Levi-Civita connection F- ({/J)

of the Riemannian manifold (M, a). With respect to F we denote the covariant differentia-

tion and the curvature tensor field by Vk and Rh jk respectively.

A Rizza manifold (M, L, f) is called a Kaehlerian Finsler manifold if ftj¥k-O is satisfied,

where ¥k denotes the /z-covariant differentiation with respect to the Cartan connection CF.

An (α,み, /)-structureエ(α, β) on 〟 satisfying

(1.6)　　　　　　　　　　　　　　Vk bt-O, F*/'i-O

gives an example of a Kaehlerian Finsler manifold. In fact, the Finsler connection FF- ({/*},

yj{/k}, C/ic) is just the Cartan connection CF of (M, L), because FF satisfies the axiomatic

system for CT due to Matsumoto [11] (cf. [3]).

Now, a Finsler manifold (M, L) or a Finsler metric L is called locally flat if for any point

p of M there exists a local coordinate neighbourhood (U, x) containing p such that L is a

locally Minkowski metric on U.

For a Randers space (〟; α+β), where

(1.7) α(x,y)-(aij(x)ytyJ)1/2　β(x,y)-bi{x)y¥
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we have the following theorem due to Kikuchi [9J.

Theorem 1.1. A Randers space (Af, α+β) is locally flat if and only if

(1.8) ｣*'ォ=<), Vk bi=O.

A Finsler manifold (M, L) or a Finsler metric L is called conformallyflat if L is locally

conformal to a locally flat metric, that is, for any point p of M there exist a local coordinate

neighbourhood (U, x) containing p and a function a(x) on U such that eaL is a locally

Minkowski metric on U.

In our previous paper [6], we discussed the condition that a Randers space (〟; α+β) be

conformally flat. We put

(1.9) Mi- (l/b2) {br(Vrbi)- (Vrbr)bJ(n-1)},

where (ati)-(aij)-¥ bl-airbr, b2-aijbibjf and w-dimM. Putting

(1.10)　　　　　　　　　MA- {,'*} +♂ 'Mk+♂.< Mi-aikM¥

価

where Mt-airMr, we have a conformally invariant linear connection F- (M/*). We denote

its curvature tensor field by Mh jk, which is also conformally invariant. Then from Theorem

1.1 we obtained

Theorem 1.2. A Randers space (M, α+β) is conformally flat if and only if

(1.ll) Mh'ik=0, VkM,=ViMk, Vk bj-bkMj-brMraik.

The above results were generalized in the lectures [7], [8] to the case of generalized

(α, β)-metric. The present paper is a revised note of the lectures. Putting A-βLα/αLβ,

where Lα-∂L/∂α, Lβ-∂L/dB, and u-a" bih v-bij bu, where (a") - (au)-¥ b'^a^brt, b"-

air b¥y we assume the following, if necessary.
●

Assumption 1.1.よis an irrational function of yl.

Assumption 1.2. nv-fx ≠0.
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2, Locally flat generalized (α, β)-metrics

We shall obtain a condition that a generalized (α, β)-metric L(α, β) on M be locally flat,

under Assumption 1.1.

The /z-covanant differentiation with respect to the Berwald connection BF of a Finsler

manifold (M, L) is denoted by ;k and the /z-curvature tensor field by Kh ik-　Since BFsatisfies

L,k-0 and y*;k-0, we have L-k-α;kLα+β;kLβ-(Lα/2α)(aij;kyiyi)+(Lβ/2β)(bir,kyiyi)

-0,thatis,

(2.1) ^(air,ky'yI)^{bil;ky'y')-O.

If (M, L) is a Berwald space, then the coefficients G/k of BF are functions of xl alone.

Since an;kyl y3 and bn;kyl yJ become polynomials of y¥ from Assumption 1.1 we have

&ij;kUlyJ-0 and bij-ky%yJ-0, that is, an;k-0 and bn-k-0, the former of which yields GA-

{/'*}. Then we have Vkbij-O, and also Khj^Rhjic. Further, if (M, L) is locally flat, then

from KhJk-0 we have RhJk-0.

The converse is also true. In fact, if Vk bu-0 is satisfied, then the linear Finsler

connection FF- ({/*}, #'{/*}, 0) is just the Berwald connection BF of (M, L), because FF

satisfies the axiomatic system for BF due to Okada [12]. Hence (M, L) is a Berwald space,

&nd we have KhJk-RhtJic. Further, if RhJk-O is satisfied, then we have KhJk-O, so (Af, L) is

locally flat. Thus we have the same result as Theorem 1.1 for a Randers space.

Theorem. 2.1. A Finsler manifold with a generalized (α, β)-metric satisfying Assumption

1.1 is locally flat if and only if

(2.2) Rk'it=0, Vt bti=O.

We shall give an example of a generalized (α, β)一metric satisfying Assumption 1.1. A

generalized (α, β)-metric L of type L-α+β is called a generalized Randers metric, and a

Finsler manifold (M α+β) a generalized Randers space. For such a metric L we have

A-β/α, so L satisfies Assumption 1.1 because of the regularity of α and the singularity of β.

Thus we have

Theorem 2.2. A generalized Randers space (M, α+β) is locally flat if and only ifRh jk-O,

vkblt=O.

Remark 2.1. In the case of Kropina type L-a2/B we have A--2B2/a2, so Assumption

1.1 is not satisfied. On the other hand, in the case of Matsumoto type L-α2/(α-β) (cf. [1])

we have A-β/α-2β2/α　so Assumption 1.1 is satisfied.
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From the proof of Theorem 2.1 we have

Theorem 2.3. A Finsler manifold with a generalized (α, β)一metric satisfying Assumption

1.1, e.g., a generalized Randers space, is a Berwald space if and only if Vk bij-O.

Remark 2.2. In the above theorems we need not assume Assumption 1.1 for the converse

statement.

Remark 2.3. A generalized (α, β)-metric is also called a Finsler metric of type (α, β2),

which is introduced in [2] from some physical consideration. A generalized Randers space is

then called a 2nd-order Randers space. In general, a Finsler metric of type (α, βt) is

considered by taking B as the m-th root Bm of an m-form in M.

3. A conformally invariant linear connection

In order to obtain a condition that a generalized (α, β)-metric be conformally flat, we

shall first find a conformally invariant symmetric linear connection, under Assumption 1.2.

We need not here assume Assumption 1.1.

Let (Af, L) be an n(≧2)-dimensional Finsler manifold with a generalized (α, β)-metric

L-L(a,j8). By a conformal change

(3.1)　　　　　　　　　　　L-L(α,β) - L-eaUα,β),

we have also a generalized (α, β)-metric L-L(a, 良), where反-eqα, β-eqβ. Putting虎(x, y)

-(aij{x)yiyj)1/2 β(x, y)-(bij(x)yiyj}1/2, we have aij-e2aan, bi^e^bij.
5d

Since the Christoffel symbols {/J constructed from da are written as

3.2)

=d

{/*}- {/*}+∂f ak+∂:'oj-ajk o¥

where ak-∂q/∂x" a'-α　or, we have

(3.3)　　　　　Vic bu-e2a{vk bi,-bkj ot-bki Oj+aik(bjr ar) +aik(bir ar)},

from which we have

3.4

(3.5)

: Vr bs}-brs Vr bsi-VOj+fX(b,r or),

Vr brj-Vr Vj-lJIOj+nibjr Or).
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If we eliminate the term bjr(Jr from (3.4), (3.5), we have

(3.6)nbrsVrbsi-piVrV}-nbr*Vrbsi-pLVrbr-(nレ-,,2^0,.

Itisnotedthataandvareconformallyinvariant.IfweassumeAssumption1.2,wecan

put

(3.7)

and from (3.6) we have

(3.8)

L,- (n/(nリーfi2)) {brs Vr bsi- (u/n)Vr bri},

◆1

Gj-Lj-Lj.

Substituting o> from (3.8) into (3.2), and putting

(3.9)　　　　　　　　　　L/k- {/*} +5/ U+dj Li-a,k V,

′`て...二~

where D-airLr, we have L/*-LA. Lh define a conformally invariant symmetric linear

connection on M. Thus we have shown

Theorem 3.1. In a Finsler manifold with a generalized (α, β)-metric satisfying Assumption

∫

1.2 there exists a conformally invariant symmetric linear connection /"- (LA).

∫

We shall call the linear connection F the conformally invariant linear connection of a

generalized (α, β)-metric. We denote its curvature tensor field by ZV/*, which is also

conformally invariant.

Remark 3.1. In the case of ba-bi bj, where bi is a non-vanishing covariant vector field on

〟, a generalized (α, β)-metric is reduced to a usual (α, β)-metric. Then we have 〟-∂2,

v-b¥ where b2-av bt bj. Thus we have nv-u2- (n-1)64^0, so Assumption 1.2 is satisfied.

Further, we have

(3.10) Li-Mi+ (n/(n-1)b2) (brbs Vr bs)bh

where Mj is given by (1.9). Mj is also a geometrical object satisfying Gj-Mj-Mh from

〝‡

which in [6] we have obtained the conformally invariant linear connection F- (MA) of an
∫

(α, β)-metric, but from (3.8) we obtained another conformally invariant linear connection F of
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an (a, /3)-metric. It is noted that the additional term in (3.10) is a conformally invariant

covariant vector field of an (α, β)-metric. A geometrical object L, which obeys (3.8) is not

unique (c£ Ichijyo [5], Kikuchi [10]).

4, Conformally flat generalized Randers metrics

∫

In the same way as shown in [6], using the conformally invariant linear connection T and

Theorem 2.2 we can obtain a condition that a generalized Randers metric be conformally flat,

under Assumption 1.2.

Let (Af, L) be a generalized Randers space, where L-α+β. By a conformal change

(3.1) we have a generalized Randers metric L一反+β, where虎-eqα, 良-eqβ. If (M L) is
′■ー′■ヽ■ll′ー

locally flat, from Theorem 2.2 we have Rhljk-0 and Vk 6^-0, from the latter of which we have

Lj-O. Then from (3.9) we have L/k- {/k}, so we have Z,*'y*-/?*'>*-0, that is, Lhljk-O. On

the other hand, from (3.8) we have (Jj-Lj, so L, is locally gradient: VicLj-VjLk, and from

(3.3) we have Vk bij-bkj Li+bki Lj-aik bjrLr-ajk birU. Since the conditions locally obtained

above are expressed in the tensorial form in terms of the given Finsler metric, we have
●

globally

(4.1)　　　　Lh'jk-O, Vk L,-Vj Lk, Vic bij-bicj Li+bki Lj-aik bjrLr-aik birLr.

Conversely, if (4.1) is satisfied, then we locally have a function a(x) such that oj-Lj.
′■-･

Then L-eaL satisfies Rhljk-0, Vk bu-O, so it follows from Theorem 2.2 that L is locally flat

Thus we have proved

Theorem 4.1. A generalized Randers space (M, L) with a metric L-α+β satisfying

Assumption 1.2 is conformally flat if and only if the condition (4.1) is satisfied.

∫

We can express (4.1) in terms of the linear connection F itself as follows:

4.2

∫      ∫      ∫

Lh'ik-0, VkLj-VjLk, Vk bi,--2Lk b�"th

∫                                                         ∫

where Vk denotes the covariant differentiation with respect to F.

An advantage of (4.2) is suggested by the proverb "Do your own business for yourself,

∫                                     ∫

but F is not metrical with respect to α: VkCLa--2Lkdij. If we want to express (4.2) in

terms of a metrical linear connection of the Riemannian manifold (M, a), by the well-known

metnzation method we may change L/k to
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(4.3)

which is written as

(4.4)

that is,

4.5

Yoshihiro ICHIJYO and Masao HASHIGUCHI

∫

V/k-L/k+air(Vk arj)/2,

V/k-L/k-d/ Lk

Vh-{/*>+∂: Lj　<2j!cV,

V

Vj¥ define a semi-symmetric metrical linear connection F- (V/k). It is shown that the

condition (4.2) is equivalent to

(4.6)

V        V        U

Vh'ik=0, VkLi=V,Lk, Vkbn=O,

〟

where Vk and Vhljk denote the covariant differentiation and the curvature tensor field with

V

respect to F.

V                                                                                    V

The linear connection F is not necessarily conformally invariant, but it satisfies Vk aij=0,

V                                                        V         V

Vkbij-O. Thus it is at a glance shown that Vku-O, Vk v-0, that is, fi and v are constant on

each connected component of M.

From the proof of Theorem 4.1 we have

Theorem 4.2. A generalized Randers space (M, L) with a metric L-α+β satisfying

Assumption 1.2 is conformal to a Berwald space if and only if

(4.7)　　　　　　Vk Lj-Vi Lk, Vk bij-bkj Li+bici Lj-dnc bjrLr-ajk birU,

which is equivalent to each of the following:

∫∫∫
(4.8)VkLj-VjLkyVkbij=z-2Lkb
<*kVih

V        V        V

(4.9)　　　　　　　　　　　　　Vk L,-V,Lk, Vk bt<-0.

Now, the discussion in this section is generally valid for a Finsler manifold with a

generalized (α, β)-metric L, provided L satisfies Assumption 1.1 and Assumption 1.2. 0n the

other hand, by Remark 2.2 we need not assume Assumption 1.1 for the converse statements
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of the above theorems. Thus we have generally

Theorem 4.3. Let (M, L) be a Finsler manifold with a generalized (a, B)-metric L

satisfying Assumption 1.2. If one of the equivalent conditions (4.7), (4.8), (4.9) is satisfied, then

(M, L) is conformal to a Berwald space. Then (i and v are constant on each connected

component of M. If one of the equivalent conditions (4.1), (4.2), (4.6) is satisfied, then

(M, L) is conformally flat

Theorem 4.4. Let (M, L) be a Finsler manifold with a generalized (α, β)-metric L

satisfying Assumption 1.1 and Assumption 1.2. If (M, L) is conformal to a Berwald space, then

the conditions (4.7), (4.8), (4.9) are satisfied. If (M, L) is conformallyflat, then the conditions

(4.1), (4.2), (4.6) are satisfied.
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