Lie Groups with Regular Exponential Mapping

Nobuo HITOTSUYANAGI
(Received October 31, 1970)

Considerable attention has been devoted in the literature to the problem:
for what connected Lie groups G with Lie algebras g, is the exponential mapp-
ing of g into G surjective? As is well known, for compact or nilpotent connect-
ed Lie groups the answer is affermative. In this paper we shall investigate this
problem and prove that if exp is regular at every point in g (i. e. g is regular in our
terminology), then exp is surjective (Theorem 3). Although it has been shown
in [2] and [8] that for a solvable and regular Lie algebra exp is surjective, our
approach to the problem is different from those and we feel most interest in
this point.

It is shown in §1 that a regular Lie algebra is solvable (Theorem 1), and in
§ 2 there is given a necessary and sufficient condition for regularity of a Lie
algebra (Theorem 2), which plays an important role in our study. Already
several researches along the same lines have been done [2] [6] [7] [8] [9], es-
pecially Lemma 2 which is essentially equivalent to Theorem 2 is due to T. Néno
[6]. Finally in §§ 3-4, by means of adjoint representation our problem is reduced
to the study of linear Lie algebras, and the analyticity of Lie groups leads to
our conclusion (Theorem 3). Furthermore, some related properties of regular
Lie algebras (groups) are treated (e. g. Proposition 5).

For notation and terminology, we follow [3] in general except that of regular
element. Throughout this paper, only the real and finite dimensional case is treat-
ed, and g and G denote a real finite dimensional Lie algebra and a corresponding
connected Lie group respectively, unless otherwise stated.

§1. Properties of regular Lie algebras

Definition. An element X€g is said to be regular if the exponential mapping
of g into G (denoted by exp in the sequel) is regular at the point X, g is said
to be regular if all X€g are regular, and G is said to be regular if g is regular.

The main result of this section is

THEOREM 1. A real regular (i, e. exp is a regular mapping) Lie algebra is solvable,

We recall first a well known fact ([6], Theorem 1, p. 116, and [3], Theorem
1.7, p. 95).

PROPOSITION 1. An element Xe€g is regular if and only if adX (ad denotes the adjoint
representation of g) has no such eigenvalues as 2 xim (m is a non-zero integer),

From this we see that g is regular if and only if for every X €g adX has no



2 Lie Groups with Regular Exponential Mapping

non-zero pure imaginary eigenvalues.

LeMMA 1. A semisimple Lie algebra g is not regular.

Proor. Let g=f+p be a Cartan decomposition of g determined by a compact
real form g, of the complexification ¢° of g, i. e.

f=g(g, - p=gig,.
Let 7 denote the conjugation of ¢° with respect to g, and B the Killing form of
a®. ‘Then the bilinear form on gXxg defined by

B,(X, Y)=—B(X, 1Y), X, Yeg
is symmetric and positive definite ([3], p. 158). If X€f then
B([X, Y], 2Z)=—B(Y, [X, 1Z])=—-B(Y, 7[X, Z]),
thus we have »
B,(adX(Y), Z)=B,(Y, —adX(Z)).

This shows that adX is represented by a skew symmetric matrix with respect
to the metric B, on g, therefore the eigenvalues of adX are all pure imaginary
numbers. By Proposition 1, g can not be regular (notice that f=%4 {0}).

Remark. This lemma is a simple application of the well known fact for
semisimple Lie algebras: with the above notation, if X€p then adX is represent-
ed by a symmetric matrix, and if X¢¥f a skew symmetric matrix with respect to
the metric B, on gq.

Proor oF THEOREM 1. Let g be a given regular Lie algebra. If gis not solva-
ble then, by Levi's theorem, g is decomposed into a direct sum g=8+rt, where t
is the radical of g and 8 (54{0}) is a semisimple subalgebra of g. If we choose
a basis e, -+, e, of g such that e,:+, e, is a basis of 8 and e,,,, €, is a basis
of t, then for each X€8 adX is represented in terms of the above basis by a ma-
trix of the form

A 0
o )
where 4 and B are square matrices of order r and (n-r) respectively. By Lemma
1 there exists some X€8 for which the eigenvalues of A4 are all pure imaginary
numbers, and not all zero. ‘This contradicts the regularity of g.

PRrROPOSITION 2. An element X € is regular if and only if adX is a regular element
of adg.

Proor. Choose a basis e, -, e, of g such that e,,, -, ¢, is a basis of the
center of g. Then, the constants ¢;; determined by means of the relation

adX=(

[X, e1]=§cijei j=11'"9 h (1)
are zeros for j=r+1,--, n. On the other hand, ade, .-, ade, is obviously a basis

of adg and for this basis we have
[adXs ade]] = hélcm adeh Jj=1,-, 1 (2)

Comparing the relations (1) and (2), we see that adX and ad (adX) have the
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same eigenvalues except zeros. This implies the proposition by Proposition 1.
COROLLARY. Regularities of q and adg are equivalent,
ProrosiTION 3. Every homomorphic image (equivalently every factor algebra) of a
regular Lie algebra is also regular,

The proof is similar to that of Proposition 2 and is omitted.

§2. A criterion for regularity

Let C(l, 4) denote the centralizer of a matrix 4 in a linear Lie algebra |,

that is
C, A)=(X€l| AX=XA} .

Then we have

THEOREM 2. Let g be a real Lie algebra. A necessary and sufficient condition for an
element X€qg to be regular (i. e. exp is regular at X) is that

C(adg, adX)=C(adg, exp (adX)).

This theorem follows immediately from Proposition 2 and the following fact
due to T. Nono ([6], Theorem 2, p. 116).

LEMMA 2. Let| bea linear Lie algebra. Then an element X¢€| is regular if and only if

C{, X)=C(l, expX).
Let 3 denote the center of g, and f be any linear mapping of ginto g We put
N(g H=(Yeg| f(Y)E3).
COROLLARY. An element X€g is regular if and only if
N(g,adX)=N(g, exp(adX)-I) (I=identity mapping) .

Proor. If YeN(g, exp(adX)-I) then ad(exp adX(Y)-Y)=0. Since exp(adX)

is an automorphism of g we have
ad(exp adX(Y))=exp(adX) adY exp(—adX),
therefore adY€C(adg, exp(adX)). The converse relation is verified in the same
way, thus we have
ad'(C(adg, exp(adX)))=N (g, exp(adX)-I).
Similarly
ad™'(C(adg, adX))=N(g, adX).

Due to these relations, the corollary is reduced to Theorem 2.

§ 3. Properties of regular Lie groups

TuEOREM 3 ([2], Theorem 2, p. 119, and [8], Theorem 1, p. 7). Let G be a real
connected regular (i. e. exp is a regular mapping) Lie group with Lie algebra g. Then the
exponential mapping of g into G is surjective,

This is the main theorem in our paper. This section is devoted to some
preliminary consideration for the proof and related properties, and in the next
section the proof is completed.
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PROPOSITION 4. For a regular Lie algebra g, the exponential mapping of adg into the
adjoint group Int (g) is injective.

Proor. Suppose that exp(adX)=exp(adY) (X, Y€g), then by Theorem 2 adX
and adY commute. From this we see that exp(ad(X-Y))=E. On the other hand,
the general solutions of the matrix equation exp A=E are given by A=2ni P!
MP where M is any diagonal matrix with integral elements and P is any regular
matrix. Consequently, due to the regularity of g, ad (X-Y) must be zero
(Proposition 1).

The following is the key lemma for our proof of Theorem 3.

LeMMA 3. For a connected regular Lie group G with Lie algebra g, the following pro-
perties are equivalent,

(1) The exponential mapping of g into G is surjective,

(il) The exponential mapping of adg into Int (g) is surjective,

Proor. Consider the commutative diagram,

ad
g————> adg
w | aq | o
G———— Int(g)

Since Ad is surjective, (i) implies (ii).

Conversely, if (ii) is satisfied then by Proposition 4 exp gives a diffeomorphi-
sm of adg onto Int (g) (see also Corollary in §1). Thus Int (g) is simply con-
nected. The kernel of Ad is the center Z of G so follows that Z is conne-
cted ([1], p. 59). Furthermore from this fact, we see that Z is the underlying
group of the connected Lie subgroup of G corresponding to the center 3 of g
([1], p. 125). This means that exp3=Z. Finally let g, denote a vector subspace
of g such that g=3+g, (direct sum), then as is easily seen from Proposition 4, the
set {expX|XE€g} is a representative set of G/Z, These last two facts show that
any element a€G is written in the form

a=expXexp Y=exp(X+7) Xe€gq, Y€z,

Remark. Repeated application of Lemma 3 gives a proof of the well known
theorem: if G is a connected nilpotent Lie group then exp is surjective ([3], p.
229).

LEMMA 4. For a regular Lie algebra g, the exponential mapping of adg into Int (g) is
surjective,

The proof is given in §4.

The above proof of Theorem 3 gives another proof of the following corol-
laries.

CoroLLARY 1 ([5], Corollary, p.186). If g is a regular Lie algebra, then the adjoint
group Int (g) is simply connected,

COROLLARY 2 ([8], Theorem 2, p. 9, see also [5], Corollary, p. 186). The center
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of a connected regular Lie group is connected,

CoroLLARY 3 ([2], Theorem 3, p. 120, and [8], Theorem 1, p. 7). Let G be a simp-
ly connected regular Lie group with Lie algebra . Then the exponential mapping gives a
diffeomorphism of g onto G.

PrROOF. Any simply connected solvable Lie group has no nontrivial compact
subgroup ([4], p.138), in particular no periodical one-parameter subgroup. Hence
the mapping exp: 3— Z, in the proof of Lemma 3, is bijective. We can easily
prove from this that exp is a bijective mapping of g onto G.

Finally we shall give an application of Corollary 3.

PROPOSITION 5. Let G be a simply connected regular Lie group with Lie algebra g.
For any a=expX, b=expY (X, Y€g), ab=ba if and only if [X, Y]=0.

ProoF. [X, Y]=0 implies obviously ab=ba.

Conversely if ab=ba then

exp(ad X)exp(ad Y)=Ad(ab)=exp(ad Y)exp(adX) .
Hence, by the next lemma, [X, Y]=Z is an element of the center of g, so for
sufficiently small ¢
exptX exptY exp(-tX)exp(-tY)=exp(¥?’Z) .
Both sides of this equation are entire functions of ¢ therfore it holds for all
t. On putting t=1, we find that Z is equal to zero.

LemMMA 5. Let g be a regular Lie algebra. For any A=exp(adX), B=exp(adY) (X,
Y€q), AB=BA if and only if adX adY=adY adX,

Proor, If 4 and B commute, then exp(dadYA')=exp(adY). Since 4 is an
automorphism of g, we have 4 adY A-'=add4Y, therefore by Proposition 4 4 adY
A'=adY. This means the commutativity of adX and adY by Theorem 2. The
converse is obvious.

§4. Proof of Lemma 4

By means of Lie’s theorem ([3], p. 134), Theorem 1, and Proposition 1, we
can easily prove the following fact.

LeMMA 6. For any regular Lie algbra g, we can always choose a basis of g with the
following property :

For every X¢€g, adX is represented in the terms of this basis by a matrix

Ay Ay A
adX — Azz:\:' ot A2m (3)
Amm

where A;,,(1<i<m) are (1,1) or (2,2) matrices. (The pattern of partition of adX into
blocks is the same for all X€q.) Moreover, each (2,2) matrix A, is a scalar multiple of
a fixed matrix of the form
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( Hi Vt) v, %0, v,=~0 real.

Vi M

Now, let e, -, e, be an ordered basis of g which satisfies the assertion of
the above lemma. The vector subspace ) spanned by e, if the order of A4, is 1,
and e, e, if it is 2, is obviously an ideal in g. Let ¢ denote the natural homo-
morphism of g onto g,=g/l), then ¢(e), -, ¢(e,) (or, ¢(e), -, ¢(e,) in the second
case) is a basis of g.

LEMMA 7. For any X€g, corresponding to the representation (3), ad(¢X) is represent-
ed in terms of the above basis by the matrix

Azz: ..... Ao
ad(pX)= \‘\\
0 4,
The proof is obvious.
Next, select a basis 4, -, 4, of adg, then by the above lemma there exists -
a corresponding subset {4, :-, 4,} of adg. From this we can construct a basis

Ay, 4,, B, B, -, B, of adg with the following properties.

(i) B is a particular matrix of the form (8) for which 4,,5%40, 4,,=0 if i> 2.

(ii) B, -, B, are particular matrices of the form (3) for which 4,=0, 4,,=0
if i>2.
(It may happen that B or B, -+, B, or all of them does not exist, but these cases
are treated by similar ways so omitted.)

Now we can prove Lemma 4 by induction on dim g. For dim g=1 the lemma
is trivial. g, is regular due to Proposition 3 and dim ¢ <dim g(=n), so by
induction hypothesis the equation

exp( afd) exp(X ajd;) = exp (x4, @
has a unique analytic solution (see also Corollary in §1 and Proposition 4).
Next, consider the equation

exp(X) aid;+ BB+ BiB)exp (X ajd;+ BB+ 3 81B))

=exp(2] x'4,+yB+21y'B,). ©)
From (4) x%,:.--, x* are uniquely determined. Using this fact we can easily cal-
culate that y is also uniquely determined. Finally for %, :--, »%, we have a linear

equation of the form

VC+y*Cy+ - +y°C;=C (6)
where Cy, -+, C,, and C are some (1, n-1) matrices (or, (2, n-2) matrices in the
second case). In this equation (6), C, -+, C, are determined only depending on
x!, ..., x7, and y so they must be linearly independent at every point. If they are
linearly dependent at some point Xj,---, X§, ¥, then for any y;, -+, ¥; the matrix
exp (2] X4, +y.B+2>1 ¥iB;)

has many other expressions, which contradicts Proposition 4. On the other hand
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C,, -, C,, C are always linearly dependent. In fact, the equation (5) has a unique
analytic solution on a neighborhood U of the origin in adgxadg, hence they
are linearly dependent on U. This means that they are linearly dependent at
every point by analyticity. (Each (s+1) minor is zero on U therefore must be zero
identically by the theorem of identity.) Consequently, the equation (6) has a
unique analytic solution.

The consideration above shows that exp (adg) is a subgroup of Int (g), which
is an open subgroup due to the regularity of adg. An open subgroup is always
closed and due to the connectedness of Int (q) we finally obtain the desired result
exp (adg)=1Int (g).

I wish to express my hearty gratitude to Prof. T. Néno for his kindly lead-
ing and many valuable suggestions.
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