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ON INNOVATIONS THEORY FOR WHITE GAUSSIAN PLUS
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Abstract

This paper designs a new fixed-point smoother based on the innovations theory for white
●

Gaussian plus colored observation noise in linear continuous systems. The signal to be

estimated is nonstationary or stationary stochastic. The proposed丘xed-point smoothing

algorithm calculates estimates sequentially by using the following information. (1) The

autocovariance information of the signal plus colored observation noise. (2) The crossco-

vanance information between the signal and the observed value. (3) The observed

value. The autocovanance function of (1) and the crosscovariance function of (2) are

assumed to be expressed in the semi-degenerate kernel forms. Some numerical

simulation results show that the presented fixed-point smoother is feasible.

1. Introduction

Kalman filter is applicable to an estimation problem of a signal which is observed with
●

additive white Gaussian observation noise. The Kalman filter needs information of a state-

space model of the signal (Kalman, 1960). Kailath (1968) considers linear least-squares filtering

problems by introducing an innovations theory in continuous systems. The innovations theory

plays an important role on the estimations in linear and nonlinear stochastic systems. There

is an approach which does not utilize the state-space model except for observed values and

covanance information of signal and noise on the estimation problems of the stochastic signal in
●

linear systems (Casti, Kalaba and Murthy, 1972, Nakamori and Sugisaka, 1977). Casti etc.

(1972) present a Cauchy system by applying an invariant imbedding method to a Wiener-Hopf

integral equation with a displacement kernel. The kernel in the Wiener-Hopf integral equation

represents an autocovariance function of observed data, and least-squares estimation problems

by the Wiener-Hopf integral equation have been researched extensively in the communication
●

theory (Trees, 1968). Since the displacement kernel has a specific integral functional form, the

estimation treated by Casti etc. (1972) is extended by Nakamori etc. (1977) to more general
●                                                                                                                                                               ●

case by assuming that the autocovariance function of the signal is expressed in a semi-

degenerate kernel form. The semi-degenerate kernel is suitable for expressing auto-
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covariance functions of general nonstationary or stationary stochastic processes. Then the

estimation algorithm, which is derived丘0m the Wiener-Hopf integral equation with the semi-

degenerate kernel, is widely applied to estimation problems of general stochastic processes.

Kailath (1976) shows in his book (see pages 123-125) a filtering algorithm, which includes
●

a differential equation for an autocorrelation function of a filtering estimate, under a prescribed

autocovariance function of the observed value. The algorithm by Kailath (1976) still needs

information of a system matrix in the state-space model. In the approach by

Casti etc. (1972) and Nakamori etc. (1977), the covariance information, which is approximated

by some functions such as normalized orthogonal functions etc., is used directly in the
●

estimation algorithms. An example for predicting air pollution levels of SO2 in Ohita city, Japan,

is implemented by using a covariance information of SO2 levels (Nakamori and Hataji, 1980).

This example makes us understand how the approach in Nakamon etc. (1977, 1980) is

practically e鮎C也ve.

This paper presents a new fixed-point smoothing algorithm based on the innovations

theory for the white Gaussian plus colored observation noise. The necessary information for

this estimator is as follows. (1) The autocovariance information of the signal plus colored

observation noise. (2) The crosscovanance information between the signal and the observed

value. (3) The observed value. It is assumed that covanance functions of (1) and (2) are

expressed in the semi-degenerate kernel forms. The treatment of the estimation problems

here is a natural extension of the Wiener filter (Kailath, 1974) to the fixed-point smoothing

problems using covariance information for the white Gaussian plus colored observation noise.
●

There exist some differences between the presented fixed-point smoother based on the

innovations theory and that in Nakamori (1988). They are summarized as follows.

(1) The presented丘xed-point smoothing algorithm has quite different forms from that in

Nakamori (1988).

(2) Number of differential equations included in the presented　丘xed-point smoothing

algorithm is reduced in comparison with that in the fixed-point smoother (Nakamori,

1988) for the white Gaussian plus colored observation noise.

Some digital simulation results show that the presented fixed-point smoothing algorithm is

feasible.

2. Linear least-squares estimation problems
●

The observation equation is given by

u(t)-x(t)+vc(t)+v(t), z(t)=x(t)+vc(t), (1)

where y(t) is an n-dimensional observed value, x(t) is a zero-mean signal, vc(t) is a zer0-

mean colored observation noise and v (t) is a zero-mean white Gaussian observation noise. It

is assumed that x (t) and vc(t) are nonstationary or stationary. The autocovariance function

of the white Gaussian observation noise is given by

E[v(t)vT(s)] -Rd(t-s) (2)
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There are uncorrelation properties between the signal x {.) , the colored observation noise

vc(.) and the white Gaussian observation noise v (.) as

E[x(t)VCT(s)]-O, E[x(t)vT(s)]-O, E[vc(t)vT(s)]-0, 0≦S,t≦T, (3)

in the estimation problems by Trees (1968) and Nakamori (1988). The proposed fixed-point

smoothing algorithm can be applied to both cases when the signal and the colored obser-
●

vation noise are correlated or uncorrelated. Let a fixed-point smoothing estimate g (t, T) of

x(t) at a fixed-point t be given by

君(t,T) - f｡T g(t,s)レ(s)ds　　　　　　　　　　　　　　　　　　　　　(4)

as a linear integral transform of an innovations processレ(s) (Kailath, 1968), 0≧ S, t≦ T, which

is expressed by

レ(s)=w(s)- z (s).　　　　　　　　　　　　　　　　　　　　　　　　　　　(5)

Here, z (s) is a filtering estimate of z(s) at time s. Let us consider a linear least-squares

smoothing problem which minimizes a cost function

J-E[¥¥x(t) - x (t,T)¥¥2].

Minimizing the cost function of (6) leads to a Wiener-Hopf integral equation

E[x(t)vT(s)]- foTg(t,s') E[リ<s')レ¥s)]ds, 0≦S≦t≦T.

(6)

(7)

It is known that the variance of the innovations process is equal to that of the white Gaussian

observation noise particularly in linear continuous systems (Kailath, 1968).

E[レ(i)レ(s)]-R∂(卜S)

Substituting (8) into (7), one has

E[x(t)〟(s)]-g(t,s)R.

(8)

(9)

From (9), one finds that the optimal impulse response function, which satisfies (7), is given by

g(t,s) -E[x(t)vT(s)]R-1　　　　　　　　　　　　　　　　　　　　　　(10)

(Sage, 1971). It is a problem to formulate the statistical quantity E[x (t)レT(s)l. As noticed

from (5) for the innovations process, the expression for the filtering estimate z (s) is needed.

In section 3, the filtering algorithm for T(t) is shown. Then sequential algorithm for the

optimal impulse response function g (t,s) is presented in section 4.

It is a specific characteristic to introduce the autocovariance function of z (t) expressed by

K2(t,s) -A(t)BT(s) for O≦S≦t and Kz(t,s) -B(t)AT(s) for O≦t≦s, where A(t) and

B(s) are bounded nx n'matrices. This is a reasonable expression and Kz(t,s) in this form

is called the semi-degenerate kernel. Also, the crosscovariance function Kxy(t,s) between the

signal x{t) and the observed value y(s) is assumed to be expressed by Kxy(t,s) -α(i)βT(s)
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for O≦S≦fand Kxy(t,s) -e(t)ET(s) for O≦t≦5, where α(t), β(s), e(t) and E(s) are

bounded n x m matrices.

3. Filtering algorithm for T(t)

In [Theorem l], the filtering algorithm for z (t) is presented. If z (t) is evaluated, the

innovations processレ(t) is calculated by (5).

[Theorem l]

If the autocovariance function of the signal z(t) is represented by Kz(t,s) -A(t)BT(s)

for O≦S ≦t> then the linear least-squares filtering estimate? (t) is calculated by Eqs. (ll)-

(14) sequentially (Nakamon etc. , 1977).

z (t) =A(t)e(t)　　　　　　　　　　　　　　　　　　　　　　　　　　　　(ll)
I

de(t)/dt-J (t,t) (y(t) - I(t)), Initial condition:e(0) - 0　　　　　　　　　(12)

J(t,t)R- (BT(t) -r(t)AT(t))　　　　　　　　　　　　　　　　　　　　(13)

dr(t)/dt=J (t,t) (B (t) -A(t)r(t)), Initial condition-.r(0) - 0　　　　　　　(14)

Proof of [Theorem l] is shown in Nakamori etc. (1977).

The innovations process is given by (5) and the filtering estimate is calculated by the

Cauchy system of [Theorem l] using the observed values and the covariance information of

z(t) and v(t). It is interesting to note that the innovations process, which is white Gaussian

with the variance R, is勇　　kom the observed value. This is called the whitening filter

(Trees, 1968),since the input to the filter is the observed value and its output is the white

Gaussian innovations process.

4. Algorithms for g (t,s) and x(t,T)

In [Theorem 2] , algorithms for the optimal impulse response function g(t,s) and the

fixed-point smoothing estimate x (t, T) are presented by using covariance information.

[Theorem 2]

If the autocovariance function of z(t) is given by Kz(t,s) -A(t)BT(s) for O≦S≦t and

the crosscovariance function Kxy(t,s) between the signal x (t) and the observed value y (s) is

assumed to be expressed by Kxy(t,s) -α(i)βT(s) for O≦S≦/and Kxy(t,s) -e(t)∈ (s) for 0

≦t≦s, then the optimal血pulse response function g(t,s) is calculated by Eqs. (15) - (20)

s e quentially.

gi(t,s):g(t,s) for O≦S≦t

gi(t,s)=α(*)<β (s)-gT(s)AT(s))R-1 (15)
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dq(t)/dt-J(t,t)08(0-A(t)q(t)),Initialcondition:g(O)-O(16)

g2(t,s):g(t,s)forO≦t≦s

gz(t,s)-(e(t)ET(-¥-(5)α(t)DT(s,t)AT(s)-｣(t)ET(s,t)AT(s))R-1(17)

∂D(T,t)/dT--J(T,T)A(T)D(T,t)(18)

dD(t,t)/dt=J(t,t)08(t)-A(t)D(t,t)),Initialcondition:D(0,0)-0(19)

∂E(T,t)/dT-J(T,T)(((T)-A(T)E(T,t)),Initialcondition:E(t,0-0(20)

J{t,t)iscalculatedby(13)and(14).

Also,thefixed-pointsmoothingestimatex(t,T)iscalculatedbyEqs.(ll)-(14),(18),(19),

(20)and(21)sequentially.

君(t, T) : Fixed-point smoothing estimate

∂x(t,T)/dT-e(t)(E m-EHT^A^T^R-'iym- z iT))-
aWDHT^ATmR-'iyiT)- z (T))

x (t,t) : Filtering estimate

x(t,t)=α(t)Q(t)

(21)

(22)

dQ(t)/dt- (β (t) -gT(t)AT(t))R-1(u(t) - T(t)), Initialcondition: Q(0) -0 (23)

Here, z (T) and z (t) are calculated by using the algorithm for the filtering estimate in

[Theorem lj.

(Proof)

In the calculation of the optimal impulse response function g(t,s) given by (10), the sta-

tistical quantity E[x(t)リT(s)] is necessary. From (5) E[x (t)レT(s)] is developed as

E[x(t)vT(s)]-E[x(t)(y(s)- z (s)V]

-E[x(t)yT(s)] -E[x(t) z T(s)l　　　　　　　　　　　　　(24)

In Nakamori etc. (1977), the linear least-squares filtering estimate ｣ (t) is fomulated as

z(t)=
Jo

h(t,s)y(s)ds.

Substituting (25) into (24), one has

E[x(t)レ(s)]-E[x(t)yT(s)]- E[x(t)yT(s')]hT(s,s')ds'.

From Nakamon etc. (1977), one knows that

h(s,s') =A(s)J(s,s').

(25)

(26)

27

Let us derive at first gi(t,s) which denotes g(t,s) for O≦S≦t. If one substitutes Kxv(t,s)

-α(i)β (s)(-E[x(t)yT(s)]) ior O≦S≦t and (27) into (26), one obtains
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E[x(t)vT(s)]-α(00Sr(s)-fspT(SVT(s,s')ds'AT(s)).

J｡

Ifoneintroducesthehnction,whichsatis丘es

q(t)-rj(t,sf)P(s')ds',
JO

onecanrewrite(28)as

E[x(t)vT(s)]-α(t)(oT(s)-qT(s)AT(s)).

Substituting(30)into(10)yields(15).

Differentiating(29)withrespectto/,onehas

dq(t)/dt-J(t,t)P(t)+rdJ(t,s')/dtP(s')ds'

J0

-/(*,*)(β(t)-A(t)g(t))

byusing(29)andanidentity(Nakamorietc.,1977)

dJ(t,s)/dt--J(t,t)A(t)J(t,s).

(28)

(29)

30

(31)

(32)

The initial condition on the differential equation (31) for the function q (t), at t- 0, is a (0) -

0血0m (29). It is noted that the function q(t) is equal to the function r(/)(see (16) and (14)),

when the signal x {t) is observed with only additive white Gaussian noise v (t).

Secondly, let us derive an expression of g(t,s) (-g2(t,s)) for O≦t≦s. In the calculation of

the optimal impulse response function g2(t,s) , the statistical quantity E [x (t) vT (s) ] should be

developed as seenか0m (10). From (26), E[x(t)レT(s)] for O≦t≦5 is also written as

E[x(t)vT(s)] -E[x(t)uT(s)] - E[x(t)yT(s')]hT(s,s')ds'. (33)

If one notes that Kxy(t,s) -α(i)βT(s) for O≦S≦tand Kx,(t,s) -e(t)∈T(s) for O≦t≦5, one

can express g2(t,s) as follows from (27) and (33).

g2(t,s)- {E[x(t)yT(s)] -
rs

Jo E[x(t)yT(s')W(s,s')ds'}R-i

-{｣(OCT(s)-f'E[x(t)yT(s')]

*J｡-,s')ds'

-rE[x(t)yT(s')]hT(s,s')ds'}R-1

- {e(OCT(5) -/｡'α(t)PT(s')JT(s,s')AT(s)ds'

-J e(t)C(SVT(s,s')AT(s)ds'}R-1
(34
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If one introduces hnotions

D(s,t)-rj(s,s')P(s')ds'

JO
and

E(s,t)-JJ(s,s')((s')ds',

onecanrewite(34)as

g2(t,s)-[e(t)CT(s)T/,¥-α(t)DT(s,t)AT(s)-e(t)ET(s,t)AT(s)]R-1.

Ifonedifferentiates(35)withrespectto5,oneobtains

dD(s,t)/ds-f'dJ(s,s')/dsP(s')ds'

Jo

-['j(s,s)A(s)J(s,sf)P(s')ds'

Jo

-J(s,s)A(s)D(s,t)

(35)

(36)

(37)

(38)

by using (35) and an identity dj (s,s')/ds- -J(s,s)A(s)J(s,s')即akamori etc., 1977).

initial condition on the partial differential equation (38) for D(s,t) at s-t is D (tyt). D(t,t) is

expressed by

D(t,t)-fj(t,s')

J｡β(s')ds'

打0m(35).Ifonedifferentiates(39)withrespecttot>oneobtains

dD(t,t)/dt-J(t,t)p(t)+f'dj(t,s')/dtp(s')ds'

Jo

-/(f,00(0-/(t,t)A(t)f'j(t,s')P(s')ds'

uo

-J(t,t)(0(t)-A(t)D(t,t)),D(O,O)-O,

打0m(39)andtheidentitydj(s,s)/ds=-J(s,s)A(s)J(s,s)(Nakamorietc.,1977).

Ifonedifferentiates(36)withrespecttos,oneobtains

dE(s,t)/ds-J(s,s)((s)+fdj(s,s')/dsli(s')ds'

-J(s,s)((s)-J(s,s)jA(s)J(s,s')

Jtg(s')ds'

-/(s,s)(((s)-A(s)E(s,t)),E(t,t)=O,

from(36)andtheidentitydJ(s,s')/ds--J(s,s)A(s)J(s,s').

From(4),(15)and(17),thefixed-pointsmoothingestimateiswrittenas

x(t,T)-f'gi(t,s)u(s)ds+fTg2(t,s)v(s)ds

J｡Jt

(39)

(40)

(41)
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-α(of'(pT(s)-qT(s)AT(s))R-1u(s)ds+

J｡

･((>/'(((s)-ET(s,t)AT(s))R-lv(s)ds-

ami DT(s,t)AT(s)R~1レ(s)ds.

IfoneintroducesafunctionQ(t)givenby

Q(t)-¥(PT(s)-qT(s)AT(s))R-lv(s)ds,

J｡

onecanrewrite(42)as

x{t,T)-α(t)Q(t)+s(t)jT(((s)-ET(s,t)AT(s))R-1v(s)ds-

a(i)ITDT(s,t)AT(s)R~1リ(s)ds.

(42)

(43

(44)

If one differentiates (44) with respect to T and uses the expression for the innovations

process of (5), one obtains the partial differential equation (21) for the fixed-point smoothing

estimate x(t'T). If one differentiates (43) with respect to t, one readily obtains the

differential equation (23) for Q(t). An initial condition on Q(t) at t=O is Q(0) -0 from (43).

One finds that the initial condition on the partial differential equation (21) at T= t is x (t,t) =

a(t) Q(t), which denotes the filtering estimate of x (t) (Q.E.D.).

5. Existence of smoothing estimate in presented smoother

From (13) and (16), one obt血s

dq(t)/dt- (BT(s) -r(t)AT(t))R-1(β(t) -A(t)q(t)), g(O) -O. 45

(45) looks like the Riccati type differential equation, which appeared in Nakamori etc. (1978) for

the white Gaussian observation noise. The existence and uniqueness for the solution of the

Riccati type differential equation (14) are already proved by Nakamori etc. (1978). In Kailath

(1976), it is indicated that the solution of a Riccati type nonlinear differential equation exists in

filtering problems of linear systems. This differential equation calculates the autocorrelation

function of the filtering estimate in the Kalman filter. The existence of the solution is

ensured by the following two points. (1) The upper bound for the autocorrelation function of

the丘Itering estimate is the autocorrelation function of the signal, since the filtering error
●                                                                                                                                                                                     ●                                                                        ●

covariance function of the signal is a nonnegative definite matrix. (2) The lower bound for the

autocorrelation function of the filtering estimate is a null matrix.  In this

section, the existence for the solution of (45) is considered by introducing a smoothing error

covariance function.

The smoothing error covariance function P (t, T) is defined as
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P(t,T)-E[(x(t)-x(t,T))(x(t)-x(t,T))T],

where t is the fixed-point. From an orthogonal projection lemma (46) is written as

P(t,T)-E[(x(t)-x(t,T))xT(t)]

-E[x(t)xT(t)]-E[君(t,T) xT(t,T)].

46

(47)

The smoothing error covariance function P(t,T) and the autocorrelation function of the

smoothing estimate x (t, T) are nonnegative de丘山te matrices. Then

O≦Elg(t,T) x (t,T)] ≦E[x(t)xT(t)] -KAt,t).　　　　　　　　　　　(48)

Here, Kx(t,t) represents the autocorrelation function of the signal x (t). Along the discussin

by Kailath (1976), it is found that the solution of the Riccati type differential equation (45)

exists for the bounded n X n matrix Kx(t,t).

Now, it is interesting to derive an equation for calculating P (t, T). Substituting (4) into (47),

one obtains

P{t,T)=Kx{t,t) -

-KAt,サー

g(t,s)E[i>(s)vT(s')¥gT(t,s')ds'ds

g(t,s)RgT(t,s)ds (49)

bynotingthatthevarianceoftheinnovationsprocessisR.Ifonedifferentiates(49)with

respecttoTandusestheexpressionforg(t,T)(-g2(t,T))

g2(t,T)-(e(t)ET(T¥-(T)α(t)DT(T,t)AT(T)-eiOEHT.OAHT))!?-1(50)

か0m(17),oneobtainsapartialdifferentialequation

dP(t,T)/dT--(e(t)ET(T¥-(T)α(t)DT(T,t)AT(T)-s(t)ET(T,t)AT(T))R-i

(((T)eT(t)-A(T)D(T,t)α(t)-A(T)E(T,t)sT(t))

withanintialconditionP(t.O)-Kx(t,t).

●ForthecasewhenT=t,thefilteringerrorcovarianeefunctionsatisfies

dP(t,t)/dt-F(t)P(t,t)+P(t,t)FT(t)T(+¥-αβ(t)-qT(t)AT(t))R-1

(B(t)-A(t)q(t))aT(t),p(O,O)-Kx(O,O),

from(15)and(49),providedthattherelationship

dα(t)/dt-F(t)αit){or∂Kx(t,s)/dt=F(t)Kx(t,s))

(51)

(52)

(53)

is valid. Therefore, the smoothing and filtering error covariance functions are calculated by

(51) and (52) respectively. The filtering error covariance function P (t,t) is also used as an

initial value instead of P (t.O) = Kx(t,t) in computing the partial differential equation (51) for

the smoothing error covariance function P (t, T).
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6. Comparison of presented丘xed-pomt smoother with previous one

Let us compare the presented fixed-point smoother with that in Nakamori (1989). The

fixed-point smoothing algorithm is summarized in [Theorem 3].

[Theorem 3]

If the autocovariance function Kx(t,s) of x (t) is expressed by G (t)HT(s) for O≦S≦t and

an autocovariance function Kc(t,s) of the colored noise vc(t) by I (t)LT(s) for O≦S≦t, the

fixed-point smoothing estimate x (t, T) is calculated by the following Cauchy system. Here, it

is assumed that G(t) and H(s) are bounded nx i matrices, and / if) and L(s) are bounded n

x ; matrices. Here, it is also assumed that the signal x(t) is uncorrelated with the colored

observation noise vc(s) for O≦s,t< ∞.

君(t, T) : Fixed-point smoothing estimate

∂x(t,T)/dT-h(t,T,T)(y(T)+G(T)f(T)+I(T)S(T)),君(t,0)-0　　　(54)

Initial condition of x (t,T) at T-t:君(t,t)

x (t,t) : Filtering estimate

x(t,t)=-G(t)f(t)

df(t)/dt=N(t,t)(y(T)+G(T)f(T)+I(T)S(T)),f(O)=O

dS(T)/dT-M(T,T)(y(T)+G(T)f(T)+I(T)S(T)), S(O)-0

h(t,T,T)-(H(t)GT(T)-U(t,T)GT(T)-W(t,T)IT(T))R-1

(55)

(56)

(57

58

dU(t,T)/dT-h(t,T,T)(H(t)+G(T)Y(T)+I(T)b(T)), U(t,O)-O　　　(59)

Initial condition of U(t,T) at T=t: U(t,t)=-G(t)Y(t)

dW(t,T)/dT-h(t,T,T)(L(T)+G(T)O(T)+imZ(T)), W(t,O)-O　　(60)
Initial condition of W(t,T) at T=t: W(t,t)--G(t)O(t)

dY(T)/dT-N(T,T)(H(T)+G(T)Y(T)+I(T)b(T)), Y(0)-0

dO(T)/dT=N(T,T)(L(T)+G(T)O(T)+I(T)Z(T)), 0(0)-0

N(T,T)-(-HT(T)-Y(T)GT(T)-O(T)IT(T))R-1

db(T)/dT-M(T,T)(H(T)+G(T)Y(T)+I(T)b(T)), O(0)-0

dZ{T)/dT=M{T,T){L{T)+G(T)O(T)+I(T)Z(T)), Z(0)=O

M(T,T)-(-LT(T)-b(T)GT(T)-Z(T)IT(T))R-1

(61)

(62)

(63)

64

(65)

66

The fixed-point smoothing algorithm in [Theorem 3] is derived from a well-known integral

equation (Trees, 1968) which an optimal impulse response function h (t,s, T) satisfies.
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h(t,s,T)R=Kx(t,s) -
Jo

h(t,s',T) (Kx(s',s) +Kc(s',s))ds' 67

The numbers of the differential equations of the fixed-point smoother in [Theorem 3] are

n(i+j+ l) for the partial differential equations and i+j+ (i+j) for the ordinary differential

equations. Those of the presented fixed-point smoother are n + 2n m for the partial

differential equations and {m + n') (l +nf) +n'rn'for the ordinary differential equations. The

number of the ordinary differential equations in the presented丘xed-point smoother is less than

that in [Theorem 3J by n'2 when i-j-rn'-n', and this fastens a computation time for the

optimal丘xed-point smoothing estimate. Both smoothers in the current approach and that in [

Theorem 3] are optimal in the linear least-squares sense. The presented fixed-point

smoother is applicable to the case when the signal x (t) is correlated with the colored noise

vc(s). However, the fixed-point smoother in [Theorem 3] can not be applied to this case from

a theoretical point of view.

7. A numerical simulation example

This section shows a numerical s血ulation example for the presented丘xed-point smoother.

Signal x (t) is generated by

dx(t)/dt--kx(t)+u(t), E[u(t)u(s)]-2kp∂(t-s), E[x(0)2] -p, k-5, P-10.

(68)

The autocovariance function of the signal x(t) is expressed by K(t,s) - pe~k(t-s)

(Baggeroer, 1970) for O≦S≦/. Also, the colored noise process is a Wiener process which is

generated by

dvc(t)/dt-w{t), E[w(t)w(s)]-a2∂(t-s), E[vc(0)2] -0, a2-10.　　　　(69)

The autocovariance function of the colored noise process is expressed by Kc{t,s) - 02s

(Baggeroer, 1970) for O≦S≦/. Hence, the autocovariance function of z(t) (-x (t) +vc(t)) is

KM,s) =KM,s) +KM,s)

-A(t)BT(s)

-¥pe-k'rt[e '], o≦ざ≦才, (70)

since E[x(t)vc(s)] -O. From (70), one血ds that A(t) - [pe~kt a2] and B(s)- [eks si. Also,

Kxy(t,s) is expressed by

Kxv(t,s) -Kx(t,s)

-α(i)β(S)

-pe-" eks , o≦S≦t, 71
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0.05　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　0.2　t

Fig. 1 Signal x(t) and colored noise process vc(t) vs. t

a...Signal process x (t).

b...Colored noise process vc(t) for vc(0) - -0.1 when the colored noise parameter is a2-10.
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Fig. 2　Fixed-point smoo血ng estimate x (0.01, T) vs. Tfor vc(0) - -0.1 when the colored noise parameter
isa2-10.

a… x (0.01, T) for white Gaussian observation noise N(0, 0.I2).

b…君(0.01, T) for white Gaussian observation noise N (0, 0.32).

c...君{0.01, T) for white Gaussian observation noise N(0, 0.52).

since E[x(t)vc(s)] =O and E[∬(t)v(s)]-0. SubstitutingA(t), B(t), α(t), β(0, e(0(-

β(0) and g(0(=α(0) into [Theorem 2], the丘xed-point smoothing estimate x (t,T) is

calculated. Fig. 1 illustrates the signal process (graph a) and the colored noise process (graph

b) for a2 - 10 and the initial value vc(0) - - 0.1. Fig.2 i皿ustrates the fixed-point

smoothing estimate x (0.01, T) vs. Twhen the initial value of the colored noise is vc{0) -

0.1 and the colored noise parameter is a2- 10. Graph a illustrates the fixed-point smoothing

estimate g(0.01, T) for the white Gaussian observation noise N (0, 0.I2). Similarly, graphs
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b and c illustrate x(0.01, T) for the white Gaussian observation noises N{0, 0.32)

and N (0, 0.52) respectively. Fig.3 and Fig.4止Iustrate the触ed-point smoothing estimates

x(0.03, T) and　君(0.05, T) vs. T respectively when the initial value of the

colored noise is vc(0) = -0.1 and the colored noise parameter is a2-10. In Fig.3 and Fig.4,

graphs a, b and c depict the fixed-point smoothing estimates for the white Gaussian

observation noises Nifi, O.I2), N(0, 0.32) and N(0, 0.52). The触ed-point smoothing

estimates start with the丘Itering estimates at their fixed-points. From Fig.3, Fig.4 and Fig. 5,
●
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0.05　　　　　　　　　　　　　　　0.1

Fig. 3　Fixed-point smoothing estimate蒼(0.03, T) vs. T for vc(0) - -0.1 when the colored noise parameter

iso2-10.

a... x (0.03, T) for white Gaussian observation noise N (0, 0.I2).

b…君{0.03, T) for white Gaussian observation noise N(0, 0.32).

c... x (0.03, T) for white Gaussian observation noise N (0, 0.52).
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Fig. 4　Fixed-point smoothing estimate g(0.05, T) vs. 7for vc(0) - -0.1 when the colored noise parameter

isa^-10.

a... x (0.05, T) for white Gaussian observation noise N(0> O.I2).

b-･君(0.05, T) for white Gaussian observation noise N (0, 0.32).

c... x (0.05, T) for white Gaussian observation noise N(0, 0.52).
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one丘nds that the filtering and fixed-point smoothing estimates have a tendency to approach to
●

true value of the signal x (t) gradually as t and T become large.

8. Conclusions

●    ●

Some numerical results have shown that the original fixed-point smoothing algorithm pro-

posed in this paper is feasible. Main advantage of the current estimator is that one needs not

identify the state-space model in estimating the stochastic signal except the covariance

information and the observed value.
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