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Abstract

This paper designs a new fixed-point smoother based on the innovations theory for white
Gaussian plus colored observation noise in linear continuous systems. The signal to be
estimated is nonstationary or stationary stochastic. The proposed fixed-point smoothing
algorithm calculates estimates sequentially by using the following information. (1) The
autocovariance information of the signal plus colored observation noise. (2) The crossco-
variance information between the signal and the observed value. (3) The observed
value. The autocovariance function of (1) and the crosscovariance function of (2) are
assumed to be expressed in the semi-degenerate kemmel forms. Some numerical
simulation results show that the presented fixed-point smoother is feasible.

1. Introduction

Kalman filter is applicable to an estimation problem of a signal which is observed with
additive white Gaussian observation noise. The Kalman filter needs information of a state-
space model of the signal (Kalman, 1960). Kailath (1968) considers linear least-squares filtering
problems by introducing an innovations theory in continuous systems. The innovations theory
plays an important role on the estimations in linear and nonlinear stochastic systems. There
is an approach which does not utilize the state-space model except for observed values and
covariance information of signal and noise on the estimation problems of the stochastic signal in
linear systems (Casti, Kalaba and Murthy, 1972, Nakamori and Sugisaka, 1977). Casti etc.
(1972) present a Cauchy system by applying an invariant imbedding method to a Wiener-Hopf
integral equation with a displacement kernel. The kernel in the Wiener-Hopf integral equation
represents an autocovariance function of observed data, and least-squares estimation problems
by the Wiener-Hopf integral equation have been researched extensively in the communication
theory (Trees, 1968). Since the displacement kernel has a specific integral functional form, the
estimation treated by Casti etc. (1972) is extended by Nakamori etc. (1977) to more general
case by assuming that the autocovariance function of the signal is expressed in a semi-
degenerate kernel form. The semi-degenerate kernel is suitable for expressing auto-
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covariance functions of general nonstationary or stationary stochastic processes. Then the

estimation algorithm, which is derived from the Wiener-Hopf integral equation with the semi-

degenerate kernel, is widely applied to estimation problems of general stochastic processes.

Kailath (1976) shows in his book (see pages 123-125) a filtering algorithm, which includes
a differential equation for an autocorrelation function of a filtering estimate, under a prescribed
autocovariance function of the observed value. The algorithm by Kailath (1976) still needs
information of a system matrix in the state-space model. In the approach by
Casti etc. (1972) and Nakamori etc. (1977), the covariance information, which is approximated
by some functions such as normalized orthogonal functions etc., is used directly in the
estimation algorithms. An example for predicting air pollution levels of SO in Ohita city, Japan,
is implemented by using a covariance information of SO, levels (Nakamori and Hataji, 1980).
This example makes us understand how the approach in Nakamori etc. (1977, 1980) is
practically effective.

This paper presents a new fixed-point smoothing algorithm based on the innovations
theory for the white Gaussian plus colored observation noise. The necessary information for
this estimator is as follows. (1) The autocovariance information of the signal plus colored
observation noise. (2) The crosscovariance information between the signal and the observed
value. (3) The observed value. It is assumed that covariance functions of (1) and (2) are
expressed in the semi-degenerate kernel forms. The treatment of the estimation problems
here is a natural extension of the Wiener filter (Kailath, 1974) to the fixed-point smoothing
problems using covariance information for the white Gaussian plus colored observation noise.
There exist some differences between the presented fixed-point smoother based on the
innovations theory and that in Nakamori (1988). They are summarized as follows.

(1) The presented fixed-point smoothing algorithm has quite different forms from that in
Nakamori (1988).

(2) Number of differential equations included in the presented fixed-point smoothing
algorithm is reduced in comparison with that in the fixed-point smoother (Nakamori,
1988) for the white Gaussian plus colored observation noise.

Some digital simulation results show that the presented fixed-point smoothing algorithm is
feasible.

2. Linear least-squares estimation problems
The observation equation is given by

yO =z @) to(t)+ov@), 2z(0) =z (t) Tvc(?), 1)

where y (¢) is an n-dimensional observed value, x (¢) is a zero-mean signal, v.(¢) is a zero-
mean colored observation noise and v (¢) is a zero-mean white Gaussian observation noise. It
is assumed that x (¢) and v.(¢) are nonstationary or stationary. The autocovariance function
of the white Gaussian observation noise is given by

Elv(t)v"(s)1=Ro(t—s) (2)
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There are uncorrelation properties between the signal x(.), the colored observation noise
vc(.) and the white Gaussian observation noise v(.) as

Elx®)v."(s)]1=0, Elx ())vT(s)]1=0, Elv.(t)vT(s)]=0, 0<s,t<T, 3)

in the estimation problems by Trees (1968) and Nakamori (1988). The proposed fixed-point
smoothing algorithm can be applied to both cases when the signal and the colored obser-
vation noise are correlated or uncorrelated. Let a fixed-point smoothing estimate T (¢,7T") of
x (t) at a fixed-point ¢ be given by

T, T)=/," g(t,s)v(s)ds 4

as a linear integral transform of an innovations process v(s) (Kailath, 1968), 0= s, t< T, which
is expressed by

v(s)=y(s)— z (s). )

Here, Z (s) is a filtering estimate of z(s) at time s. Let us consider a linear least-squares
smoothing problem which minimizes a cost function

J=Ellz@®)—z ¢, T)IA. (6)

Minimizing the cost function of (6) leads to a Wiener-Hopf integral equation

Elz@®)vT(s)1= [T g(t,s’) E[v(s)V7(s)]lds, 0=s=t=T. @)

It is known that the variance of the innovations process is equal to that of the white Gaussian
observation noise particularly in linear continuous systems (Kailath, 1968).

Elv(#)v"(s)]=Ro (t—>s) , @)
Substituting (8) into (7), one has

Elx (#)vT(s)]=g(t,s)R. )
From (9), one finds that the optimal impulse response function, which satisfies (7), is given by

gt,s)=Elx@®)vT(s)IR™ (10)

(Sage, 1971). It is a problem to formulate the statistical quantity E[x (£)v7(s)]. As noticed
from (5) for the innovations process, the expression for the filtering estimate Zz (s) is needed.
In section 3, the filtering algorithm for Z (¢) is shown. Then sequential algorithm for the
optimal impulse response function g (¢,s) is presented in section 4.

It is a specific characteristic to introduce the autocovariance function of z(¢#) expressed by
K,(t,s) =A({t)BT(s) for 0=s=<t and K,(t,s) = B(t)AT(s) for 0=t=<s, where A(t) and
B (s) are bounded # X »#’ matrices. This is a reasonable expression and K (¢,s) in this form
is called the semi-degenerate kernel. Also, the crosscovariance function K, (¢,s) between the
signal x (¢) and the observed value y (s) is assumed to be expressed by K (¢,s) =a ()BT (s)
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for 0=s=t and K, (t,s) =e(®)(T(s) for 0 =t=<s, where a(t), B(s), €(t) and {(s) are
bounded # X m’ matrices.

3. Filtering algorithm for Z (¢)

In [Theorem 1], the filtering algorithm for Z (¢) is presented. If Z (¢) is evaluated, the
innovations process v (t) is calculated by (5).

[Theorem 1]

If the autocovariance function of the signal z(¢) is represented by K, (t,s) =A(t)B7T(s)
for 0=s={, then the linear least-squares filtering estimate Z (¢) is calculated by Eqs. (11)~
(14) sequentially (Nakamori etc., 1977).

Z(H)=A)e(t) (11)
de(t)/dt=] (t,0) (y (t) — Z (1)), Initial condition:e(0) =0 (12)
JEHR=(BT () —r(H)AT(t)) (13)
dr(t)/dt=] (t,t) (B() —A@®)r(t)), Initial condition:r (0) =0 14)

Proof of [Theorem 1] is shown in Nakamori etc. (1977).

The innovations process is given by (5) and the filtering estimate is calculated by the
Cauchy system of [Theorem 1] using the observed values and the covariance information of
z(t) and v (¢). It is interesting to note that the innovations process, which is white Gaussian
with the variance R, is yielded from the observed value. This is called the whitening filter
(Trees, 1968),since the input to the filter is the observed value and its output is the white
Gaussian innovations process.

4. Algorithms for g (t,s) and 7 (¢,7)

In [Theorem 2], algorithms for the optimal impulse response function g (¢,s) and the
fixed-point smoothing estimate Z (¢,7") are presented by using covariance information.

[Theorem 2]

If the autocovariance function of z(¢) is given by K.(t,s) =A(t)BT(s) for 0=s=t and
the crosscovariance function K,,(¢,s) between the signal x (¢) and the observed value y (s) is
assumed to be expressed by Ky, (t,s) =a(t)B7(s) for 0=s=tand K (t,s) =¢(t){T(s) for 0
=t=s, then the optimal impulse response function g (¢,s) is calculated by Egs. (15)~ (20)
sequentially.

g1(t,s):g(t,s) for 0=s=t
git,s)=a(t) (BT(s) —qT(s)AT(s))R! (15)
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dq(t)/dt=] (t,t) (B(t)—A(t)q(t)), Initial condition: g(0) =0 (16)

g:(t,s): g(t,s) for 0=t=s

&(t,s)= ()T (s) —a®)DT(s,H)AT(s) —e(OET (s,H) AT (s)) R’ 17
- 0D(T )/ 0T=—]J(T,T)A(T)D(T,t) (18)

aD (t,t)/dt=] (¢,t) (B(t)—A(t) D (¢,1), Initial condition: D (0,0) =0 (19)

OE (T ,t)/0T=] (T, T)({(T)—A(T)E(T,t)), Initial condition: E (t,t)=0  (20)

J (t,t) is calculated by (13) and (14).

Also, the fixed-point smoothing estimate T (¢,7") is calculated by Egs. (11)~(14), (18), (19),
(20) and (21) sequentially.

T (t,T): Fixed-point smoothing estimate
0z (t,T)/0T=e) (™ (T)—E™(T,t)AT™(T))R'(y(T)— z (1)) —
a(t)D™(T,HA™(T)R(y(T)— z (T)) (21)

T (t,t): Filtering estimate

ZtH=a@®)Q®) (22)

dQ (t)/dt= (BT (t) —qT()AT())R1(y(t) — Z (t)), Initial condition: Q(0)=0 (23)

Here, Z(T) and Z (¢) are calculated by using the algorithm for the filtering estimate in
[Theorem 1].
(Proof)

In the calculation of the optimal impulse response function g (¢,s) given by (10), the sta-
tistical quantity E[x (t)vT(s)] is necessary. From (5) Elx (t) 7 (s)] is developed as

Elx @)y (s)]=Elx () (y(s)— Z(s)T]
=E[lx(®)yT(s)1—Elx(t) Z7(s)]. (24)

In Nakamori etc.(1977), the linear least-squares filtering estimate Z (¢) is fomulated as
. t
z(0=[hits)y()ds. (25)

Substituting (25) into (24), one has

Elx(®)vT(s)I=Elz()yT(s)] —j;sE[z B yT(s)InT(s,s’)ds’. (26)
From Nakamori etc.(1977), one knows that

h(s,s)=A()] (s,8). (27)

Let us derive at first g;(¢,s) which denotes g (¢,s) for 0=s=¢. If one substitutes Kz, (¢,s)
=a(t)BT(s) (=Elx(t)yT(s)]) for 0=s=t and (27) into (26), one obtains
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Elz () (9)]=a(t) @) — [ 877 (s,5)ds'AT(s)). 28

If one introduces the function, which satisfies

«=[ 7,58 s, (29)
one can rewrite (28) as

Elx®)vT(s)I=a(t) BT (s) —q"(s)AT(s)). (30)

Substituting (30) into (10) yields (15).
Differentiating (29) with respect to ¢, one has

dg(8)/dt=] (4,18 () + j; ‘07 (t,5) /13 (s)ds’
=], BE)—A)q(@)) (31)

by using (29) and an identity (Nakamori etc., 1977)
aJ (¢,s)/0t=—] (t,H)A®)] (¢,s). (32)

The initial condition on the differential equation (31) for the function ¢ (¢), at t=0, is ¢ (0) =
0 from (29). It is noted that the function ¢ (¢) is equal to the function 7 (¢)(see (16) and (14)),
when the signal x () is observed with only additive white Gaussian noise v (¢).

Secondly, let us derive an expression of g (¢,s) (=g,(¢,s)) for 0=¢=<s. In the calculation of
the optimal impulse response function g:(¢,s), the statistical quantity E [z (¢) v7 (s)] should be
developed as seen from (10). From (26), E[x (t)v7(s)] for 0=t<s is also written as

Elx (t)u’(s)]=E[x(t)y7(s)]—LSE[x(t)yT(s’)]hT(s,s’)ds’. (33)

If one notes that K,,(t,s)=a(t)B7(s) for 0=s=tand K, (t,s) =¢(t){T(s) for 0=t<s, one
can express g:(t,s) as follows from (27) and (33).

gz(t,8)={E[x(t)yT(S)]—j;sE[x(t)yT(S’)]hT(s,S’)ds’}R-1
=)~ [ElzOyT()IAT(s,5)ds’
— [*Elz (g™ ()IA7 (5,5 ds R
=)~ [ a®BT )] (s, HAT()ds
— [Te 7)) (5,5)AT(5)ds IR (34)
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If one introduces functions

D(s,t)=f0'j(s,s’)3(s')ds’ (35)

and

E0=["J(s,5)0(s)ds, (36)
one can rewite (34) as

&(t,s)=[e®{T(s)—a@®) D" (s,H) AT (s) —e () ET(s,H) AT(s)IR . (37)
If one differentiates (35) with respect to s, one obtains

8D (s,t)/0s= j; ‘0] (s,5) /8B (s")ds’

= [T.946)] (5,5)8()ds
==J(s,5)A(s)D(s,t) (38)

by using (35) and an identity d/ (s,s’)/0s= —J (s,s)A(s)]J (s,s’) (Nakamori etc., 1977). An
initial condition on the partial differential equation (38) for D (s,t) at s=tis D (¢,t). D(¢,t) is
expressed by

Dtt) = fo Tt B(s))ds’ (39)

from (35). If one differentiates (39) with respect to #, one obtains
aD (t,0/dt=] (1,0 1)+ [ 9] (1,5 /0B (")

=] (LB ~] tDAD [T (t,)8(s)ds
=J(¢,H@BE)—AM®)D(,t)), D(0,0)=0, (40)
from (39) and the identity 0/ (s,s’)/0s=—] (s,s)A(s)] (s,s’) (Nakamori etc., 1977).

If one differentiates (36) with respect to s, one obtains

oF (s,t)/as=](s,s)C(s)+j:36](s,s’)/asc (s")ds’

=] (9L =T (5,9) [ AG) (5,5)C(5)ds
=7 (5,5 €O —AG)E (5,0), E(t,0=0, @

from (36) and the identity 9/ (s,s’)/0s=—] (s,s)A(s)] (s,s’).
From (4), (15) and (17), the fixed-point smoothing estimate is written as

2. D= ['ntoveds+ [Tat.vsds
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=a(t) [ (B7()~¢"(AT(HRv(s)ds+
e® [T (T (6)~ET(s.)AT () R v (s)ds -
a(t) [ 'DT(s,HAT(S)R v (s) ds. (42)

If one introduces a function @ (¢) given by

Q= 6" —a"ATE)R v (s)ds, 3)

one can rewrite (42) as

FED=a®QW+e) [ (T ()= ET(s,NAT()Rv()ds—
alt) f, "DT(s,H) AT (s)R-'v(s)ds. (44)

If one differentiates (44) with respect to T and uses the expression for the innovations
process of (5), one obtains the partial differential equation (21) for the fixed-point smoothing
estimate T (¢,T). If one differentiates (43) with respect to f, one readily obtains the
differential equation (23) for @ (¢). An initial condition on @ (¢) at =0 is @ (0) =0 from (43).
One finds that the initial condition on the partial differential equation (21) at T=tis T (¢,¢) =
a(t) @ (t), which denotes the filtering estimate of x (t) (Q.E.D.).

5. Existence of smoothing estimate in presented smoother

From (13) and (16), one obtains

dq(t)/dt= (BT (s) —r () AT ()R (B(H) —A(H)q(?)), q(0) =0. (45)

(45) looks like the Riccati type differential equation, which appeared in Nakamori etc.(1978) for
the white Gaussian observation noise. The existence and uniqueness for the solution of the
Riccati type differential equation (14) are already proved by Nakamori etc.(1978). In Kailath
(1976), it is indicated that the solution of a Riccati type nonlinear differential equation exists in
filtering problems of linear systems. This differential equation calculates the autocorrelation
function of the filtering estimate in the Kalman filter. The existence of the solution is
ensured by the following two points. (1) The upper bound for the autocorrelation function of
the filtering estimate is the autocorrelation function of the signal, since the filtering error
covariance function of the signal is a nonnegative definite matrix. (2) The lower bound for the
autocorrelation function of the filtering estimate is a null matrix. In this
section, the existence for the solution of (45) is considered by introducing a smoothing error
covariance function.
The smoothing error covariance function P (¢,7T) is defined as
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Pt,T)=Elx@®)—z¢T)x@®—z¢T), (46)
where t is the fixed-point. From an orthogonal projection lemma (46) is written as
Pt,T)=Elx@®)—x2¢T)x"(®)]
=Elx@®)x"W)I—-ElZ,T)z"(,T)]. 47

The smoothing error covariance function P(¢,7) and the autocorrelation function of the
smoothing estimate T (¢,7) are nonnegative definite matrices. Then

0=E[Zt,T)ZT @, T)I=Elx®)xT(t)]=K:(2,1). (48)

Here, K,(t,t) represents the autocorrelation function of the signal x (¢). Along the discussin
by Kailath (1976), it is found that the solution of the Riccati type differential equation (45)
exists for the bounded # X » matrix K,(¢,t).

Now, it is interesting to derive an equation for calculating P (¢,T'). Substituting (4) into (47),
one obtains

T (T
P(t,T)=K,(t,t)-—_/;j;g(t,s)E[u(s)uT(s’)]gT(t,s’)ds’ds
=K.(t.0)~ [ g(t,9)Rg™(t,5)ds (49)

by noting that the variance of the innovations process is R. If one differentiates (49) with
respect to T and uses the expression for g (¢,T) (=g:(¢t,T))

&, T)=(E®(T)—a®)D™(T,HA(T) —eWE™(T,H AT(T))R™* (50)

from (17), one obtains a partial differential equation

0P (¢,T)/0T=— (e (T) —a®) D™ (T ,HAT(T) —e() ET(T, ) A"(T))R™!
(C(Me" O —A(T)D(T,Ha™ () —A(T)E(T,t)e™ (1)) (61)

with an intial condition P (¢,0) = K, (¢,t).
For the case when T=¢{, the filtering error covariance function satisfies

dP (t,t)/dt=F )P (t,t) +Pt,OFT () —a@) (BT () —q" () AT(H))R*
BB —AMg®)a™ (@), P(0,0)=K:(0,0), (52)

from (15) and (49), provided that the relationship
da(t)/dt=F (t)a(t) (or 0K (t,s)/0t=F (t) K;(t,s)) (53)

is valid. Therefore, the smoothing and filtering error covariance functions are calculated by
(51) and (52) respectively. The filtering error covariance function P (¢,¢) is also used as an
initial value instead of P (¢,0) = K, (¢,t) in computing the partial differential equation (51) for
the smoothing error covariance function P (¢,T).
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6. Comparison of presented fixed-point smoother with previous one

Let us compare the presented fixed-point smoother with that in Nakamori (1989). The
fixed-point smoothing algorithm is summarized in [Theorem 3].

[Theorem 3]

If the autocovariance function K, (¢,s) of x (¢) is expressed by G (£) HT (s) for 0=s=t, and
an autocovariance function K, (¢,s) of the colored noise v.(t) by I (#)L7(s) for 0=s=t the
fixed-point smoothing estimate Z (¢,7) is calculated by the following Cauchy system. Here, it
is assumed that G (¢) and H (s) are bounded # X ¢ matrices, and I (¢) and L(s) are bounded »
X 7 matrices. Here, it is also assumed that the signal x (#) is uncorrelated with the colored
observation noise v.(s) for 0=s,t<oo,

T (t,T): Fixed-point smoothing estimate
ox (t, T)/0T=nt, T, T)y(T)+G(T)f(T)+I(T)S(T)), £(¢t,0)=0 (54)
Imitial condition of T (¢,T) at T=t: T (t,1)

T (¢,t): Filtering estimate

ztH=—G@®)f @) (55)
df ()/dt=N (¢,8) y (T) + G (D) f(T) +I(T)S(T)), f(0)=0 (56)
dS(T)Y/AdT=M (T, T)y(T)+G(T)f(T)+I(T)S(T)), S(0)=0 (57
h@t,T,T)=H®GC(T)-UG,T)GT(T)—W ¢, T)I™(T))R™! (58)
out, T/ oT=nt,T,T)H@®)+G(T)Y(T)+I(T)b(T)), U(t,0)=0’ (59)

Initial condition of U (t,T) at T=t: U(t,t)=—G@®)Y (¢)

ow (¢, T)0T=n, T, T)L(T)+G(T)O(T)+I(T)Z(T)), W(,0)=0 (60)
Initial condition of W (t,T) at T=t: W (t,t)=—G ()0 ()

dY (T)/dT=N (T, T)H(T)+G(M)Y(T)+I(T)b(T)), Y(0)=0 (61)
dO(T)/dT=N(T,T)(L(T)Y+G(TM)O(M)+I(T)Z(T)), 0(0)=0 (62)
N, T)=(—H"(T)=Y(T)G'(T)—O0(T)I"(T)R™! (63)
db(T)/dT=M (T, T)H(T)+G(T)Y(T)+I(T)b(T)), 0(0)=0 (64)
az (1) aT=M (T, T)L(T)+G(T)O(T)+I(T)Z(T)), Z(0)=0 (65)
MT,T)=(—L"(T)—b(T)G™(T)—Z(T)I™(T))R! (66)

The fixed-point smoothing algorithm in [Theorem 3] is derived from a well-known integral
equation (Trees, 1968) which an optimal impulse response function % (¢,s, T) satisfies.



S. Nakamor: DESIGN OF FIXED-POINT SMOOTHER BASED ON INNOVATIONS THEORY FOR 43
WHITE GAUSSIAN PLUS COLORED OBSERVATION NOISE

h(t,s,T)R=Kz(t,S)—j;rh(t,S’,T) (Kz(s’,s) + K (s’,8))ds’ (67)

The numbers of the differential equations of the fixed-point smoother in [Theorem 3] are
n(i+j7+1) for the partial differential equations and :+j-+ (i +7)?2 for the ordinary differential
equations. Those of the presented fixed-point smoother are n + 2#n’m’ for the partial
differential equations and (m’+#’) (1+#»’) +»’m’ for the ordinary differential equations. The
number of the ordinary differential equations in the presented fixed-point smoother is less than
that in [Theorem 3] by #’%> when i=j=m’=#’, and this fastens a computation time for the
optimal fixed-point smoothing estimate. Both smoothers in the current approach and that in [
Theorem 3] are optimal in the linear least-squares sense. The presented fixed-point
smoother is applicable to the case when the signal x (¢) is correlated with the colored noise
v.(s). However, the fixed-point smoother in [Theorem 3] can not be applied to this case from
a theoretical point of view.

7. A numerical simulation example

This section shows a numerical simulation example for the presented fixed-point smoother.
Signal x (¢) is generated by

dx (t)/dt=—kx (t) T u(t), Elu@®)u(s)1=2kpd (t—s), Elx(0)?1=p, k=5, P=10.
(63)

The autocovariance function of the signal x(f) is expressed by K (t,s) = pe~**=*
(Baggeroer, 1970) for 0=s<¢. Also, the colored noise process is a Wiener process which is
generated by

dv.(t)/dt=w(t), Elw)w(s)]=0%0({t—s), Elv.(0)?1=0, ¢?=10. (69)

The autocovariance function of the colored noise process is expressed by K.(t,s) = o%s
(Baggeroer, 1970) for 0=s=t. Hence, the autocovariance function of z(¢) (=x (¢) +v.(¢)) is

Kz(t)s) =Kx(t,3)+Kc(t,S)
=A(t)B”(s)
o [pe—kt 0.2] [

eks ’

L] o=s=t, (70)
since Elx (t)v.(s)]1=0. From (70), one finds that A(¢) = [pe~* ¢?] and B (s) = [e** s]. Also,
K., (t,s) is expressed by

K, (t,s) =K,(t,s)
=a(t)B(s)
—pet & | 0SsSt, (1)
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Signal x(t) and colored noise vc(t)

-2

Fig. 1 Signal x (¢) and colored noise process v, () vs. £
a...Signal process x (t).

b...Colored noise process v, (t) for v.(0) =— 0.1 when the colored noise parameter is 2= 10.

£(0.01)=-0.65951

b /

£(0.01)=-0.11570

Fixed-point smoothing estimate %(0.01,T)

£(0.01)=-1.8999 /a

-2

x(0.01)=-1.8996

Fig. 2 Fixed-point smoothing estimate Z (0.01, T) vs. T for v.(0) = — 0.1 when the colored noise parameter
is 6?=10.
a...7(0.01, T) for white Gaussian observation noise N (0, 0.12).
b... £ (0.01, T) for white Gaussian observation noise N (0, 0.3?).
C...Z(0.01, T) for white Gaussian observation noise N (0, 0.5%).

since Elx (t)v:(s)]1=0 and E[z (t)v(s)] = 0. Substituting A(¢t), B(t), a(t), B(t), @) (=
B(t)) and {(¢) (= a(t)) into [Theorem 2], the fixed-point smoothing estimate Z (¢,T) is
calculated.  Fig.1 illustrates the signal process (graph a) and the colored noise process (graph
b) for 6 = 10 and the initial value v.(0) = — 0.1. Fig.2 illustrates the fixed-point
smoothing estimate Z (0.01, T') vs. T when the initial value of the colored noise is v.(0) = —
0.1 and the colored noise parameter is 6= 10. Graph a illustrates the fixed-point smoothing
estimate Z (0.01, T) for the white Gaussian observation noise N (0, 0.1?). Similarly, graphs
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b and c illustrate T (0.01, T) for the white Gaussian observation noises N (0, 0.3?%
and N (0, 0.5%) respectively. Fig.3 and Fig.4 illustrate the fixed-point smoothing estimates

7(0.03, T) and 7(0.05, T) vs. T respectively when the initial value of the
colored noise is v.(0) = — 0.1 and the colored noise parameter is 6= 10. In Fig.3 and Fig.4,
graphs a, b and c depict the fixed-point smoothing estimates for the white Gaussian
observation noises N (0, 0.1%), N (0, 0.3%) and N (0, 0.5%). The fixed-point smoothing
estimates start with the filtering estimates at their fixed-points. From Fig.3, Fig.4 and Fig.5,

0 0.05 0.1 T
T T
a
o
o
S
&
QU
3
o
g
Rl
ﬁ
v -1} %(0.03)=-1.0524
o0
=
Rl
ﬁ c
e /
E %(0.03)=-1.4686
) b
I /
=]
a
5 * 2(0.03)=-1,7979 a
Qo L
»
Eal
2
-2 L x(0.03)=-1.7094

Fig. 3 Fixed-point smoothing estimate Z (0.03, T) vs. T for v.(0) = —0.1 when the colored noise parameter
is *=10.
a...7(0.03, T) for white Gaussian observation noise N (0, 0.1%).
b... £(0.03, T) for white Gaussian observation noise N (0, 0.3%).
C...Z(0.03, T) for white Gaussian observation noise N (0, 0.5%).

0 0.05 0.1 0.2 T

£(0.05)=-1.1934

£(0.05)=-1.4900

(0.05)=-1.6418

Fixed-point smoothing estimate ®(0.05,T)

-2 x(0.05)=-1.5364

Fig. 4 Fixed-point smoothing estimate T (0.05, T) vs. T for v.(0) = —0.1 when the colored noise parameter
is 6?=10.
a...T(0.05, T) for white Gaussian observation noise N (0, 0.1%),
b...Z(0.05, T) for white Gaussian observation noise N (0, 0.3%).
C...Z(0.05, T) for white Gaussian observation noise N (0, 0.5%).
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one finds that the filtering and fixed-point smoothing estimates have a tendency to approach to
the true value of the signal x (¢) gradually as ¢ and T become large.

8. Conclusions

Some numerical results have shown that the original fixed-point smoothing algorithm pro-
posed in this paper is feasible. Main advantage of the current estimator is that one needs not
identify the state-space model in estimating the stochastic signal except the covariance
information and the observed value.
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