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Abstract

Vector representation of asymmetry for the general Euclidean model, which in-

eludes many kind of models (eg., INDSCAL, IDIOSCAL, ASYMSCAL, GEMSCAL,

etc), is proposed. We consider that (dis)similarity data among the objects are given

as several square or rectangular matrices. We shall propose the method for repre-

sentation of asymmetry in the dissimilarity data as vectors in the objects depicted
●

space.

Key words: multidimensional scaling (MDS), asymmetry, (dis)similarity, IND-
SCAL, ASYMSCAL, GEMSCAL

1　Introduction

The general Euclidea･n model (GEM) for three-way data was introduced by F. W.

Young (see, Young, 1984) and is appropriate to many type of data. This model is about

multidimensional scaling (MDS) of three-way dissimilarity data, which is consisting of

several square or rectangle matrices. The GEM is defined by the following:
●

(1.1)　　　　鴫- [{yi -Xj)VtWk(yt -Xj)']1/2

where鴫is the GEM distance approximates the dissimilarity鴫between objects a･Ild
is given as ith row and jth column in the kill dissimilarity matrix, x* 】s r elements

●　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　●

■   ●                                                                  ●

vector of coordinates which show the point of the object j in an Euclidean space, yj is

also r elements vector of coordinates which specifies the point in an Eiユclidean space, yt

is identical to xi if the dissimilarity matrices are square and are restricted to x7; if those

matrices are rectangle. ¥¥ is a square, symmetric, order r and positive semi-definite matrix
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of weights associated with row object i. 114 is a square, symmetric, order r an(1 positive

semi-deGnite matrix of weights associated with dissimilarity matrix k.

Usually the asymmetry in dissimilarity data matrices is often considered as error
●

and ignored. On the other hand, the same asymmetry has been strongly attracting many

intensive workers. They feel that the lack of information contained in the skew-symmetric

component often makes the results far from satisfaction as well as that asymmetry itself

can be the prime target of analysis. A number of attempts, therefore, have been made to
●                                                                      ●

represent asymmetry in MDS. See, e.g., Coombs (1964), Constantine and Gower (1978),

Gower (1977) and Weeks (1982).

The purpose of this paper is to discuss a simple and natural model for three-way

(dis)siinilarity data with representing the asymmetry in the data. For each object under

analysis, a vector value is given as a score of asymmetry as well as its location coordinates.
●

Any prior information on the immanent structure of asymmetry is not required.
●　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　●　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　●

2 Method

For square dissimilarity matrices (鴫j between n objects, the GEM distance鴫rep-
resents asymmetry by means of V^'s, which may be noticed by noting鴫- 4 for
Vi -�"�"�"- Vn - E. Interpretation of V^'s in the results of analysis would be, how-

ever, quite di抗cult, even if they have only diagonal elements.

We use the restricted GEM distance

(2.1)　　　　　鴫- [(vi -xj)Wk(yi -xj)t]1/2

for approximating the symmetric part鴇of鴫, say鴇- (鴫+oy?;)/2, to give the vectors
xi of coordinates. A vector is then determined, for each object, from the location Xi and

all the remaining anti-symmetric parts鴫-鴫一端(.ブ≠ i) by taking average of the
stress vectors caused by the forced (neglecting asymmetry) allocation of the objects.

We propose the vector model for two cases, (i) Wk is only one, that is, we can use /

instead of Wk by some transformation and (ii) II′k is semi-positive definite and reduced

rank r^ < r. If data matrices are symmetric, these model corresponds to the methods of

Classical MDS (e.g., Torgerson, 1965) and GEMSCAL (Young, 1984, 1987), respectively.

Asymmetric MDS methods for the case that Wk is diagonal and full rank r has been

proposed by Yadohisa and Niki (1995) as an extension of INDSCAL (Carroll and Chang,

1972).

Hereafter, we use the following notations:
●

2.2

2.3)

ln-(1... 1), In-diagln (identitymatrix),

A(,;) -
O,　if∬-0;

X　可　otherwise;
(direction vector).
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3　Vector model for two-way asymmetric data

Here we describe simplest case, that is, a square asyiJIIr】etric dissimilarity mat･nx are

given (see Niki,1990; Yadohisa and Niki, 1994). In this case, the weigtt matrix lVk is only

one and an identity matrix / is used insted of the W^

The data matrix O [n x n] can be decomposed into the symmetric component S -

{0+0′)/2 and skew-symmetric one T - {0 - 0′)/2. From the matrix S. a set

X lnx R] - {.x,. | i - 1,-.,n] ofthelocation coordinates ofn objects can be determined

by applying some suitable symmetric MDS method (e.g., Torgason, 1965). We determine

the "asymmetric vectors" A - {a7; | i - 1,...,n) at X analyzing the matrix T.

In our model, each element Uj of T is compared with the pro.lection of a7; on the
●

directed line given by Pi -pf
●

(3.1)　　　　　　　　　　a>% - Uj X(pi -Pi) + ti]'3->

where A(x) denotes the direction vector as defined above and e?J is a random vector.

The least square estimate o of a for which

(3.2) e2 - ∑vijI2 - ∑e'ij^ii
j≠i J'≠i

atta･ins its minirnu汀i is given by

●

(3.3)　　　a,i吉Y,lijAipi -Pj)jfr

4　Vector model for three-way asymmetric data

/

lVe propose, in this section, the asymmetric vectoHnodel to give an extension of
●

GEMSCAL. The weight matrices Wk are semトpositive deBnite. GEMSCAL is one of the
●

most general model for three-way data and represents the stimuli (object) and individuals

in the same space called "joint space", and the directions of vectors, called "principal
●         ●

direction", indicate the directions in the space that are most salient to individuals. This

model makes the assumption that an individual has several orthogonal directions in joint

space. This means one individual has a particular set of orthogonal directions to be

most important, another individual has some other directions to be most important.

These directions are principal directions. The length of principal direction show the

relative salience of the directions to the individuals, that is, the individual differences are

represented by orientation and length of orthogonal principal directions in the joint space.
●        ●                                                                    ●

The asymmetry in dissimilarity data represented as vectors in "joint space" and "personal
●

space", which corresponds to "group stimuli space" and "individual (perceptual) space"

in INDSCAL model, respectively (see, Young, 1984, 1987).
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4.1　Model

The dissimilarity data matrix Ok is decomposed into the symmetric part Sk and

the skew-symmetric part Tk as mentioned above. By applying　　九4SCAL to matrix

Sfc, we can determine the coordinates matrix X [n x R] in "group stimuli space" and

the N symmetric matrices Wk [R x R] (k - 1, 2,..., N) of weights. Added to these,

the coordinates matrices for personal spaces and "principal direction are given as A*. -
●                                                            ●

(a*�".�", a*)′ - XPJQた)1/2 and Pfc(Qfc)1^2, respectively, where Pk is an r x rたcolumn

orthonormal matrix containing the eigenvectors of Wk, Qk is Tk x r^ diagonal matrix

contain the eigenvalues of lVk, this remains that Wk is decomposed as follows;
●

(4.1)　　　　　　　　　　　　wfc - PkQk(PkY-

We assume that there exists ajoint n x R matrix A - (a¥　　,,) of which R

dimensional row ;ectors represent asymmetry or "stress" hidden behind the configuration

X of n objects. In addition, as same way of extension of INDSCAL, we assume that the

stress vectors in the personal individua･1 spaces are given by the ma加ices
●

(4.2)　　　　Ak-(< -･ a£)′-APk(Qk)1'2 (A;-1,2,…,N).

The coordinates matrix in the k-th personal space is XPk(Qk)1�"Then, the stress

caused by the forced location of the i-th and j-th objects can be expressed with

(4.3)　　　　射(在朝-射te -*,-)pfc(QOI/2-

We consider the following model with vector errors鴇:
●

(4.4)　　　　吾- aiP^Qk)1'2 -鴫x(xi一句)Pk(Qk)1/2 +鴇

and fit the matrix A so as to minimize

4.5

(4.6)

〟

¢i -　∑∑ :?,�"(PkQk(Pk)′)-'(｣蝣)'
fc=l j&

〟

-　∑∑fjll
fc=] ≠i･

Then we have an estimate ∂　for t,he stress vector a,7; of the i-th object in the group

stimuli space:

(4.7
′ヽ

a; =

A7

∑∑鴫A(xi-xj).
N(n-1)缶,i
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r∴:

ⅠⅠもクⅠ

β＼
Fig. 1 : Objects, asymmetric vectors and

principal direction of subject 1 in
●         ●

"joint space"

β＼
Fig. 3: Objects, asymmetric vectors and

principal direction of subject 2 in
●　　　　　　　　　●

●

joint space

19

Fig. 2: Objects and asymmetric vectors in

"personal space" of subject 1.

Fig. 4: Objects and asymmetric vectors in

"personal space" of subject 2.
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4.2 Interpretation

We can obtain, as a result of analysis, the location coordinates of objects and its
●

asymmetric vectors in the joint space. And also the principal directions of subjects (usu-

ally persons) in joint space are obtained. From this, we can calculate the coordinates of

objects and asymmetric vectors in each personal space.

Fig. 1, 3 represent the joint space and Fig. 2, 4 represent the personal space of some
●

of the subjects. The dots and thin arrows in the Fig. 1, 2, 3, 4 represent the objects

and asymmetric vectors, respectively. The thick white vectors in Fig. 1 and Fig. 3,

respectively, shows the principal direction of one subject and some other subject.
●           ●

We can interpret from the arrows, for example, in the Fig. 1 the object A want to

come closer to the object β on the other hand, the object β intends to go far away hom

the object A. This means the dissimilarity from the object B to the object A is relatively

larger than that from the object A to the object β (See, Yadohisa and Niki, 1994, 1995

for details).
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