
The Four-Color Problem*

by Tadamichi Wakamatsu

1. ARingK{x}

Let K-GF(pm) be a field made of pm elements. K{x} is a set ofpolinomials of r

variables xl9 *2v> *r whose coe侃cients are elements of K. The element of K{x¥ is

denoted briefly by f(x). The operations in K{x} are like as in usual polinomial ring,

but xpm is identified with x, and sof(x) is a polinomial of lower degree than pn

K{x} is a ring with zero-devisers. For example x(xpm- 1)-0. The substitution of

elements of K for variables is permitted, because xprn-x as if x is an element of K.

The substitution of an element of K{x} for a avanable is also permitted by the next (1.1).
●ゝ

＼･ヽ

(1.1) (/(*))pm-/(x)　for f(x)eK{x}.

Proof. (/(x)r-(∑ォ(/l -ir)UMi)pm- ∑aih -JrYロ(xrrji
J          I         J           I

- ∑a(ji---jr)nx{'-f(x).
J　　　　　　　　　一

c｡n三言ant term b^ all element ｡f K except dt. Then

l=1

xi-bij took as

q.e.d.

(1.2) Let d be a r-dimensional vector whose i-th component dt is an element of K,
r

and YJx)-口_ Yl (%i-by) where　口　meansthe productofpn -1 linear polinomials

Yd(x)-Yd,(x)-O for dアd¥　and (7d(x))VO.

㍗

Proof. If(yd(jc))2-0, then (yd(J))2- n IT (di-bii)2-0: aproduct ofnon-zero

elements of the field K would be zero. When a≠d', Yd(x)- Yd′(x) has a factor Yl (xi-b)
beK

-xfm-x|-O for some xi9 where Yl (*i＼-b) means the product of x-b taken as b all

beK

element of K.　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　q. e. d.

(1.3) Let {d} be the set of all r-dimensional vector of K. Any element of K{x}

can be expressed as a linear combination of elements of the set {Yd(x); de{d}} with

coe氏cients in K.

Proof. Assume that　∑ cdYd(x)-O {cd∈K). Multiplying both sides of this equa-
d∈(a)

tion by some Yd>(x) and using (1.2), we get cd¥Yd>(x)}2 -0? and so cd>-0. Therefore, Yd(x)

(d e {d}) are linearly independent on K. On the other hand, all element ofK{x} is shown
r

as a linear combination of pmr elements n　(0≦el≦pm-1) with coe阻dents in K,
i=1

and K{x} is a ^-dimensional vector space having elements of K as scalar. {Yd(x);
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de{d}} is its base.

(1.4) Any/(x) in K{x} can be written in the next form.

/(*)=(- 1)r島f(d)Yd(x).

q.e.d.

Proof. We first show that Yd(d′)-0 for d≠d′ and Yd(d)-(-iy. ifd≠d′　some

factor xt- btj will become a difference of the same element when d′ is substituted for x.

In case ofd-d¥ the product Yl (di-bu) is got by the substitution ofdt for xt in the

equation有且(x,-6-)-意(xアm-xj)-/>蝣"*?pm-i-1, and equal t0 -1. There-
d

fore, we get cd-(-1)r/(a) by the substitution x-d in the both sides of/(x)- ｣
d∈td〉

ctYJx).

(1.5) The value of/(x), substituted d (d∈ {d}) for x, is all zero if and only iff(x) is

the zero element of K{x}.

The proof is obvious from (1.4).

2. Conditions of Solvability of the Four-Color Problem

●

It is easily seen that to prove the four-color conjecture we may do it with only so

called cubic graph, in which just three edges meet at every vertex.

We say that a graph is colorable when its faces can be distinguished with four colors,

or when a condition equivalent to it is satis丘ed.

●

We denote the fields made of two or three elements by k2 and k3 respectively, i.e.

k2-GF(2) and k3-GF(3).

(2.1) A cubic graph G is face-four-colorable if and only ifitis edge-three-colorable.

Proof. Suppose that G is face-four-colorable. We name the four colors by 2-

dimensional vectors on k2: (00), (01), (10) and (ll). If we give to every edge the sum of

vectors given to the two faces which have the edge in common, it is the edge-three-
●

coloration, because the sum of different two vectors is not (00), and three edges which meet

at a vertex have different values, for the three faces which have the vertex in common

have different values.

Suppose, conversely, that edges ofG are colored by (01), (10) and (ll). We can color

every face one by one, by adding the value of an edge which separates the face from

already colored face to that face-color, when occurs no contradiction because (01)

+(10)+(ll)-(00).　　　　　　　　　　　　　　　　　　　　　　　　　　　q.e. d.

(2.2) A graph G is colorable if and only ifnon-zero value m k3 can be given to every

vertex such that the sum of these vertex-values around every face is zero m k3.

Proof. Suppose that the graph is colorable. We determine an order in the three

colors of edge. If the order of colors of the three edges meeting at a vertex is clockwise,
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then we give to the vertex the value -1, and in the inverse case the value +1. Ifa point

moves from an edge to the next across a vertex in the way which passes through a pe-

riphery ofa face clockwise, then the color of the edge, on which the point lies, changes on-

or backward in that color-order according as the vertex-value is + 1 or -1. When the

point had passed the way just one round, the color must have returned back to the
●

●    ●

origin, and so the sum of the vertex-values around the face is zero.

Conversely, if every vertex is valued such, then we may give a color indicated by the
●

vertex-value to every edge, step by step, when no contradiction occurs because the

sum of vertex-values around a face is zero.

(2.3) In the former proposition (2.2), the phrase "around every face" may be

changed to "around n-3 faces except three that have a vertex vO in common", where n
●

is the number of faces in G.

Proof. Assume that values +1 or -1 are given to all vertex with one exception vo
●

such that the sum of them around every n-3 faces which has not the vertex vo is zero,

and name other end points of edges which meet at v｡, vu v2 and v3. The edge-colora-

tion is got from this vertex-value, which doesn't contradict at every vertex except vo.

W. T. Tutte proved the next theorem in [1],

Let G be any 4-connected planar graph having at least two edges. Then G has a

Hamiltonian circuit. Moreover if no two edges ofG have both ends in common, and

ifE and E'are distinct edges of the same terminal circuit ofG, then there is a Hamil-

Ionian circuit ofG having both E and Er as edges.

The dual graph of our cubic graph G can be assumed 4-connected, for otherwise

the coloration of G is reduced to that of a graph which has fewer faces than G, and, as

we want to prove our theorem by induction with respect to the number of faces, we may

reject the case when the dual graph of G is three separable. Then the dual graph of G

have, from above theorem, a Hamiltonian circuit. Corresponding to this Hamiltonian

circuit there is a simple closed curve which cut just two edges of every face of G at mid

point of them. We call this circuit "T-circuit" of G. T-circuit separates G into two

parts. Every of them is tree. We name these two trees Tx and T2.

From the last part of above Tutte's theorem, it is assured to put that the T-circuit

cut the edge vovv

The sum of values of three edges which meet at a vertex is zero, i.e. one value of them

is equal to the sum of other two. Therefore, the value of all edge is determined by that of

edges, through which the T-circuit crosses and which is not voVi. We call them "initial

edges". This coloration of edges is of cause the same as that determined by the given

vertex-value if the values of initial edges are chosen so. The value ofvovt is equal to the

sum of vov2 and vov3 because the value of vovx calculated along the trees Tx and T2 must

be both equal to the sum of all value of initial edge, and so this coloration doesn t con-

tradict at vo, too.　　　　　　　　　　　　　　　　　　　　　　　　　　　q. e. d.

We want to prove the colorability of graph by the mathematical induction with
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respect to the number offaces. Ifa circuit of the dual graph of G which is not a periphery

ofa face has three edges, then the colorability of G can be reduced to that ofa graph with

fewer faces. (Upon which is touched already in (2.3).) Similarly is also a graph with tri-

angular or tetrahedral faces reducible. Therefore we treat a graph which is not so.

Such a graph must have a pentagonal face. Although its proof is easy, we will state

it briefly. Let n, e and v be the number of faces, edges and vertices of a cubic graph

respectively. Then 3i;-2e. From this and the Euler's relation: n+v-e+2, we get

v-2n-4and e-3n-6, but, if every face had six or more edges, thenumber of the edges

would be 3n or more because every edge belongs to only two faces, contrarily to e- 3n-6.

Here we define the "color-characteristic formula" (which is abbreviated to ccf) of a

cubic graph. CG(n) denote a cubic graph with n faces. Al is a matrix on fe3 of(n-3)

×(2/1-5) type, whose columns correspond to vertices except v｡ and rows of Ax cor-

respond to faces which have not the vertex vo. The (y)-element ofA< is 1 when the vertex

which corresponds to the j-th column is on the face which corresponds to the i-th row,

and is 0 in the other case.

CG(n)has a T-circuitas shownintheFig. 1. Letthe two trees whichis made by this

T-circuit 7¥ and T2, and Tt contains the edge vovl9 the existence of which is assured by

the last half part of "Tutte's theorem".

The square matrix A of order n-3 which is consist of the columns which cor-

respond to the vertices in Tl is regular on fc3, because, if a linear combination of rows of

A is a zero-vector, then the coe氏dent of the row whose element in the column of vァ

is 1 must be zero, and so the coefficient next to it in 7¥ must be also zero, and so on.

(seeFig.1)

Let xx be a vector of order 2n-5 whose components are variables, then the condi-

tion of colorability of CG(n) is the existence ofa solution of the simultaneous linear equa-

tion Alx1 -0 whose component is all non-zero. [(2.3)]

Let B be a matrix made of columns of Ax which is not in A, and xl蝣

x is a vector of order n-3, then the solution ofAix1 -(A9 B)
,y,

J,
, where

-Ois x-A~1By, where
●

y is an arbitrary vector on fc3 of order n-2, whose components are called variables.

The square of the product of the variables and the components of A'1By, linear com-

binations of variables, is called the color-characteristic formula (ccf) and represented by

FcoUy)-

(2.4) The condition ofcolorability of CG(n) is that FcGM(y) is not the zero-element

ofkJy}.

(2.5) If we treatjust as above, omitting two faces which have a vertex v｡ in common,

instead of omitting three faces which has vO in common, then we get the same formula as
●

FcG(サ)(y).

Proof. Wejoin a row which corresponds to the new face and a column which cor-

responds to the vertex vo. In the column ofvo, only one element which is in the new row
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is 1 and others are zero. Therefore the component of the same y can be taken as vari-

ables, by which the value of vertices in Tl9 other than vo9 is represented in the same form.
●

We write the formula thus obtained ylFcG{n){y)- J;o^cg(ォ)(};トFcG(n)(y) is zero f-r values

of y which make FCG(n)(y) non-zero, by (2.3), and of cause for the values which make it

zero, and so equal to zero by (1.5).　　　　　　　　　　　　　　　　　　　　q.e.d.

(2.6) Notation is all as above. Let a variable which corresponds to vt be yv If

we don't multiply the factor y壬when we make the ccfof CG(n) and put yx-0, then we

get a ccf of a cubic graph CG(n-1), which is got from CG(n) by taking off the edge

サoサl-

Proof. We can take a T-circuit such that yァis an independent variable. Name the

square of product of linear form corresponding to all vertex except vO and vl F(y). The

variable j;* is used in it. If we remove two faces from CGCn- 1) such that remaining faces

are same as that of CG(n) stated above, and make a product of square of linear form,

which are determined such that the sum of them around every face there remained is zero,

using the same variables as CG(n), then the linear forms used in it are got by substituting

0 for yl in that ofCGiri). Therefore this ccfofCG(n-- 1) is got by putting yx -0 in F(y).

N. B. It is only when the independent variables (i.e. the T-circuii) are suitably took

that the formula got above is a ccfof CG(n-1) as is seen in (2.5), but two ccfwith re-

spect to different variables are changed each other by regular linear transformation, and

the vanishing of one is followed by other's vanishing.

3. Condition of a Not Colorable Graph with Fewest Faces

Suppose that CG(ri) is the cubic graph which has fewest faces in what is not colorable.

We want to show that the existence of such a graph CG(n) implies a contradiction.

Let vertices of a pentagonal face Fo of CG(n) be vj (0≦j≦4), which lie in the order of

sumx. Three faces Fo, Fl and F2 have the same vertex vl in common. Fu F2, F3, F4

and F5 are the five neighbouring faces of Fo, the order of their position is the same as
●

their su氏x. v｡ is a common vertex of Fo,Fx and JP2. (see Fig. 2) We can take a

T-circuit which passes through Fl9 F2, Fo, F3, F4 and F5 in this order, whose existence

is secured by the last half part of Tutte's theorem, applying it to the dual graph of what is

got from CG(n) by removal of edges which separate the six faces F- (0≦j≦5) each

other.

Let F(y) be the product of all linear form ofvariables for every vertex. F2(y) is the

ccf of CG(n). Only four factors of F(y) have the term of yx whose coefficient is not

zero. (We represent them by yu yt+a, -y^+b and j^+c, and suppose that they

correspond to vl9 v2, v3 and v4 respectively.)

Proof. Elements ofAis asin Fig. 3. Thereason ofitcanbe seenin Fig. 2. Be-

cause A IA-E, the fc-th row ofA'1 corresponding to v, other than v29 v3, and v4, must
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be as in Fig. 3. Therefore, in the linear form ofy9 which express xk and is /c-th row of

-A xBy, the coe侃dent ofy* is zero.　　　　　　　　　　　　　　　　　　　q.e. d.

From our assumption that our CG(n) is not colorable

F(y)-CKi +a)(-Vi +b)(yt +c)yJ-0, ●　●　●　●　●　●　●　●　●　●　●　●

where/is the product of linear formulas for vertices other than vl9 v2, v3 and v4. The

coefficient ofyt and y壬in (1) must be zero in k3{y}:

- abcf+ af- bf+ cf-O,

-f+ bcf- caf+ abf- O.

The graph CG(n-1) made from CG(n) removing the edge vovt has a cc/got fro甲

G'i +ォ)2G'i +&)2G'i +c)2/2 putting yt -0, namely FCG(n-1)(y)-a2b2c2f2

It is seen from (2) that/-O for the value ofvariables which make two of a, b and c

zero, while none of a, b and c can be zero when other two and/are not zero by (2.3).

That is that the value ofvariables which make a-0 or fo-0 or c-0 make also/-0, and

by (1.3), a2f-b2f-c2f-f. Hence FCG(tt-1){y)-p.

Fig. 1.
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Fig. 3 shows that / is determined from lower n-6 rows of A, which means that

FcG(n-i)(y) *s determined from the relation of vertices and faces of CG(n) except Fj

(0≦j≦5). The same conclusion is reduced for cubic graph CG(n- 1) which is got from

CG(n) removing any edge ofFo9 i.e. they must have the same ccff2.

For example, in the CG(n-1) in which the face Fo and F2 is fused in one, the face-

color of F2 (or Fo) is different from that of F3, F4, F5 and Fu which are determined

uniquely for any value of variables that make /#0. Considering other CG(n-1), it is

concluded that thus determined colors of Fj (1≦j≦5) are different each other. It is

obviously a contradiction.

Therefore there is no graph which is not colorable.
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