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Examination of Space-Groupoid Theory
II. OD Structure Theory
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Abstract

The meanings of vicinity condition and POs (partial operations) of space-groupoid and OD
structure theory are investigated. The vicinity condition does not have any crystallographical
meanings, since POs do not transform invariantly the common two-dimensional lattice between
layers in an OD structure. By representing POs in correct forms, space-groupoid theory is
discussed that there is no room to introduce statistics into it. OD structure theory is concluded

not to be able to give any quantative informations for one-dimensionally disordered structures.
1. Introduction

Space-groupoids were introduced by Dornberger-Schiff & Grell-Niemann (1961) in order to
form the basis of OD structure theory. If the relation between OD structures and space-grou-
poids is similar to that between ordinary crystal structures and space groups, diffraction
phenomena of OD structures, such as extra-ordinary extinctions or diffuse streaks of X-ray
diffraction spectra, should be interpretated by the terms of space-groupoids. We hardly see the
papers reasonably discussing these phenomena by space-groupoid theoretical point of view.

The work of Sadanaga & Ohsumi (1979) was one of very few works for the interpretation of
the diffraction phenomena by space-groupoid theory. The author (1983) showed that their space-
groupoid theoretical interpretation of some structures was wrong and the theory of symmetry
of vector sets did not concern with the space-groupoid theory and was wrong. A comment of
one of the referees for the paper, which was finally rejected by S.C. Abrahams, Editor of Acta
Crystallographica, is shown in Fig. 1. The referee is undoubtedly a space-groupoid theorist.
The referee insisted that the structure of Fig. B in Fig. 1 was a space-groupoid structure.

The structure can be modified to an OD structure. The OD structure consists of two layers,

the layers are called layer A and layer B in this paper. The layer A consists of small squares of
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which centers are at apexes of the large square. The layer B consists of the small square at b

and its equivalences. The layers A and B have the same two-dimensional translation symme-

try.

Recently, Grell (1984) described that the vicinity condition defines OD structures. The
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The key to understending the difference betueen 'complicate
structures' by Tekahashi (hereafter sbbrevieted 2s T) an® fzpcre-
croupoié structures' by Sadenzge anc Ohsumi (S-0) will be furpicheé
by Scction 3 of T'e manwscript (p.6). T states there that X; iz
given oy X;=(B;,v )X, B;T=T mst hold becsuse X; hac the same lattice
ar Xo, 2nd hence Bi must be an element of the point group of the

lettice. , These conditions indeed izpose z very strong restriction

uren B; and accordingly upon hie comnlicated structures. Let us ook
2t Fir.A attached. In this figure, the entire structure X consiste
ci two substructures Xo end . )10 is consiructed by distributing e
~rour of atoms with the symmetry of Z over the lattice points of e
teiregoral space lattice T.  Them, if By represents 2 rotation by
72 around the tetragonal axis ¢ pessing the origin, and by the vector
inficcting 2 chift of the origin, both Z{\"(B’J’b'l)xo and 31'1‘-’1‘ holé.

Uhe ctructure shown in Fig.A will &

cerve ac example of T'c com-

yIiciied ctructure.

-3
by b of the entire structure thus derived.

The symmetry of a structure X iz e group of 211 the autororphic
transformations of X, namely, such transformstionc, esch of vhich
brings an- exact duplicate of X to superpose upon X in its original
position and orientation. Thereforc, as far 2s we confine ourselves
to tre considerstion of the symmetry of a structure X, ve must certainly
presuppose that all the operations ve are dezling with are eautomorphic
tronsformetions.  However, what S-0 deel with ih their paper in Acta
is not the symmetry of a structure X but, the relation in symmetry
betweeén X and its vector set V. Ir their theory of space groupoid,
the set of operations in the kernel Ko of e gpece groupcid M ig indeet
2 group of automorphic trensformations of a geometric configurstins
Tepresenting ko. On the other hand, the on].;‘v cc‘nrﬂi ion to be impoeed
-upon the elementz of the hull H 6f M is that oulé bring the

geometric configuration representing l:o' to ruperpose, not necesserily

eutomorphicelly, upon another configuration vrosc group of cymmetry
operations is isomorphic with Koo It ic to be noted here that in the
structure in Fig.B, the space group of X, is ¥4 and is the same as that

of Xj.

T points out again on p.9 of vhis menuscript that the rotationel
part of the element of the hull must be the element of the point group
of the lattice of the structure X. It ic indeed true that 211 the
substructures in T's complicated structurd have one anc the same
translation lesttice. However, it.is T's pecdliar assumption that
the rotaional part of his 'symmetry operations ‘between substructures®
brings the lattice to superpose upor itsclf. By dint of thie essumpiion,
T denounces war against the theory of space groupoid by S-0, but he
should have looked before he leapt; he should have offered the reason
vhy space-groupoid structures ought to conform to his rule before he
so simply insisted so.
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Here, the refercc wishec to cxpresc hic corcern about T's ‘'symmetry
operation (Bi’bi) between a pair of substiructures', Is (Ei,hi) a
(rlobal operation) ?

symmetry operation of the space group of

1f so, T's complicated structure must bc impescd upon by & reniriction

much severer than that.found in Fig.A ang will be cuch as derived by
replacing one of the czuivalent pointc of its spzce group with 2 config-
uration of points. Suppose that T's conrlicated structures are 21l
represéented by 2 structure of this type. Then, if the configuration
of points replacing each of the equivalent noinis of the space group

has its own symmetry i, vhich is not isomorphic uith 4, the structure

in this czse can be looked upon as a space-groupoid structure in which
kg is the kernel and all the space-group operctions of X are contained

in the hull K. (If ¥

4, the structure had better be classified as
ordinary space-group one.) On the ciher hand, if (Ei,bi) is not a
space-group operation, it must be either 2 local or 2 partial operation,
ond vhat T defines 2s z complicated structure will ve nothing but 2
space-groupoid structure. Indeed, if onc is dciermined to ignore

20th local and partial operations, what he is confronted with will
‘vecome global operations only. However, it it obvious that this
determination does not entitle him to blame other people for their

tcking local or partial operations into consideration.

Next, let us consider Fig.B to obtzin a better understanding to
the nature of the space-groupoid structure. This structure X also
consists of tiuo substructures Xo and "i in which XO is exactly the
ceme as that in Fig.A. The Z-configurztion in )(,'1 is congruent with
that in Xo but shows an engular deviation by € from that in XO’ vhere
€ ic rot nccencarily one of such rotationc around ¢ that bring the
lottice to cuperpose upon itself. Fig.B represents a typical space-
~roupoid structure. If we assume that XO represents its kernel, wve
2y look upon z2r an element of the hull a composite of a clockwise
rotation Ly € of each of the d-configurations in X, around an axis

parallel to c end pessing its lattice point anfl a partial transleztion

- 4-

Pram the latter half of p.9 of his manuscript, T starts referring
10 the structure given in Pig.7 of S-0's peper (p.121) and reproduced
in Fig.2 in T's manuscript, and writes on the top of p.10, "It must be
ncticed that any two squares have common points in this example.
According to Loewy (1927), there is no common element between Kgh.
g "o"‘j if hifhj. Hence, there shoulé be no atom vhich occupies

et the same rosition in different rubstructurce. This example does

not satisfy the postulation of groupoid." The referee thinks that
T would have never made such a simple mistake, had he not been so too
enthusiastic in fault-finding of S-O's prper ! In Fig.2 of T's

manuscript, let uc take {‘1,2,3,4} as the geonmctric representation of

the kernel K, of the space groupoid.  Then, )(o‘ui iz a set of operations,
each of whose elements brings, say, {3,8,6,9} 10 superpose upon
1‘1,2,3,4} by by end then {1,2,3,4} upon itself by an clement of K.

On the other hand, Koh is a set of operationz, each of vhose elemente
brings, sey, {{,5,6,7} upon {1.2,3,4} ans thex [1,2,3,4} upon itself,
vhere hi naturzlly involves a similarity transformation and the same
applies to h.. Now, there is obviously no clement common between

Kohy and Kohy, simply because {3,5,6,7} is 2 configuration entirely
aifferent from {‘1,5,6,1} . T confusec operations with points.

In the middle of the upper half of pii, T writec that the operations
(of the hull of a space gmupoid) are not compatible with ordinary
space-group operations. Why not ? They are indced compatible with
each other in the space groupoid, as elements'oi the hull and those

of the kernel !

The referee cannot be bothered with pointing out each of the minute
misunderstandings scattered here and there in Scction 5 ¢f T's manuscript
and wishes to proceed to Section 6 on p.13. Here, T's argument is very
such complicated, if not confused. So, the referce will try to explain
Scction 4 of S-0's paper in plain terms. Let @ be an intcr-atomic

vector arbitrarily chosen in a structure A consisting of niomc of one
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-s- Fig. A
®ind. If there is found in X another inter-atomic vector @' which,

satisfies |3Y = |[ and whose direction makes with the direction of 3

a certain angle 6 around @ certain line N, X is specified by £-0 as B‘
self-nomometric. The vector set V of X in thic case will be trougnt
o superpogition upon itsecif by a rotztion by € around the direction
parallel to . The casc in which X is symmetric by the rotation by 6 JE———
around N is included in the 2bove category of sclf-homometry. Tnree

11inds of cause will then be conceived of the given vector symmetry of

the structure X: it may be due to the global symmetry of X, or 2 local

symmetry in X, or such 2 self-homometry of X that is neither the glotal

c;mmetry nor a local symmeiry of X. The vector-cymmetric structure

iue to this last cause is called properly self-homometric. S5-0 show

in 5(A) that it is indeed possible to construct a model of properly

celf-homometric structure. If 2 structure vhich is not properly self- —_—
ncmometric gives rise to diffraction enhancement of cymmetry, & local

symmetry is responsible for the enhancement.

The referec believes that the present paper is not acceptable for
yublication in hcta, because the most part of the enthor's argument ie
ynfortunately besed upon his misunderstending of the nature of space \9 -

N .-

Fig. B

rroupoid.
)

Fig. 1, The comment of the referee of Acta Crystallographica.

vicinity condition requires every layers of OD structures to be of the same two-dimensional
translation symmery. The vicinity condition is satisfied for the structure. However, OD struc-
tures should have POs transforming a layer to another layer. We can not bring the layer A
to the layer B by an operation. The small square in the layer B can be obtained by rotating the
small square in the layer A by #/2—0. But the rotation does not bring the large square in the
layer A to that of the layer B. That is to say, the rotation does not transform invariantly the
two-dimensional lattice.

If we postulate that POs should satisfy the vicinity condition the logical consequence is
unique and the comment of the referee becomes nonsense. In this paper, the author discusses
shortly the relation between the vicinity condition described by Grell (1984) and POs defined
by Dornberger-Schiff & Grell-Niemann (1961).

2. Vicinity condition and partial operations

According to Grell (1984):
“The vicinity condition (VC) is said to hold for a structure (a set of structures) if and only if
(a) it (they) may be considered as consisting of disjunct parts periodic in two dimensions

(layers) which are either of the same or of a small number of kinds;
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(B) all layers of a crystal have a translational group ma + nb in common (a, b non-col-
linear);

(r) equivalent sides of equivalent layers are in any and all considered structures faced by
adjacent layers in such a way that the layer pairs thus formed are equivalent.”

Dornberger-Schiff & Grell-Niemann (1961) described:

“As all layers of the structures discussed are equivalent, there must exist partial operations
which transform any one of these layers either into itself or into any other layer. Such partial
operations will be called POs for short.

We shall not consider any partial operations referring to parts of a layer (or of layers) only.
Thus any repeating operation under consideration may be described by a PO or by combina-
tions of POs.

A PO is fully characterized by

(a) the transformation of space, and

(b) the layer which is to be transformed.

The transformation need not bring any other layer into coincidence with any part of the
sturcture.” In addition, their foot-note described that “the term ‘equivalent’ stands for ‘con-
gruent or enantimorphous’ .

The most important property of POs deducible from the above descriptions is that POs
must be rigid motions, because POs transform layers into equivalent (=congruent or enanti-
morphous)layers. The rigid motion compatible with the vicinity condition () has the rotation
part transforming invariantly the common two dimensional lattice between the equivalent
layers. If the proposition that POs are rigid motions transforming invariantly the common two-
dimensional lattice between equivalent layers is approved, the layer A con nat be brought by
any POs to the layer B, since the rotation bringing the small squares of the layers A to the small
squares of the layer B can not bring the lattice (the large square) to that of the layer B. The
comment of the referee shown in Fig. 1 is denial to the proposition.

When we examine POs in the comment, we find out that the rotation part of a PO is effec-
tive in a certain domain (unit cell or structure unit). Hence, the rotation part of a PO consists
of infinite number of rotations. Space-groupoid theorists do not consider the relation between
the rotations, although the rotations should satisfy the two-dimensional translation sym-
metry. That the rotations satisfy the two-dimensional translation symmetry means that result
by a “rotation of a layers around an axis parallel to ¢ and passing its lattice point” is the same
as that by the rotation around an axis parallel to ¢ and passing another lattice point. When

the results of such rotations are all the same as the result by the rotation around the axis
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parallel ¢ and passing the lattice origin, we say that the rotation transform invariantly the
lattice. The rotations of POs described by the referee do not transform even the domain into the
equivalent domains, since the rotations described by the referee tilt the large square in Fig.
B. The only objects of the rotations are the points at apexes of the one of the small squares.
In other words, space of space-groupoid theory consists of a definite number of points.

The terms in space-groupoid theory are quite different from those of space group theory.
For example, “the same transformation’ appeared in the following description of Dornberger-
Schiff & Grell-Niemann (1961), “If two pairs of adjacent layers, e.g. L,, L,:; and L,, L,., are
equivalent then there exists

either a PO , ,a characterized by the same transformation as a PO .1, 444410

or a PO ,,,,,b characterized by the same transformation as a PO ,, ;4,1b.”,

is quite different from ordinary meanings. Two

symmetry operations having the same rotations —<>——&—(>— y H——O——
' )
I
———O—

and the same translations are said to be the

same in space group theory. The examples of

the same transformation of Dorberger-Schiff Die Aequivalcnz crgibt sich
. . . . den PD b den PD
& Grell-Niemann (1961) are illustrated in Fig. (a) aus den PDen (b) aus den PDen
2q% pr1g+1T p+1:qPprg+10

2. Two curves with arrows in Fig. 2 (a) or (b) Fig. 2, Fig. 4 of Dornberger-Schiff (1964)

indicates the same transformation. The two translation parts in Fig. 2 (b) are quite different.
Judging from Fig. 2(b), two transformations are said to be the same if they have the same
invariant position in OD structure theory.

Symmetry operations are made to be belonged to symmetry elements in OD structure or
space-groupoid theory. Then a symmetry operation (a rigid motion of whole crystal structure)
becomes an infinite set of symmetry operations belonging to own symmetry elements, since
symmetry elements are invariant positions under a symmetry operation, and there exist an
infinite number of symmetry elements in a crystal space for a symmetry operation. The atoms
in OD structures are also made to be belonged to the symmetry elements. Then, the author’s
criticism that the rotation makes tilt the large square (lattice) becomes not effective, since the
rotation makes tilt only a small square belonging to the symmtry element by the frame work
of thinking of space-groupoid theorists.

Representation of POs by the form of hull and kernel described by Sadanaga & Ohsumi
(1979) and discussed by the author (1983) is given by the following form,

hyt=06(—Pp) (&, p) (B, b,) @
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and
hy= (By™ — B,b,) (E,—p) d(p) @)
where
P=pc and §(p)d(—q)=1 for p=q, 0(p)o(—q)=0 for p3xq.
The number of the elements of the hull of an space-groupoid becomes infinite. Since we can
not obtain A, from X-ray crystallographical method, we can not determine the hull. Hence, we
can conclude that space-groupoid theory is not suitable for interpretation of X-ray differaction

phenomena by OD structures.
3. Discussion

Poper (1959) required a condition for an empirical scientific system: it must be possible for
an empirical scientific system to be refuted by experience. When this condition is applied to space-
groupoid theory, we must be able to calculate X-ray diffraction intensity from a space-groupoid
and the coordinates of symmetrically independent atoms in a layer for an OD >structure.

Since space-gropoid structures of Sadanaga & Ohsumi (1979) are more typical than OD
structures, let us éxamine correspondence between diffracted wave amplitude and POs of them
by means of elementary X-ray crystallography. When an atom of ith kind in a unit cell is at
(x, y, 2), there are another atom of the same kind at (x-+n,, y+n,, z+ns), where n,, n, and ns

are integers. The contribution of the atom to Ath diffracted wave is

fiexp2zi{h(x+n,)+ k(y + no)+Il(x+ns)}]

and the total contribution of the atoms translatively equivalent to the ith atom in the structure

becomes

A;=F;Fy
where

F; = f.exp{2ri(hx + ky + [2)}
and

Fi: = 222 exp{2zi(hn,+kny,+Ins)}.

ni N2 N3

The total contribution of the atoms in the structure becomes

Ftatal = § Ac‘
= (; Fi)'Flat

= F°Flab
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and F'is called the structure factor. The reason of treating only structure factors for ordinary
structures is that F,, is invariant by space group symmetry operations, in other words, lattices
are invariant by space group operations. This is the most important basic law of X-ray crystal-
lography. If we wish to extend the operations to non-space-group operations, we must examine
the lattice invariance by the operations at first. In space-groupoid structures, there are some
atoms of the same kind, which are equivalent to each other with respect to space-groupoid
theoretically but not equivalent to each other with respect to space group symmetry. If the
atomic position of one of such atoms is (x+n,, y+n,, 2+ns), there is a PO transforming the
position to (x’' +n,, y+n,, 2’ +ns). In this case, eventhough (x, y, 2) is transformed to (x', y',
2'), (ny, ny, ng) is required to be invariant. If this requirement is satisfied, F',,; becomes
invariant by the transformation. However this requirement is nonsense, since (x, ¥, z) and
(ny, ny, n;) should be transformed by the same form. OD structure theorists say that POs are
transformation of space, but their space has singular points which are not moved by the
transformation. In conclusion, vicinity condition can not be compatible with POs described
by space-groupoid theorists.

It is necessary to introduce statistics into intensity equation for calculation of the in-
tensity of X-ray diffraction intensity of so-called OD structures. Space-groupoid theory may be
useful if statistical intensity equation can be derived from the theory. But, OD structure
theorists depend on statistical intensity equation which can not be derived from space-grou-
poids for the calculation. In addition, space-groupoid theory can not give any reasonable in-
terpretation for the existence of many polytypes of close-packed structures. Sequential oc-
currence of stacking vectors should be considered connectedly with POs. Dornberger-Schiff
(1964) discussed “Anahl Z der mit NB vertriglichen Lage einer Schicht L,+; bei vorgegebener
Lage der Nachbarschicht L,”. The author does not believe that the derivation of the number
Z is reasonable, because “‘Fortsetzung’’ is meaningless in the author’s representation. We can

easily see that the number Z is insufficient to define a polytype of close-packed structures.
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