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Considerable attention has been devoted in the literature to the problem:

for what connected Lie groups G with Lie algebras　¢, is the exponential mapp-

ing of Q into G surjective? As is -well known, for compact or nilpotent connect-
●

ed Lie groups the answer is affermative. In this paper we shall investigate this

problem and prove that if exp is regular at every point in g (i. e. g is regular in our

terminology), then exp is surjective (Theorem 3). Although it has been shown

in [2] and [8] that for a solvable and regular Lie algebra exp is surjective, our

approach to the problem is different from those and we feel most interest in

this point.

It is shown inァ1 that a regular Lie algebra is solvable (Theorem 1), and in

昏2 there is given a necessary and su凪cient condition for regularity of a Lie

algebra (Theorem　2), which plays an important role in our study. Already

several researches along the same lines have been done 【21 【6】 【71 【81 【9】, es-

pecially Lemma 2 which is essentially equivalent to Theorem 2 is due to T. N∂no

[6]. Finally inァァ3-4, by means of adjoint representation our problem is reduced

to the study of linear Lie algebras, and the analyticity of Lie groups leads to

our conclusion (Theorem 3). Furthermore, some related properties of regular

Lie algebras (groups) are treated (e. g. Proposition 5),

For notation and terminology, we follow 【3] in general except that of regular

element. Throughout this paper, only the real and丘nite dimensional case is treat-

ed, and 令 and G denote a real finite dimensional Lie algebra and a corresponding

connected Lie group respectively, unless otherwise stated.

ァ1. Properties of regular Lie algebras

Definition. An element X6ァis said to be regular if the exponential mapping

of O into G (denoted by exp in the sequel) is regular at the point X, a is said

to be regular if all XEq are regular, and G is said to be regular if g is regular.

The main result of this section is

Theorem 1. A real regular (/. e. exp is a regular mapping) Lie algebra is solvable.

We recall丘rst a well known fact (【6】 Theorem 1, p. 116, and 【3】, Theorem

1.7,p.95).

Proposition 1. An element X｣s is regular if and only if adX (ad denotes the adjoint

representation of g) has no such eigenvalues as 2 nim (m is a non-zero integer).

From this we see that ¢ is regular if and only if for every XE¢ acLXf has no

●
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●                         ●

non-zero pure imaginary eigenvalues.

Lemma 1. A semisimple Lie algebra g is not regular.
●

Proof. Let Q-t+p be a Cartan decomposition of 令 determined by a compact

real form 8　0f the complexi丘cation QC of台, i. e.

f-8∩¢　　　　　P-On'Bo-

Letでdenote the conjugation of gc with respect to g｡, and B the Killing form of

●

gc. Then the bilinear form on qxq defined by

B可(*. n…-B(X,符Y),　　　X, YEi

is symmetric and positive definite (【31, p. 158). If XEi then

B(【X, 71,甲Z)--B(Y, [X,甲Z])--B(Y, ri[X, Z]),

thus we have

B可UdX(Y), Z)-Bで(Y, -acUf(Z)).

This shows that adX is represented by a skew symmetric matrix with respect

to the metric B叩on g, therefore the eigenvalues of adX are all pure imaginary

●                                                                                                                                         ●

numbers. By Proposition 1, g can not be regular (notice that !≠ {0}).

Remark. This lemma is a simple application of the well known fact for

semisimple Lie algebras: with the above notation, if Xep then acUT is represent･

ed by a symmetric matrix, and if Xei a skew symmetric matrix with respect to

the metric JB, on g.

Proof of Theorem 1. Let g be a given regular Lie algebra. If¢is notsolva-

ble then, by Levi's theorem, ¢ is decomposed into a direct sum q-3+x, where r
●

is the radical of 令 andァ(≠　is a semisimple subalgebra of g. If we choose

a basis eu�"�"�", en of g such that eu�"�"�", ^is a basis of g and er+

of r, then for each XEァadZ is represented in terms of the above basis by a ma-

trix of the form

adZ-(三　笠),
where A and B are square matrices of order r and (n-r) respectively. By Lemma

1 there exists someX｣ァfor which the eigenvalues of A are all pure imaginary
●                                                                                                                        ●

numbers, and not all zero. This contradicts the regularity of 8.

Proposition 2. An element XEq is regular if and only if adX is a regular element

ofadQ.

Proof. Choose a basis el9-, en of q such that er+1,�"�"�", en is a basis of the

center of ¢　Then, the constants ctj determined by means of the relation

n

[*, eA - ∑　　　　y-i,　　　　　　　　　　　　　　　　　　　(l)
i=l

are zeros for /-r+l,�"�"�",ォ. On the other hand, actei,�"�"�", aderis obviously a basis

of ada and for this basis we have

r

[adZ, adey]- ∑ 'hi adeh j-h- , r.
/*-!

(2)

Comparing the relations (1) and (2), we see that adX and ad (adZ) have the
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●

same eigenvalues except zeros. This implies the proposition by Proposition 1.

Corollary. Regularities of g and ada are equivalent.

Proposition 3. Every homomorphic image (equivalently every factor algebra) of a

regular Lie algebra is also regular.

The proof is similar to that of Proposition 2 and is omitted.

ァ2. A criterion for regularity

Let C(t A) denote the centralizer of a matrix A in a linear Lie algebra I,

thatis

C(t, A)≡(XE‖ AX-XA).

Then we have

Theorem 2. Let ¢ be a real Lie algebra. A necessary and sufficient condition for an

element XEs to be regular (i. e. exp is regular at X) is that

C(adg, adZ)-C(ado, exp (adZ)).

This theorem follows immediately from Proposition 2 and the following fact

due to T. Nono (【6], Theorem 2, p. 116).

Lemma 2. Let I bea linear Lie algebra. Then an element XEl is regular if and only if

C(J, X) -C(l, expX).

Let a denote the center of 8, and/be any linear mapping of ainto¢. Weput

Ⅳ(8,∫)…ty〔¢け(y)〔∂).

Corollary. An element XEa is regular if and only if

N(令, a&Jf) -iV(g, exp(adZ)-/)　　(1-identity mapping).

Proof. If Y〔AT(g, exp(acUO-J) then ad(exp adX(Y)-Y)-0. Since exp(adZ)

is an automorphism of g we have

adfexp adZ(F))-exp(adZ) adF exp(-adX) ,

therefore adreC(adg, exp(acL3f)). The converse relation is verified in the same

way, thus we have

ad-raadfl, exp(adX)))-iV (g, exp(adY)-/).

Similarly

ad~'(CYadg, adZ))-AT(g, ad*).

Due to these relations, the corollary is reduced to Theorem 2.
●

含3. Properties of regular Lie groups

Theorem 3 ([2], Theorem 2, p. 119, and [8], Theorem 1, p. 7). Let G be a real

connected regular (j. e. exp is a regular mapping) Lie group with Lie algebra g. Then the

exponential mapping of g into G is surjective.

This is the main theorem in our paper. This section is devoted to some

preliminary consideration for the proof and related properties, and in the next

section the proof is completed.
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Proposition 4. For a regular Lie algebra g, the exponential mapping of adq into the

adjoint group Int (q) is injective.

Proof. Suppose that exp(a&XT)-exp(adY) (Z, Y6&), then by Theorem 2 adZ

and adF commute. From this we see that exp(ad(X-Yr))-｣>. On the other hand,

the general solutions of the matrix equation exp A-E are given by A-2ni P~
●

MP where M is any diagonal matrix with integral elements and P is any regular

matrix. Consequently, due to the regularity of g, ad (X-7) must be zero

(Proposition 1).

The following is the key lemma for our proof of Theorem 3.
●

Lemma 3. For a connected regular Lie group G with Lie algebra 8, the followingpro-

perties are equivalent.

( i ) The exponential mapping of a into G is surjective.

(ii) The exponential mapping of ada into Int (g) is surjective.

Proof. Consider the commutative diagram,

ad

0--- ad8

exp l Ad l exp

G---- Int(令)　.

Since Ad is surjective, (i) implies (ii).

Conversely, if (li) is satisfied then by Proposition 4 exp gives a diffeomorphi-

sm of adg onto Int (g) (see also Corollary in喜1). Thus Int (令) is simply con･

nected. The kernel of Adis the center Z of G so follows that Z is conne-

cted ([1], p. 59). Furthermore from this fact, we see that Z is the underlying

group of the connected Lie subgroup of G corresponding to the center　3　of　¢

p. 125). This means that expg-Z. Finally let gi denote a vector subspace

of 令 such that 令-3+oi (direct sum), thenas is easily seen from Proposition4, the

set {expAT|AT〔8i} is a representative set of G/Z. These last two facts show that

any element α〔G is written in the form

a-expXexp F-=exp(X十Y)　　　*eft, re3.

Remark. Repeated application of Lemma 3 gives a proof of the well known

theorem: if G is a connected nilpotent Lie group then exp is surjective (【3], p.

229).

Lemma 4. For a regular Lie algebra ¢　the exponential mapping ofadァinto lnt (g) is

surjective.

The proof is given inァ4.

The above proof of Theorem　3 gives another proof of the following corol-
●

lanes.

Corollary 1 (【5】, Corollary, p. 186). If g is a regular Lie algebra, then the adjoint

group lnt (g) is simply connected.

Corollary 2 ([8], Theorem 2, p. 9, see also [5], Corollary, p. 186). The center
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of a connected regular Lie group is connected.

Corollary 3 ([2], Theorem 3, p.120, and [8], Theoreml, p. 7). LetG beasimp-

ly connected regular Lie group with Lie algebra留. Then the exponential mapping gives a

diffeomorphism of (j onto G.

Proof. Any simply connected solvable Lie group has no nontrivial compact

subgroup ([4], p. 138), in particular no periodical one-parameter subgroup. Hence

the mapping exp: -Z, in the proof of Lemma 3, is bijective. We can easily

prove from this that exp is a bijective mapping of ¢ onto G.

●                                                                      ●

Finally we shall give an application of Corollary 3.
●

Proposition 5. Let G be a simply connected regular Lie group with Lie algebra g.

For any a-expX, b-expY (X, Y〔B), ab-ba if and only if [X, Y]-0.

Proof. [X, Y]-0 implies obviously ab-ba.

Conversely if α∂-∂α then

exp(adX)exp(ad r) -Ad(a&) -exp(ad r)exp(adX).

Hence, by the next lemma, [X, Y]…Zis an element of the center of g, so for

sufficiently small t

exp tX exp tY expQ-tX) exp{-tY) - exp(t2Z)

Both sides of this equation are entire functions of t, therfore it holds for all

t. On putting f-l, we find that Z is equal to zero.

Lemma 5. Let s be a regular Lie algebra. For any A-exp(adX), B-exp(adY) {X,

Ye拓), AB-BA if and only if adX adY-adY adX.

Proof. If A and B commute, then expC^adY^'^-expCadF). Since A is an

automorphism of ¢　we have A adT A-1-adAY, therefore by Proposition 4 A adF

A'^adY. This means the commutativity of acLY and adT by Theorem 2. The

converse is obvious.

含4. Proof of Lemma 4

By means of Lie's theorem ([3], p. 134), Theorem 1, and Proposition 1, we

can easily prove the following fact.

Lemma 6. For any regular Lie algbra ¢　we can always choose a basis of ¢　with the

following property :

For every X6& adX is represented in the terms of this basis by a matrix

adX=

蝣41i　-^12　　Aim

^22　　^-2 m
ヽヽ　　　　　●

ヽ　　　　　　　　●

ヽヽ   ●

0　　､､､､ ;

･�"mm

(3)

where Aa(l<i<m) are (1,1) or (2,2) matrices. (The pattern of partition of adX into

blocks is the same for all XEq.) Moreover, each (2,2) matrix AH is a scalar multiple of

a fixed matrix of the form



Lie Groups with Regular Exponential Mapping

サi t*i>

Fli≠0, v,≠O real.

Now, let el9�"�"�", en be an ordered basis of ¢ which satisfies the assertion of

the above lemma. The vector subspace I) spanned by ex if the order of An is 1,

and elf e2 if it is 2, is obviously an ideal in 8. Let甲denote the natural hom0-

morphism of ¢ onto 8i…B/I), then <p(e2),　甲(O (or, <p(O,　¢(en) in the second

case) is a basis of &.

Lemma 7. For any Xe¢　corresponding to the representation (3), ad(¢X) is represent-

ed in terms of the above basis by the matrix

ad((pX) -

The proof is obvious.
:~==

Next, select a basis Au-　Ar of ad¢i, then by the above lemma there exists

a corresponding subset {Au�"�"�", Ar) of adg. From this we can construct a basis

An�"�"�", Ari B, Bu�"�"�", jBs of adg with the following properties.

(i) B is a particularmatrixof the form (3) for which An=^Q, Au-0 if i>2,

(ii) Bl%�"�"�", Bs are particular matrices of the form (3) for which An-0, Aij-Q

ifi>2.

(It may happen that B or Bu�"�"�", Bs or all of them does not exist, butthesecases

are treated by similar ways so omitted.)

Now we can prove Lemma 4 by induction on dim合. For dim招-1 the lemma

is trivial. & is regular due to Proposition　3　and dim &<dim ¢(-/!), so by

induction hypothesis the equation

exp(∑ α至高) exp(∑ α芸瓦蝣>- exp(∑x'AO (4)

has a unique analytic solution (see also Corollary inァ1 and Proposition 4).

Next, consider the equation

exp(∑ α壬Ai+βlB+∑β{Bj)exp(∑ α A+β2B+∑β&)

- exp(≡ x'Ai+yB+≡ y'B,).　　　　　　　　　　　　　　　　　　　(5)

From (4) x¥�"�"�", xr are uniquely determined. Using this fact we can easily cal-

culate that y is also uniquely determined. Finally for /,�"�"�", y¥ we have a linear

equation of the form

yLcl+ytca+ - +yct-c

where Cx,�"�"�", Cs, and C are some (1, n-1) matrices (or, (2, n-2) matrices in the

second case). In this equation (6), Cu�"�"�", Cs are determined only depending on

x¥�"�"�", xr, and y so they must be linearly independent at every point. If they are

linearly dependent at some point xj,---, x%, y｡ then for any yl, -　ysQ the matrix

exp(∑ xUi +y<>B+∑ ylBD

has many other expressions, which contradicts Proposition 4. 0n the other hand
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Ci,�"�"�", Cs, C are always linearly dependent. In fact, the equation (5) has a unique

analytic solution on a neighborhood U of the origin in ad鍔×adg, hence they

●     ●

are linearly dependent on U. This means that they are linearly dependent at

every point by analyticity. (Each (^+1) minor is zero on U therefore must be zero

identically by the theorem of identity.) Consequently, the equation (6) has a
●

unique analytic solution.

The consideration above shows that exp (ad¢) is a subgroup of Int (¢), which

is an open subgroup due to the regularity of adg. An open subgroup is always

closed and due to the connectedness of Int (¢) we丘nally obtain the desired result

exp (ada)-Int (¢).

I wish to express my hearty gratitude to Prof. T. Nono for his kindly lead･

ing and many valuable suggestions.

References

【11 C. Chevalley, Theory of Lie Groups I, Princeton Univ. Press, Princeton, 1946.

[21 J. Dixmier, L'application exponentielle dans les groupes de Lie resolubles, Bull. Soc.

Math. France, 85 (1957), 113-121.

[3] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York,

1962.

r41 G. Hochschild, The Structure of Lie Groups, Holden-Day, San Francisco, 1965.

[5] D. H. Lee, The adjoint group of Lie groups, Pacific J. Math., 32 (1970), 181-186.

【61 T. Nono, On the singularity of general linear groups, J. Sci. Hiroshima Univ. (A),

20 (1957), 115-123.

[7] T. Nono, Note on the paper HOn the sin糾Iarity of general linear groups", J. Sci.

Hiroshima Univ. (A), 21 (1958), 163-166.

[8】 M. Saito, Sur certains groupes de Lie resolubles, Sci. Papers Coll. Gen. Ed. Univ.

Tokyo, 7 (1957),ト11.

[91 M. Saito, Sur certains groupes de Lie r色solubles H, Sci. Papers Coll. Gen. Ed. Univ.

Tokyo, 7 (1957), 157-168.

Faculty of Education,

Kagoshima University


