A class of random fractal tessellations in hyperbolic planes

Yukinao ISOKAWA, Kagoshima University

1 Introduction

In his famous Essay Mandelbrot (1982) has presented various fractal models for the Universe. He and his predecessors have demanded that these models satisfy the two conditions which on the surface are contradictory each other. The one of these is that the mass $M(\rho)$ in a sphere with radius ρ and center at the Earth grows as ρ^{D} when ρ tends to infinity. Here D is a fraction such that $0 \leq D \leq 3$, which Mandelbrot call the fractal dimension of the Universe. The other condition is that the mass distribution in the Universe satisfies some cosmographic principle, which roughly states that to every observer at any position, the mass distribution has the same appearance. Mandelbrot has found that in order to satisfy both conditions, it is necessary to introduce randomness into fractal models.

Although these models have great values both theoretically and practically, it seems to the present author that they have an unnecessary restriction. Mandelbrot's study and later studies (for these see Falconer (1993)) have confined themselves to fractal models in Euclidean spaces. In Euclidean spaces, among various types of fractals, the most simple are selfsimilar ones. On the contrary, in hyperbolic spaces, it is impossible to consider similarity. As is well-known, the existence of similar sets is equivalent to the axiom of parallelism (As for the hyperbolic geometry, consult, for example, Fenchel (1989)). How we define fractals in hyperbolic spaces?

In this paper we present a class of random tessellations in hyperbolic planes, and show that they have a fractal property. To put it more explicitly, we construct random tessellations with unbounded domains which are determined by ultraparallel straight lines. In a special case these tessellations reduce to non-random ones which are composed of mutually con-
gruent domains．Imagine that the mass lies uniformly on lines which are boundaryies of constituent damains of a tessellation，and interiors of these domains are void of the mass．Let $M(\rho)$ be the total mass in a disk with radius ρ and center at some point．Then our main theorem roughly states that the expectation of $M(\rho)$ behaves as $\mathrm{e}^{D \rho}$ as ρ tends to infinity，where D is a fraction such that $0 \leq D \leq 1$ ．Thus we observe a somewhat peculiar phenomenon that tessellation which is composed of strictly or statistically congruent domains exhibit a fractal behaviour．

In Section 2 we first present the definition of random tessellations with which we concern ourselves throughout the paper．And after preparing several lemmas，we offer a heuristic argument which derives an infinite se－ ries that approximates the expectation of $M(\rho)$ ．In Section 3 we study asymptotic behaviour of this series in a special case．In Section 4，based on the result established in the previous section，we prove our main theorem． Before Section 5，we do not pay any attention to any cosmographic princi－ ple．In Section 5 we construct tessellations with a cosmographic principle whose composing domains are statistically congruent．Especially we offer non－random tessellations whose domains are strictlty congruent．

2 Definitions and preliminaries

Random fractal tessellations which we consider in this paper will be con－ structed by generating ultraparallel lines according to a branching stocahstic process．Thus we introduce a branching stocahstic process on $\{0,1,2, \ldots\}$ ． We represnt a realization of this process by a tree，whose nodes are finite sequences of positive integers $\{1,2,3, \ldots\}$ ．We denote this random tree by T．Now，let \mathbf{i} be a node of \mathbf{T} and let $N_{\mathbf{i}}$ be the number of outgoing edges from the node i．Particularly when \mathbf{i} is the root node of \mathbf{T} ，we denote this number by N_{\emptyset} ．We assume that
（A1）all $N_{\mathbf{i}}$ are mutually independent and idetically distributed．

We denote this common probability distribution by $Q=\left\{q_{n}: n=0,1,2, \ldots\right\}$ ． We allow the possibility that $N_{\mathbf{i}}=0$ ，that is，$q_{0}>0$ ．

Now we go into the realm of the hyperbolic geometry a little while．Let \mathbf{D} be the Poincaré disk and $\partial \mathbf{D}$ be the boundary of \mathbf{D} ．Furthermore，let
H be the half-plane $\{x+i y: y>0\}$ and l_{\emptyset} be the line $\{x+i y: y=0\}$. In \mathbf{D}, a line represented by a circle which is orthogonal to $\partial \mathbf{D}$. Denote by $l(\alpha, \theta)$ the line whose two points of infinity are $\mathrm{e}^{i(\theta+\alpha)}$ and $\mathrm{e}^{i(\theta-\alpha)}$. Thus α is the parallel angle at the origin (the center of \mathbf{D}). Consider the translation which moves the line l_{\emptyset} to the line $l(\alpha, \theta)$. There are infinitely many such translations. Out of these we adopt the translation $\phi=\phi(\cdot ; \alpha, \theta)$ whose inverse is expressed as

$$
\phi^{-1}(z)=i \mathrm{e}^{-i \theta} \frac{z-z_{0}}{1-\overline{z_{0}} z}, \quad z \in \mathbf{D}
$$

where

$$
z_{0}=\frac{1-\sin \alpha}{\cos \alpha} \mathrm{e}^{i \theta}
$$

In order to state the manner of generating lines explicitly, we introduce a family of probability distributions $\left\{Q_{n}: n=1,2, \ldots\right\}$ where each Q_{n} is a distribution on $\left\{\left(\alpha_{1}, \theta_{1}, \ldots, \alpha_{n}, \theta_{n}\right): 0<\alpha_{j}<\frac{\pi}{2}, 0<\theta_{j}<\pi\right.$ for every $\left.j\right\}$. Lines generated according to Q_{n} lie in the half-plane H. In the following we only consider the case that these generated lines are mutually ultraparallel. Thus we assume that for each n
(A2) the support of Q_{n} is contained in

$$
\left\{\left(\alpha_{1}, \theta_{1}, \ldots, \alpha_{n}, \theta_{n}\right): 0<\theta_{1}-\alpha_{1}<\theta_{1}+\alpha_{1}<\cdots<\theta_{n}-\alpha_{n}<\theta_{n}+\alpha_{n}<\pi\right\}
$$

We turn to define tessellations which are determined by ultraparallel lines. We generate these lines in the following manner :

1. First we generate N_{\emptyset} lines according to the probability distribution Q and the family of probability distributions $\left\{Q_{n}: n=1,2, \ldots\right\}$. We denote one of the resulting lines by $l\left(\alpha_{i_{1}}, \theta_{i_{1}}\right)$.
2. Suppose that a line $l\left(\alpha_{i_{1} i_{2} \ldots i_{k-1}}, \theta_{i_{1} i_{2} \ldots i_{k-1}}\right)$ has already been generated. Then we generate $N_{i_{1} i_{2} \ldots i_{k-1}}$ lines. Then we translate these lines by the translation $\phi\left(\cdot ; \alpha_{i_{1} i_{2} \ldots i_{k-1}}, \theta_{i_{1} i_{2} \ldots i_{k-1}}\right)$. We denote one of these lines by $l\left(\alpha_{i_{1} i_{2} \ldots i_{k-1} i_{k}}, \theta_{i_{1} i_{2} \ldots i_{k-1} i_{k}}\right)$.
3. We repeat the procedure stated in step 2 indefinitely.

As soon as we have generated infinitely many ultralparallel lines

$$
\left\{l\left(\alpha_{\mathbf{i}}, \theta_{\mathbf{i}}\right): \mathbf{i} \in \mathbf{T}\right\}
$$

鹿児島大学教育学部研究紀要 自然科学編 第48巻（1997）

we obtain a tessellation with unbounded domains．

Now we prepare several lemmas concering lines in the hyperbolic plane．

Lemma 1．If the line $l\left(\alpha_{i_{1} i_{2} \ldots i_{k-1} i_{k}}, \theta_{i_{1} i_{2} \ldots i_{k-1} i_{k}}\right)$ is a translate of a line $l\left(\alpha_{i_{k}}, \theta_{i_{k}}\right)$ by the translation $\phi\left(\cdot ; \alpha_{i_{1} i_{2} \ldots i_{k-1} i_{k}}, \theta_{i_{1} i_{2} \ldots i_{k-1} i_{k}}\right)$ ，then

$$
\tan \alpha_{i_{1} i_{2} \ldots i_{k-1} i_{k}}=\frac{\sin \alpha_{i_{1} i_{2} \ldots i_{k-1}} \sin \alpha_{i_{k}}}{\cos \alpha_{i_{k}}+\cos \alpha_{i_{1} i_{2} \ldots i_{k-1}} \sin \theta_{i_{k}}} .
$$

Proof Lemma 1．Denote $\alpha_{i_{1} i_{2} \ldots i_{k-1}}, \theta_{i_{1} i_{2} \ldots i_{k-1}}, \alpha_{i_{1} i_{2} \ldots i_{k-1} i_{k}}, \theta_{i_{1} i_{2} \ldots i_{k-1} i_{k}}, \alpha_{i_{k}}$ and $\theta_{i_{k}}$ by $\alpha, \theta, \alpha^{\prime}, \theta^{\prime}, \alpha_{0}$ and θ_{0} respectively．In \mathbf{D} lines $l\left(\alpha_{0}, \theta_{0}\right)$ and $l\left(\alpha^{\prime}, \theta^{\prime}\right)$ are represented by the equations

$$
|z|^{2}-\left(\overline{c_{0}} z+c_{0} \bar{z}\right)+1=0 \quad \text { and } \quad|z|^{2}-\left(\overline{c^{\prime}} z+c^{\prime} \bar{z}\right)+1=0
$$

respectively，where

$$
c=\frac{1}{\cos \alpha_{0}} \mathrm{e}^{i \theta_{0}} \quad \text { and } \quad c=\frac{1}{\cos \alpha^{\prime}} \mathrm{e}^{i \theta^{\prime}} .
$$

Then，because $l\left(\alpha^{\prime}, \theta^{\prime}\right)$ is a translate of $l\left(\alpha_{0}, \theta_{0}\right)$ by the translation $\phi(\cdot ; \alpha, \theta)$ ， we can derive

$$
\begin{equation*}
c^{\prime}=-i \mathrm{e}^{i \theta} \cdot \frac{2 i r+c_{0}+\overline{c_{0}}(i r)^{2}}{1+\overline{c_{0}} \cdot i r+c_{0} \cdot \overline{i r}+|i r|^{2}} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
r=\frac{1-\sin \alpha}{\cos \alpha} . \tag{2}
\end{equation*}
$$

Using（1）and（2），after an elementary calculation，we obtain

$$
\frac{1}{\alpha^{\prime}}=\left|c^{\prime}\right|=\frac{\cos \alpha_{0}+\cos \alpha \sin \theta_{0}}{\sqrt{\cos ^{2} \alpha \cos ^{2} \alpha_{0}+\sin ^{2} \alpha+2 \cos \alpha \cos \alpha_{0} \sin \theta_{0}+\cos ^{2} \alpha \sin ^{2} \theta_{0}}}
$$

From this it follows that

$$
\tan \alpha^{\prime}=\frac{\sin \alpha_{0} \sin \alpha}{\cos \alpha+\cos \alpha_{0} \sin \alpha},
$$

which is the result we have to prove．

Lemma 2．Denote the hyperbolic distance between l_{\emptyset} and $l(\alpha, \theta)$ by $d\left(l_{\varnothing}, l(\alpha, \theta)\right)$ ．Then

$$
\cosh d\left(l_{\emptyset}, l(\alpha, \theta)\right)=\frac{\sin \theta}{\sin \alpha} .
$$

Proof of Lemma 2．Let u_{1}, v_{1} be points of infinity of l_{1} ，and u_{2}, v_{2} be those of l_{2} ．Denote the cross ratio of four points $u_{1}, v_{1}, u_{2}, v_{2}$ by r ．In the

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA
hyperbolic geometry it is known that if two lines l_{1} and l_{2} are ultraparallel, then $\cosh d\left(l_{1}, l_{2}\right)=\frac{1+r}{|1-r|}$. In order to prove the lemma, it is sufficient to put $u_{1}=1, v_{1}=-1, u_{2}=\mathrm{e}^{i(\theta+\alpha)}$, and $v_{2}=\mathrm{e}^{i(\theta-\alpha)}$.

Let D_{ρ} be the disk with radius ρ and with center at the origin, where ρ denotes the hyperbolic distance. Denote the length of a line segment by $m(\cdot)$.

Lemma 3.

$$
m\left(l(\alpha, \theta) \cap D_{\rho}\right)=2 \log \left(\cosh \rho \sin \alpha+\sqrt{\cosh ^{2} \rho \sin ^{2} \alpha-1}\right) .
$$

Proof of Lemma 3. Without loss of generality we suppose that $\theta=0$. In D the line $l(\alpha, \theta)$ can be represented by the equation $|z|^{2}-(\bar{c} z+c \bar{z})+1=0$, where $c=1 / \cos \alpha$. Moreover, the circle $C_{\rho}=\partial D_{\rho}$ can be represented by an Euclidean circle with center at the origin and radius $r=\tanh \frac{\rho}{2}$. Then, letting two points where $l(\alpha, \theta)$ and C_{ρ} intersect be $r \mathrm{e}^{ \pm i \omega}$, we have

$$
\begin{equation*}
\cos \omega=\frac{1+r^{2}}{2 r} \cos \alpha=\operatorname{coth} \rho \cos \alpha \tag{3}
\end{equation*}
$$

Now, from the hyperbolic geometry, we borrow the knowledge that for two points z_{1} and z_{2} in \mathbf{D}, the hyperbolic distance between these points is given by

$$
\log \frac{1+\left|\frac{z_{1}-z_{2}}{1-\overline{z_{1}} z_{2}}\right|}{1+\left|\frac{z_{1}-z_{2}}{1-\overline{z_{1}} z_{2}}\right|}
$$

Then, putting $z_{1}=r \mathrm{e}^{i \omega}$ and $z_{2}=r \mathrm{e}^{-i \omega}$, and substituting (3), we can complete the proof.

In this paper we concern ourself with the total length of the portions of lines $\left\{l\left(\alpha_{\mathbf{i}}, \theta_{\mathbf{i}}\right): \mathbf{i} \in \mathbf{T}\right\}$ inside the disk D_{ρ}, that is,

$$
M(\rho)=\sum_{\mathbf{i} \in \mathbf{T}} m\left(l\left(\alpha_{\mathbf{i}}, \theta_{\mathbf{i}}\right) \cap D_{\rho}\right) .
$$

We are interested in asymptotic behaviour of $\mathrm{E}(M(\rho))$ as ρ tends to infinity, where $\mathrm{E}(\cdot)$ denotes the expectation, and particularly in comparison with the area of D_{ρ}. Now it is known that the area of D_{ρ} is given by $2 \pi(\cosh \rho-1)$, which grows approximately as $\frac{1}{2} \mathrm{e}^{\rho}$ as ρ tends to infinity. Thus it seems reasonable to investigate asymptotic behaviour of $\log \mathrm{E}(M(\rho))$ instead of

鹿児島大学教育学部研究紀要 自然科学編 第48巻（1997）

$\mathrm{E}(M(\rho))$ ．Define the functions $f(t)$ and $f_{0}(t)$ as

$$
f(t)= \begin{cases}2 \log \left(t+\sqrt{t^{2}-1}\right) & \text { for } t \geq 1 \\ 0 & \text { for } t<1\end{cases}
$$

and

$$
f_{0}(t)=\left\{\begin{array}{ll}
\log t & \text { for } t \geq 1 \\
0 & \text { for } t<1
\end{array} .\right.
$$

Then，by the usual argument in the calculus，we can show that there is a constant K such that

$$
2 f_{0}(t) \leq f(t) \leq K f_{0}(t)
$$

Thus，if we put

$$
M_{0}(\rho)=\sum_{\mathbf{i} \in \mathbf{T}} f_{0}\left(\cosh \rho \sin \alpha_{\mathbf{i}}\right)
$$

we have

$$
2 M_{0}(\rho) \leq M(\rho) \leq K M_{0}(\rho) .
$$

Accordingly，it is sufficient to study asymptotic behaviour of $\log \mathrm{E}\left(M_{0}(\rho)\right)$ ．

Now we give a following heuristic argument which will be rigorously proved later under appropriate assumptions ：

1．From Lemma 1 it follows that

$$
\tan \alpha_{i_{1} i_{2} \ldots i_{k}} \leq \tan \alpha_{i_{1} i_{2} \ldots i_{k-1}} \cdot \frac{\sin \alpha_{i_{k}}}{\sin \theta_{i_{k}}}
$$

2．Accordingly， $\operatorname{since} \sin \alpha_{i_{k}} / \sin \theta_{i_{k}}<1$ ，we can expect $\alpha_{i_{1} i_{2} \ldots i_{k}} \rightarrow 0$ as $k \rightarrow \infty$ ．

3．Thus，when $k \rightarrow \infty$ ，

$$
\sin \alpha_{i_{1} i_{2} \ldots i_{k}} \sim \tan \alpha_{i_{1} i_{2} \ldots i_{k}} \sim \sin \alpha_{i_{1} i_{2} \ldots i_{k-1}} \cdot \frac{\sin \alpha_{i_{k}}}{\cos \alpha_{i_{k}}+\sin \theta_{i_{k}}}
$$

where the notation＂～＂means＂both sides are asymptotically equal＂．
Based on these observations，in the remainder of this section，we offer a rough estimate for $\mathrm{E}\left(M_{0}(\rho)\right)$ ．

Before we set about this task，we prepare some notations．Let \mathbf{T}_{k} be the set of nodes of \mathbf{T} with length k ．Let \mathcal{F}_{0} be the trivial σ－fields，and given \mathcal{F}_{k-1} ，define

$$
\mathcal{F}_{k}=\sigma\left(\mathcal{F}_{k-1} \cup\left\{N_{\mathbf{i}}, l\left(\alpha_{\mathbf{i}}, \theta_{\mathbf{i}}\right): \mathbf{i} \in \mathbf{T}_{k-1}\right\}\right) .
$$

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA Then we may expect

$$
\begin{aligned}
& \mathrm{E}\left(\sum_{i_{1} i_{2} \ldots i_{k}} f_{0}\left(\cosh \rho \sin \alpha_{i_{1} i_{2} \ldots i_{k}}\right) \mid \mathcal{F}_{k-1}\right) \\
& \quad \sim \mathrm{E}\left(\left.\sum_{i_{1} i_{2} \ldots i_{k}} f_{0}\left(\cosh \rho \sin \alpha_{i_{1} i_{2} \ldots i_{k-1}} \cdot \frac{\sin \alpha_{i_{k}}}{\cos \alpha_{i_{k}}+\sin \theta_{i_{k}}}\right) \right\rvert\, \mathcal{F}_{k-1}\right) \\
& \quad=\sum_{i_{1} i_{2} \ldots i_{k-1}} \mathrm{E}\left(\sum_{j=1}^{N} f_{0}\left(\cosh \rho \sin \alpha_{i_{1} i_{2} \ldots i_{k-1}} \cdot \frac{\sin A_{j}^{(N)}}{\cos A_{j}^{(N)}+\sin \Theta_{j}^{(N)}}\right)\right),
\end{aligned}
$$

where N is a random variable with probability distribution Q, and when $N=n,\left(A_{1}^{(n)}, \Theta_{1}^{(n)}, \ldots, A_{n}^{(n)}, \Theta_{n}^{(n)}\right)$ is a random vector with probability distribution Q_{n}.
Now we introduce a random vector $\left(\Lambda_{1}^{(n)}, \ldots, \Lambda_{n}^{(n)}\right)$ by setting

$$
\Lambda_{j}^{(n)}=\frac{\sin A_{j}^{(n)}}{\cos A_{j}^{(n)}+\sin \Theta_{j}^{(n)}}
$$

for $j=1, \ldots, n$, and denote its probability distribution by P_{n}. Moreover, we define an operator Λ by

$$
\left(\Lambda f_{0}\right)(t)=\mathrm{E}\left(\sum_{j=1}^{N} f_{0}\left(t \Lambda_{j}^{(N)}\right)\right)
$$

Then we obtain the following

$$
\begin{align*}
& \mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k}} f_{0}\left(\cosh \rho \sin \alpha_{\mathbf{i}}\right) \mid \mathcal{F}_{k-1}\right) \\
& \quad \sim \sum_{\mathbf{i} \in \mathbf{T}_{k-1}}\left(\Lambda f_{0}\right)\left(\cosh \rho \sin \alpha_{\mathbf{i}}\right) \tag{4}
\end{align*}
$$

Applying (4) k times, we can get

$$
\begin{equation*}
\mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k}} f_{0}\left(\cosh \rho \sin \alpha_{\mathbf{i}}\right)\right) \sim\left(\Lambda^{k} f_{0}\right)(\cosh \rho) \tag{5}
\end{equation*}
$$

Accordingly, by a heuristic argument, we have derived

$$
\mathrm{E}\left(M_{0}(\rho)\right) \sim \sum_{k=0}^{\infty}\left(\Lambda^{k} f_{0}\right)(\cosh \rho)
$$

In the next section we will investigate asymptotic behaviour of this infinite series.

3 Asymptotic behaviour of an approximated expectation of the mass distribution

Let $\left\{p_{j}: j=1,2, \ldots, m\right\}$ be positive numbers，$\left\{\lambda_{j}: j=1,2, \ldots, m\right\}$ be positive numbers such that $\lambda_{j}<1(j=1,2, \ldots, m)$ ，and define an operator Λ by

$$
\begin{equation*}
(\Lambda f)(t)=\sum_{j=1}^{m} p_{j} f\left(\lambda_{j} t\right) \tag{6}
\end{equation*}
$$

where

$$
f(t)=\left\{\begin{array}{cc}
\log t & \text { for } t \geq 1 \tag{7}\\
0 & \text { for } t<1
\end{array} .\right.
$$

In this section we study asymptotic behaviour of an infinite series

$$
\begin{equation*}
F(t)=\sum_{k=0}^{\infty}\left(\Lambda^{k} f\right)(t) . \tag{8}
\end{equation*}
$$

as t tends to infinity．In turn，as will be seen later in this section，in order to study asymptotic behaviour of the infinite series（8），we have to know asymptotic behaviour of the following integral
（9）$\quad I(t)=I(t ; c)=(2 \pi)^{-\frac{m-1}{2}} \int_{0}^{\infty} \cdots \int_{0}^{\infty} z^{c} \frac{z^{z+\frac{1}{2}}}{\prod_{j} x_{j}^{x_{j}+\frac{1}{2}}} \prod_{j} p_{j}^{x_{j}}$

$$
\cdot f\left(t \prod_{j} \lambda_{j}^{x_{j}}\right) \prod_{j} d x_{j}
$$

where $z=\sum_{j=1}^{m} x_{j}, c$ is a constant and the index j of every product in（9） runs over $\{1,2, \ldots, m\}$ ．

In the integal（9）we change variables as

$$
\left\{\begin{aligned}
x_{j} & =z u_{j} \\
x_{m} & =z\left(1-\sum^{\prime} u_{j}\right)
\end{aligned} \quad(j=1,2, \ldots, m-1)\right.
$$

where the sum \sum^{\prime} is taken over $\{1,2, \ldots, m-1\}$ ．Then，since the Jacobian

$$
\frac{\partial\left(x_{1}, x_{2}, \ldots, x_{m}\right)}{\partial\left(z, u_{1}, \ldots, u_{m-1}\right)}=z^{m-1}
$$

we have

$$
\begin{aligned}
& I(t)=(2 \pi)^{-\frac{m-1}{2}} \int_{0}^{\infty} d z \int_{D} \ldots \int\left(\prod_{j} u_{j}\right)^{-\frac{1}{2}}\left(\frac{\prod_{j} p_{j}^{u_{j}}}{\prod_{j} u_{j}^{u_{j}}}\right)^{z} \\
& \cdot f\left(t\left(\prod_{j} \lambda_{j}^{u_{j}}\right)^{z}\right) z^{\frac{m-1}{2}+c} \prod_{j}^{\prime} d u_{j}
\end{aligned}
$$

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA where $u_{m}=1-\sum^{\prime} u_{j}$ and

$$
D=\left\{\left(u_{1}, u_{2}, \ldots, u_{m-1}\right): \sum^{\prime} u_{j} \leq 1\right\}
$$

Now, using the vector notation $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{m-1}\right)$, we introduce the following functions

$$
\begin{aligned}
& h(\mathbf{u})=-\sum_{j=1}^{m} u_{j} \log u_{j}, \\
& a(\mathbf{u})=\sum_{j=1}^{m} a_{j} u_{j}, \quad a_{j}=\log \frac{1}{\lambda_{j}},
\end{aligned}
$$

and

$$
b(\mathbf{u})=\sum_{j=1}^{m} b_{j} u_{j}, \quad b_{j}=\log \frac{1}{p_{j}} .
$$

Then $I(t)$ can be expressed as

$$
\begin{aligned}
& I(t)=(2 \pi)^{-\frac{m-1}{2}} \int_{0}^{\infty} d z \int_{D} \ldots \int\left(\prod_{j} u_{j}\right)^{-\frac{1}{2}} d^{\prime} \mathbf{u} \\
& \int_{0}^{\infty} \mathrm{e}^{z(h(\mathbf{u})-b(\mathbf{u}))} f\left(t \mathrm{e}^{-z a(\mathbf{u})}\right) z^{\frac{m-1}{2}+c} d z
\end{aligned}
$$

where $d^{\prime} \mathbf{u}=\prod_{j}^{\prime} d u_{j}$.
Moreover we introduce the functions

$$
\mu(\mathbf{u})=\frac{h(\mathbf{u})-b(\mathbf{u})}{a(\mathbf{u})}
$$

and

$$
k(\mathbf{u})=(2 \pi)^{-\frac{m-1}{2}}\left(\prod_{j} u_{j}\right)^{-\frac{1}{2}} a(\mathbf{u})^{-\frac{m+1}{2}-c}
$$

Then, after the change of variable as $z=\frac{1}{a(\mathbf{u})} \log \frac{1}{y}$, we have

$$
\begin{align*}
I(t)= & \int \cdots \int k(\mathbf{u}) d^{\prime} \mathbf{u} \tag{10}\\
& \cdot \int_{0}^{1} f(t y)\left(\log \frac{1}{y}\right)^{\frac{m-1}{2}+c} \frac{d y}{y^{1+\mu(\mathbf{u})}} .
\end{align*}
$$

At this point we prepare several lemmas.

Lemma 1．Let μ and δ be positive real constants，and let

$$
g(t)=g(t ; \mu, \delta)=\int_{0}^{1} f(t x)\left(\log \frac{1}{x}\right)^{\delta} \frac{d x}{x^{1+\mu}}
$$

Then，as $t \rightarrow \infty$ ，

$$
g(t)=t^{\mu}(\log t)^{2+\delta} \cdot \frac{1}{\mu^{2}(\log t)^{2}}\left(1-(\mu \log t+1) \mathrm{e}^{-\mu \log t}\right)+\epsilon(t ; \mu, \delta)
$$

where

$$
|\epsilon(t ; \mu, \delta)| \leq t^{\frac{\mu}{2}}(\log t)^{2+\delta} .
$$

Proof of Lemma 1．Changing variable as $t x=y$ ，we have

$$
\begin{aligned}
g(t) & =t^{\mu} \int_{0}^{t} f(y)(\log t-\log y)^{\delta} \frac{d y}{y^{1+\mu}} \\
& =t^{\mu} \int_{1}^{t} \log y(\log t-\log y)^{\delta} \frac{d y}{y^{1+\mu}}
\end{aligned}
$$

Again changing variable as $\log y=z \log t$ ，we have

$$
g(t)=t^{\mu}(\log t)^{2+\delta} \int_{0}^{1} z(1-z)^{\delta} \mathrm{e}^{-\mu z \log t} d z
$$

Then，noting that

$$
\int_{\frac{1}{2}}^{1} z(1-z)^{\delta} \mathrm{e}^{-\mu z \log t} d z \leq \int_{\frac{1}{2}}^{1} z \mathrm{e}^{-\mu z \log t} d z \leq \frac{1}{2} t^{-\frac{\mu}{2}}
$$

we get

$$
g(t)=t^{\mu}(\log t)^{2+\delta} \int_{0}^{1} z \mathrm{e}^{-\mu z \log t} d z+\epsilon(t ; \mu, \delta)
$$

Since

$$
\int_{0}^{1} x \mathrm{e}^{-\nu x} d x=\frac{1}{\nu^{2}}\left(1-(\nu+1) \mathrm{e}^{-\nu}\right),
$$

where ν is any positive constant，the proof of lemma is completed．

Lemma 2．In the domain D ，the function $\mu(\mathbf{u})$ has the unique maxi－ mum $\mu_{\max }$ at a point \mathbf{u}_{0} ．This maximum $\mu_{\max }$ is the unique root of the equation

$$
\sum_{j=1}^{m} p_{j} \lambda_{j}^{\mu}=1
$$

and the point \mathbf{u}_{0} can be determined by

$$
u_{j}=p_{j} \lambda_{j}^{\mu_{\max }}
$$

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA
Proof of Lemma 2. Regard the function μ as a function of variables $\tilde{\mathbf{u}}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ with the constraint $\sum_{j=1}^{m} u_{j}=1$, and consider the function

$$
\tilde{\mu}(\tilde{\mathbf{u}})=\mu(\tilde{\mathbf{u}})-\gamma \cdot\left(\sum_{j=1}^{m} u_{j}-1\right)
$$

where γ is a positive constant. Letting $\frac{\partial \tilde{\mu}}{\partial u_{j}}=0$ for all $j=1,2, \ldots, m$, we have

$$
\begin{equation*}
\left(1+\log u_{j}+b_{j}\right) a(\tilde{\mathbf{u}})+a_{j}(h(\tilde{\mathbf{u}})-b(\tilde{\mathbf{u}}))+\gamma a(\tilde{\mathbf{u}})^{2}=0 \tag{11}
\end{equation*}
$$

Multiplying (11) by u_{j} and summing over $j=1,2, \ldots, m$, we get

$$
\gamma=-\frac{1}{a(\tilde{\mathbf{u}})} .
$$

Putting this into (11), we can deduce that in the interior of the domain D there exists only one extream point $\tilde{\mathbf{u}}$ which satisfies a system of equations

$$
\begin{equation*}
u_{j}=p_{j} \lambda_{j}^{\mu(\tilde{\mathbf{u}})} \tag{12}
\end{equation*}
$$

Since this extream point lies on the hyperplane $\sum_{j=1}^{m} u_{j}=1$, the extream value μ has to satisfy the equation

$$
\begin{equation*}
\sum_{j=1}^{m} p_{j} \lambda_{j}^{\mu}=1 \tag{13}
\end{equation*}
$$

It remains to show that this extream value is really the maximum. For this purpose, it is sufficient to prove that at this extream point which satisfies (12), the matrix

$$
\left(-\frac{\partial^{2} \mu}{\partial u_{i} \partial u_{j}}\right)_{1 \leq i, j \leq m-1}
$$

is positive definite.
Derivating the function $\mu(\mathbf{u})$ two times and substituting (12), we have

$$
\begin{equation*}
\frac{\partial^{2} \mu}{\partial u_{i} \partial u_{j}}=-\frac{1}{a(\mathbf{u})}\left(\frac{1}{u_{m}}+\delta_{i j} \frac{1}{u_{i}}\right) . \tag{14}
\end{equation*}
$$

where $\delta_{i j}$ denotes the Kronecker delta. Then we can easily show that the matrix

$$
\left(-\frac{\partial^{2} \mu}{\partial u_{i} \partial u_{j}}\right)_{1 \leq i, j \leq m-1}
$$

is positive definite. Thus the proof is completed.

鹿児島大学教育学部研究紀要 自然科学編 第48巻（1997）

Returning to the integral（10），we can rewrite it as

$$
I(t)=\int_{D} \cdots \int k(\mathbf{u}) g\left(t ; \mu(\mathbf{u}), \frac{m-1}{2}+c\right) d^{\prime} \mathbf{u}
$$

where $g(t ; \cdot, \cdot)$ is the function introduced in Lemma 1 ．
Decompose the domain D into a domain

$$
D_{1}=\left\{\mathbf{u} \in D: \mu(\mathbf{u}) \geq \frac{\mu_{\max }}{2}\right\}
$$

and its complement $D \backslash D_{1}$ ．Then we easily have the following estimates．

Lemma 3．For any sufficiently large t ，

$$
\begin{gathered}
I(t) \leq \frac{4}{\mu_{\max }^{2}}(\log t)^{\frac{m-1}{2}} \int_{D_{1}} \ldots \int k(\mathbf{u}) t^{\mu(\mathbf{u})} d^{\prime} \mathbf{u} \\
+\mathrm{O}\left(t^{\frac{\mu_{\max }^{2}}{2}}(\log t)^{\frac{m+3}{2}}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
I(t) \geq \frac{1}{2 \mu_{\max }^{2}}(\log t)^{\frac{m-1}{2}} \int \ldots \int k(\mathbf{u}) t^{\mu(\mathbf{u})} d^{\prime} \mathbf{u} \\
-\mathrm{O}\left(t^{\frac{\mu_{\max }}{2}}(\log t)^{\frac{m+3}{2}}\right)
\end{gathered}
$$

Proof of Lemma 3：Put $\delta=\frac{m-1}{2}+c$ ．Since

$$
\frac{1-(x+1) \mathrm{e}^{-x}}{x^{2}} \leq \min \left\{\frac{1}{x^{2}}, \frac{1}{2}\right\} \text { for } x>0
$$

from Lemma 1 it follows that

$$
\begin{aligned}
& I(t) \leq(\log t)^{2+\delta} \int_{D} \ldots \int k(\mathbf{u}) t^{\mu(\mathbf{u})} \cdot \frac{1}{\mu(\mathbf{u})^{2}(\log t)^{2}}\left(1-(\mu(\mathbf{u}) \log t+1) \mathrm{e}^{-\mu(\mathbf{u}) \log t}\right) \\
& +(\log t)^{2+\delta} \int_{D} \cdots \int k(\mathbf{u}) t^{\frac{\mu(\mathbf{u})}{2}} d^{\prime} \mathbf{u} \\
& \leq(\log t)^{2+\delta} \int_{D_{1}} \ldots \int k(\mathbf{u}) t^{\mu(\mathbf{u})} \cdot \frac{1}{\mu(\mathbf{u})^{2}(\log t)^{2}} d^{\prime} \mathbf{u} \\
& +(\log t)^{2+\delta} \int_{D \backslash D_{1}} \ldots \int k(\mathbf{u}) t^{\mu(\mathbf{u})} \cdot \frac{1}{2} d^{\prime} \mathbf{u} \\
& +t^{\frac{\mu_{\text {max }}}{2}}(\log t)^{2+\delta} \int_{D} \cdots \int k(\mathbf{u}) d^{\prime} \mathbf{u} \\
& \leq \frac{4}{\mu_{\max }^{2}}(\log t)^{\delta} \int_{D_{1}} \ldots \int k(\mathbf{u}) t^{\mu(\mathbf{u})} d^{\prime} \mathbf{u}
\end{aligned}
$$

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA

$$
+\frac{3}{2} t^{\frac{\mu_{\max }}{2}}(\log t)^{2+\delta} \int_{D} \ldots \int k(\mathbf{u}) d^{\prime} \mathbf{u}
$$

On the other hand, since

$$
\frac{1-(x+1) \mathrm{e}^{-x}}{x^{2}} \geq \frac{1}{2 x^{2}} \text { for any sufficiently large } x>0
$$

we have

$$
\begin{aligned}
& I(t) \geq(\log t)^{2+\delta} \int_{D} \ldots \int k(\mathbf{u}) t^{\mu(\mathbf{u})} \cdot \frac{1}{\mu(\mathbf{u})^{2}(\log t)^{2}}\left(1-(\mu(\mathbf{u}) \log t+1) \mathrm{e}^{-\mu(\mathbf{u}) \log t}\right) \\
& -(\log t)^{2+\delta} \int_{D} \cdots \int k(\mathbf{u}) t^{\frac{\mu\left(\mathbf{u}_{)}\right.}{2}} d^{\prime} \mathbf{u} \\
& \geq(\log t)^{2+\delta} \int_{D_{1}} \ldots \int k(\mathbf{u}) t^{\mu(\mathbf{u})} \cdot \frac{1}{2 \mu(\mathbf{u})^{2}(\log t)^{2}} d^{\prime} \mathbf{u} \\
& -t^{\frac{\mu_{\text {max }}^{2}}{2}}(\log t)^{2+\delta} \int_{D} \cdots \int k(\mathbf{u}) d^{\prime} \mathbf{u} \\
& \geq \frac{1}{2 \mu_{\max }^{2}}(\log t)^{\delta} \int_{D_{1}} \cdots \int k(\mathbf{u}) t^{\mu(\mathbf{u})} d^{\prime} \mathbf{u} \\
& -t^{\frac{\mu_{\text {max }}}{2}}(\log t)^{2+\delta} \int_{D} \cdots \int k(\mathbf{u}) d^{\prime} \mathbf{u} .
\end{aligned}
$$

Thus the proof is completed.

Lemma 4. As $t \rightarrow \infty$,

$$
\int_{D_{1}} \ldots \int k(\mathbf{u}) t^{\mu(\mathbf{u})} d^{\prime} \mathbf{u} \sim a\left(\mathbf{u}_{0}\right)^{-1-c} t^{\mu_{\max }}(\log t)^{-\frac{m-1}{2}}
$$

Proof of Lemma 4. Denote by $J(t)$ the integral with which we have to concern ourself. Let $\mathbf{u}_{0}=\left(u_{1}^{0}, u_{2}^{0}, \ldots, u_{m-1}^{0}\right)$ be the point at which the function μ attains its maximum. Obviously $\mathbf{u}_{0} \in D_{1}$. Since the function μ is twice continuously differentiable, in a neighbourhood of \mathbf{u}_{0} it can be expanded as

$$
\mu(\mathbf{u})=\mu_{\max }-\frac{1}{2} \sum_{i, j=1}^{m-1} t_{i j}\left(u_{i}-u_{i}^{0}\right)\left(u_{j}-u_{j}^{0}\right)+\cdots
$$

where

$$
t_{i j}=-\left(\frac{\partial^{2} \mu}{\partial u_{i} \partial u_{j}}\right)_{\mathbf{u}_{0}}
$$

By（14）we have

$$
\begin{equation*}
t_{i j}=\frac{1}{a(\mathbf{u})}\left(\frac{1}{u_{m}}+\delta_{i j} \frac{1}{u_{i}}\right) . \tag{15}
\end{equation*}
$$

Now we apply Laplace＇s method（ $\operatorname{Erdélyi}(1956)$ p． 36 ）to $J(t)$ ．Then we have
$J(t) \sim k\left(\mathbf{u}_{0}\right) t^{\mu_{\max }} \int_{\mathbf{R}^{m-1}} \cdots \int \exp \left(-\frac{\log t}{2} \sum_{i, j=1}^{m-1} t_{i j}\left(u_{i}-u_{i}^{0}\right)\left(u_{j}-u_{j}^{0}\right)\right) d^{\prime} \mathbf{u}$
Since the matrix $T=\left(t_{i j}\right)_{1 \leq i, j \leq m-1}$ is positive definite，there exists the square root of T ，which we denotes by $S=\left(s_{i j}\right)_{1 \leq i, j \leq m-1}$ ．Changing variables as $v_{i}=\sum_{j=1}^{m-1} s_{i j}\left(u_{j}-u_{j}^{0}\right)$ ，we get

$$
\begin{equation*}
J(t) \sim k\left(\mathbf{u}_{0}\right) t^{\mu_{\max }}|S|^{-1}\left(\frac{2 \pi}{\log t}\right)^{\frac{m-1}{2}} \tag{16}
\end{equation*}
$$

Now，using（15），we can easily show that

$$
\begin{equation*}
|T|=|S|^{2}=\frac{1}{a^{m-1} \prod_{j=1}^{m} u_{j}} \tag{17}
\end{equation*}
$$

Using（16）and（17），we can complete the proof．

Combining Lemma 2，Lemma 3 and Lemma 4，we obtain the following result．

Lemma 5.

$$
\lim _{t \rightarrow \infty} \frac{\log I(t)}{\log t}=\mu
$$

where μ is the unique root of the equation

$$
\begin{equation*}
\sum_{j=1}^{m} p_{j} \lambda_{j}^{\mu}=1 \tag{18}
\end{equation*}
$$

The above lemma yields the following result．

Lemma 6．Let n be a positive integer， c be a constant and set $I_{n}(t ; c)=(2 \pi)^{-\frac{m-1}{2}} \int_{n}^{\infty} \cdots \int_{n}^{\infty} z^{c} \frac{z^{z+\frac{1}{2}}}{\prod_{j} x_{j}^{x_{j}+\frac{1}{2}}} \prod_{j} p_{j}^{x_{j}} f\left(t \prod_{j} \lambda_{j}^{x_{j}}\right) \prod_{j} d x_{j}$, where $z=\sum_{j=1}^{m} x_{j}$ ．
Then

$$
\lim _{t \rightarrow \infty} \frac{\log I_{n}(t ; c)}{\log t}=\mu
$$

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA where μ is the same number as that in Lemma 5 .

Proof of Lemma 6. Setting

$$
I_{n}^{(i)}(t ; c)=(2 \pi)^{-\frac{m-1}{2}} \int_{\left\{x_{i} \leq n ; x_{j}>n \text { for all } j \neq i\right\}} \cdots z^{c} \frac{z^{z+\frac{1}{2}}}{\prod_{j} x_{j}^{x_{j}+\frac{1}{2}}} \prod_{j} p_{j}^{x_{j}} f\left(t \prod_{j} \lambda_{j}^{x_{j}}\right) \prod_{j} d x_{j}
$$

for $i=1, \ldots, m$, we have

$$
0 \leq I(t ; c)-I_{n}(t ; c) \leq \sum_{i=1}^{m} I_{n}^{(i)}(t ; c)
$$

Without loss of generality we argue about $I_{n}^{(m)}(t ; c)$. Then it is easily seen that

$$
\begin{aligned}
& I_{n}^{(m)}(t ; c) \leq(2 \pi)^{-\frac{m-1}{2}} \int_{0}^{m} \frac{p_{m}^{x_{m}}}{x_{m}^{x_{m}+\frac{1}{2}}} d x_{m} \\
& \cdot \int_{n}^{\infty} \cdots \int_{n}^{\infty} \frac{(z+n)^{z+n+\frac{1}{2}+c}}{\prod_{j=i}^{m-1} x_{j}^{x_{j}+\frac{1}{2}}} \prod_{j=1}^{m-1} p_{j}^{x_{j}} f\left(t \lambda_{m}^{x_{m}} \prod_{j=1}^{m-1} \lambda_{j}^{x_{j}}\right) \prod_{j=1}^{m-1} d s
\end{aligned}
$$

Since there is a constant K such that $(z+n)^{z+n+\frac{1}{2}+c}<K z^{z+n+\frac{1}{2}+c}$, we have
$I_{n}^{(m)}(t ; c) \leq K^{\prime} \int_{n}^{\infty} \cdots \int_{n}^{\infty} z^{n+c} \frac{z^{z+\frac{1}{2}}}{\prod_{j=i}^{m-1} x_{j}^{x_{j}+\frac{1}{2}}} \prod_{j=1}^{m-1} p_{j}^{x_{j}} f\left(t \prod_{j=1}^{m-1} \lambda_{j}^{x_{j}}\right) \prod_{j=1}^{m-1} d x_{j}$,
where K^{\prime} is a constant. Applying Lemma 5 to the right hand side of the above inequality, we deduce that $I_{n}^{(m)}(t ; c)$ is of the same order as $t^{\mu^{\prime}}$, where μ^{\prime} is the root of the equation $\sum_{j=1}^{m-1} p_{j} \lambda_{j}^{\mu^{\prime}}=1$. Now it is obvious that μ^{\prime} is smaller than the root μ of the equation (18). Hence we get

$$
I_{n}^{(m)}(t ; c)=o\left(t^{\mu}\right)
$$

This implies that

$$
I(t ; c)-I_{n}(t ; c)=o\left(t^{\mu}\right)
$$

Thus by Lemma 5 we complete the proof.

Now we turn to the infinite series $F(t)$. Introduce the following series which plays a role as a bridge combining $F(t)$ and $I(t)$:
$\tilde{F}_{n}(t ; c)=\sum_{k=0}^{\infty} \sum_{\left\{\sum x_{j}=k, x_{j}>n \text { for every } j\right\}} \ldots \sum(2 \pi)^{-\frac{m-1}{2}} \frac{k^{k+\frac{1}{2}+c}}{\prod_{j} x_{j}^{x_{j}+\frac{1}{2}}} \prod_{j} p_{j}^{x_{j}} f\left(t \prod_{j} \lambda_{j}^{x_{j}}\right)$,
where n is a positive integer and c is a constant．

Lemma 7.

$$
\lim _{t \rightarrow \infty} \frac{\log \tilde{F}_{n}(t ; c)}{\log t}=\mu
$$

where μ is the same number as that in Lemma 5 ．

Proof of Lemma 7．When $x_{j}<y_{j} \leq x_{j}+1$ ，putting $z=\sum_{j=1}^{m} y_{j}$ ，we have

$$
\begin{aligned}
& \frac{(z-m)^{z-m+\frac{1}{2}+c}}{\prod_{j} y_{j}^{y_{j}+\frac{1}{2}}} \prod_{j} p_{j}^{y_{j}} f\left(t \prod_{j} \lambda_{j}^{y_{j}}\right) \\
& \quad \leq \frac{k^{k+\frac{1}{2}+c}}{\prod_{j} x_{j}^{x_{j}+\frac{1}{2}}} \prod_{j} p_{j}^{x_{j}} f\left(t \prod_{j} \lambda_{j}^{x_{j}}\right) \\
& \quad \leq \frac{z^{z+\frac{1}{2}}+c}{\prod_{j}\left(y_{j}-1\right)^{y_{j}-\frac{1}{2}}} \prod_{j} p_{j}^{y_{j}-1} f\left(t \prod_{j} \lambda_{j}^{y_{j}-1}\right)
\end{aligned}
$$

Summing over $x_{j}>n$ for every x_{j} ，we get

$$
\begin{aligned}
& \int \cdots \int_{(n, \infty)^{m}}(2 \pi)^{-\frac{m-1}{2}} \frac{(z-m)^{z-m+\frac{1}{2}+c}}{\prod_{j} x_{j}^{x_{j}+\frac{1}{2}}} \prod_{j} p_{j}^{x_{j}} f\left(t \prod_{j} \lambda_{j}^{x_{j}}\right) \prod_{j} d x_{j} \\
& \leq \tilde{F}_{n}(t ; c) \\
& \leq \int_{(n, \infty)^{m}} \cdots \int_{j}(2 \pi)^{-\frac{m-1}{2}} \frac{z^{z+\frac{1}{2}+c}}{\prod_{j}\left(x_{j}-1\right)^{x_{j}-\frac{1}{2}}} \prod_{j} p_{j}^{x_{j}-1} f\left(t \prod_{j} \lambda_{j}^{x_{j}-1}\right) \prod_{j} d x_{j} \\
& \quad=\int_{(n-1, \infty)^{m}} \cdots \int_{j}(2 \pi)^{-\frac{m-1}{2}} \frac{(z+m)^{z+m+\frac{1}{2}+c}}{\prod_{j} x_{j}^{x_{j}+\frac{1}{2}}} \prod_{j} p_{j}^{x_{j}} f\left(t \prod_{j} \lambda_{j}^{x_{j}}\right) \prod_{j} d x_{j} .
\end{aligned}
$$

It is easily seen that there are positive constants K_{1} and K_{2} such that

$$
(z-m)^{z-m+\frac{1}{2}+c} \geq K_{1} z^{-m+c} z^{z+\frac{1}{2}}
$$

and

$$
(z+m)^{z+m+\frac{1}{2}+c} \leq K_{2} z^{m+c} z^{z+\frac{1}{2}} .
$$

Accordingly we get

$$
K_{1} \cdot I_{n}(t ;-m+c) \leq \tilde{F}_{n}(t) \leq K_{2} \cdot I_{n-1}(t ; m+c) .
$$

Hence，with the help of Lemma 6，we can complete the proof．

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA
Now the time is ripe to state an asymptotic behaviour of $F(t)$ explicitly.

Theorem 1.

$$
\lim _{t \rightarrow \infty} \frac{\log F(t)}{\log t}=\mu
$$

where μ is the unique root of the equation

$$
\sum_{j=1}^{m} p_{j} \lambda_{j}^{\mu}=1
$$

In order to prove Theorem 1, it is sufficient to establish the following more general Lemma 8. Let c be a constant, and define

$$
F(t ; c)=\sum_{k=0}^{\infty} \sum_{\left\{\sum_{j=1}^{m}\right.} \sum_{\left.x_{j}=k\right\}} k^{c}\left(\begin{array}{ccc}
& k & \\
x_{1} & \cdots & x_{m}
\end{array}\right) \prod_{j} p_{j}^{x_{j}} f\left(t \prod_{j} \lambda_{j}^{x_{j}}\right)
$$

where

$$
\left(\begin{array}{ccc}
& k & \\
x_{1} & \cdots & x_{m}
\end{array}\right)=\frac{k!}{x_{1}!\cdots x_{m}!} .
$$

Lemma 8.

$$
\lim _{t \rightarrow \infty} \frac{\log F(t ; c)}{\log t}=\mu
$$

where μ is the same number as that in Theorem 1.

Proof of Lemma 8. We prove this lemma by induction on m. It is easy to show that the assertion holds when $m=1$. Assume that the assertion holds for $m-1$.
Using Stirling's formula, we have

$$
\left(\begin{array}{ccc}
& k & \\
x_{1} & \cdots & x_{m}
\end{array}\right)=\xi \cdot(2 \pi)^{-\frac{m-1}{2}} \frac{k^{k+\frac{1}{2}}}{\prod_{j} x_{j}^{x_{j}+\frac{1}{2}}},
$$

where

$$
\exp \left(\frac{1}{12 k+1}-\sum_{j} \frac{1}{12 x_{j}}\right)<\xi<\exp \left(\frac{1}{12 k}-\sum_{j} \frac{1}{12 x_{j}+1}\right)
$$

Since $x_{j}>n$ for every j, we have $\exp (-m /(12 n))<\xi<1$. Thus, for arbitarily small ϵ, we have $1-\epsilon<\xi<1$ for all sufficiently large n.

鹿児島大学教育学部研究紀要 自然科学編 第 48 巻（1997）

Now we put
$\tilde{F}_{n}^{(i)}(t ; c)=\sum_{k=0}^{\infty} \sum_{\left\{\sum_{j=1}^{m} x_{j}=k, x_{i} \leq n\right\}} k^{c}\left(\begin{array}{ccc} & k & \\ x_{1} & \cdots & x_{m}\end{array}\right) \prod_{j} p_{j}^{x_{j}} f\left(t \prod_{j} \lambda_{j}^{x_{j}}\right)$,
for every $i=1,2, \ldots, m$ ．Then we have

$$
F(t ; c) \leq \tilde{F}_{n}(t ; c)+\sum_{i=1}^{m} \tilde{F}_{n}^{(i)}(t ; c)
$$

and

$$
F(t ; c) \geq(1-\epsilon) \tilde{F}_{n}(t ; c)
$$

Accordingly，we obtain

$$
\begin{align*}
& \left|\log F(t ; c)-\log \tilde{F}_{n}(t ; c)\right| \tag{19}\\
& \quad \leq \frac{1}{(1-\epsilon) \tilde{F}_{n}(t ; c)} \cdot\left|F(t ; c)-\tilde{F}_{n}(t ; c)\right| \\
& \quad \leq \frac{\epsilon}{1-\epsilon}+\frac{1}{(1-\epsilon) \tilde{F}_{n}(t ; c)} \cdot \sum_{i=1}^{m} \tilde{F}_{n}^{(i)}(t ; c) .
\end{align*}
$$

Without loss of generality，we argue about $\tilde{F}_{n}^{(m)}(t ; c)$ ．We can see easily that

$$
\left.\begin{array}{rl}
\tilde{F}_{n}^{(m)}(t ; c) \leq \sum_{x_{m}=0}^{n} \frac{p_{m}^{x_{m}}}{x_{m}!} \sum_{k \geq x_{m}} \sum_{\left\{\sum_{j=1}^{m-1} \sum_{\left.x_{j}=k-x_{m}\right\}}\right.} k^{x_{m}+c}\left(\begin{array}{cc}
& k-x_{m} \\
x_{1} & \cdots
\end{array} x_{m-1}\right.
\end{array}\right)
$$

the right hand side of which we will write as

$$
\sum_{x_{m}=0}^{n} \frac{p_{m}^{x_{m}}}{x_{m}!} G\left(t \lambda_{m}^{x_{m}} ; x_{m}\right)
$$

Then，because of the assumption of induction，for each x_{m} ，

$$
\lim _{t \rightarrow \infty} \frac{\log G\left(t ; x_{m}\right)}{\log t}=\mu^{\prime}
$$

where μ^{\prime} is the root of the equation

$$
\begin{equation*}
\sum_{j=1}^{m-1} p_{j} \lambda_{j}^{\mu^{\prime}}=1 \tag{20}
\end{equation*}
$$

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA
Now it is obvious that the root of the equation (18) is larger than the root of the equation (20). Thus, for each x_{m}, we can see

$$
\begin{equation*}
\tilde{F}_{n}^{(m)}(t ; c)=0\left(t^{\mu^{\prime}}\right) \tag{21}
\end{equation*}
$$

as $t \rightarrow \infty$. Therefore, combining (19) and (21) and using Lemma 7, we obtain the conclusion.

Proof of Theorem 1. From the definition (6) we have

$$
\begin{aligned}
\left(\Lambda^{k} f\right)(t) & =\sum_{j_{1}=1}^{m} \cdots \sum_{j_{k}=1}^{m} p_{j_{1}} \cdots p_{j_{k}} f\left(t \lambda_{j_{1}} \cdots \lambda_{j_{k}}\right) \\
& =\sum_{\sum_{j} \cdots x_{j}=k}\left(\begin{array}{ccc}
k & \\
x_{1} & \cdots & x_{m}
\end{array}\right) \prod_{j} p_{j}^{x_{j}} f\left(t \prod_{j} \lambda_{j}^{x_{j}}\right)
\end{aligned}
$$

Hence $F(t)$ coincides $F(t ; 0)$. Thus Theorem 1 is a special case of Lemma 8 .

4 Main theorem

Let N be a random variable with probability distribution $Q=\left\{q_{n}: n=\right.$ $0,1,2, \ldots\}$, and for each n, let $\left(\Lambda_{1}^{(n)}, \ldots, \Lambda_{n}^{(n)}\right)$ be a random vector with probability distribution P_{n} whose support contained in $(0,1)^{n}$. Define a function f as

$$
f(t)= \begin{cases}\log t & \text { for } t \geq 1 \\ 0 & \text { for } t<1\end{cases}
$$

and define an operator Λ as

$$
(\Lambda f)(t)=\mathrm{E}\left(\sum_{j=1}^{N} f\left(t \Lambda_{j}^{(N)}\right)\right)
$$

We set

$$
F(t)=\sum_{k=0}^{\infty}\left(\Lambda^{k} f\right)(t)
$$

If all Q and $P_{n}(n=1,2, \ldots)$ are finite discrete distribution, then from Theorem 1 of Section 3 it follows that

$$
\lim _{t \rightarrow \infty} \frac{\log F(t)}{\log t}=\mu
$$

where μ is the unique root of the equation defined by Q and P_{n} ($n=$ $1,2, \ldots$). In this section we first generalize Theorem 1 without any assumption on $P_{n}(n=1,2, \ldots)$, while we maintain the assumption on Q.

鹿児島大学教育学部研究紀要 自然科学編 第48巻（1997）

Theorem 2．Assume that

（A3）Q is a finite distribution，that is，there is an integer $n_{\max }$ such that $q_{n}=0$ for all $n>n_{\max }$.

Then

$$
\lim _{t \rightarrow \infty} \frac{\log F(t)}{\log t}=\mu
$$

where μ is the unique root of the equation

$$
\mathrm{E}\left(\sum_{j=1}^{N}\left(\Lambda_{j}^{(N)}\right)^{\mu}\right)=1
$$

Proof of Theorem 2．Take an arbitarily positive integer r ，and put $\epsilon_{r}=1 / 2^{r}$ ．We divide the interval $(0,1)^{n}$ into a collection of subintervals

$$
I_{i_{1} \ldots i_{n}}=\prod_{j=1}^{n}\left(i_{j} \epsilon_{r},\left(i_{j}+1\right) \epsilon_{r}\right]
$$

where $i_{j}=0,1, \ldots, 2^{r}$ for every j ．We put

$$
p_{i_{1} \ldots i_{n}}=\int_{I_{i_{1} \ldots i_{n}}} \ldots \int d P_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Since f is non－decreasing，

$$
\begin{aligned}
& p_{i_{1} \ldots i_{n}} \sum_{j=1}^{n} f\left(t i_{j} \epsilon\right) \\
& \quad \leq \int_{I_{i_{1} \ldots i_{n}}} \cdots \int \sum_{j=1}^{n} f\left(t \lambda_{j}\right) d P_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
& \quad \leq p_{i_{1} \ldots i_{n}} \sum_{j=1}^{n} f\left(t\left(i_{j}+1\right) \epsilon\right) .
\end{aligned}
$$

Summing up with i_{1}, \ldots, i_{n} ，we have

$$
\begin{aligned}
& \sum_{i_{1}, \ldots, i_{n}} \ldots p_{i_{1} \ldots i_{n}} \sum_{j=1}^{n} f\left(t i_{j} \epsilon\right) \\
& \quad \leq \int_{(0,1)^{n}} \cdots \int \sum_{j=1}^{n} f\left(t \lambda_{j}\right) d P_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
\end{aligned}
$$

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA

$$
\begin{aligned}
& =\mathrm{E}\left(\sum_{j=1}^{n} f\left(t \Lambda_{j}^{(n)}\right)\right) \\
& \leq \sum_{i_{1}, \ldots, i_{n}} \cdots p_{i_{1} \ldots i_{n}} \sum_{j=1}^{n} f\left(t\left(i_{j}+1\right) \epsilon\right) .
\end{aligned}
$$

Furthermore, mutiplying q_{n} and summing up with n, we get

$$
\begin{align*}
& \sum_{n=0}^{n_{\max }} q_{n} \sum_{i_{1}, \ldots, i_{n}} \cdots p_{i_{1} \ldots i_{n}} \sum_{j=1}^{n} f\left(t i_{j} \epsilon\right) \tag{22}\\
& \quad=(\Lambda f)(t) \\
& \quad \leq \sum_{n=0}^{n_{\max }} q_{n} \sum_{i_{1}, \ldots, i_{n}} \cdots p_{i_{1} \ldots i_{n}} \sum_{j=1}^{n} f\left(t\left(i_{j}+1\right) \epsilon\right) . \tag{23}
\end{align*}
$$

Now we enumerate the set of pairs of numbers $\left(q_{n} p_{i_{1} \ldots i_{n}}, i_{j} \epsilon\right)$ and denote them by $\left\{\left(p_{j}, \underline{\lambda}_{j}\right): j=1, \ldots, m\right\}$. Then, defining

$$
\left(\underline{\Lambda}_{r} f\right)(t)=\sum_{j=1}^{m} p_{j} f\left(t \underline{\lambda}_{j}\right)
$$

we can write (22) simply as $\left(\underline{\Lambda}_{r} f\right)(t)$. Similarly, defining

$$
\left(\bar{\Lambda}_{r} f\right)(t)=\sum_{j=1}^{m} p_{j} f\left(t \bar{\lambda}_{j}\right)
$$

where $\left\{\left(p_{j}, \bar{\lambda}_{j}\right): j=1, \ldots, m\right\}$ is made by enumerating the set of pairs of numbers $\left(q_{n} p_{i_{1} \ldots i_{n}},\left(i_{j}+1\right) \epsilon\right)$, we can write (23) as $\left(\bar{\Lambda}_{r} f\right)(t)$ concisely.

Consider the following infinite series

$$
\begin{equation*}
\underline{F}_{r}(t)=\sum_{k=0}^{\infty}\left(\underline{\Lambda}_{r}^{k} f\right)(t) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{F}_{r}(t)=\sum_{k=0}^{\infty}\left(\bar{\Lambda}_{r}^{k} f\right)(t) \tag{25}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\underline{F}_{r}(t) \leq F(t) \leq \bar{F}_{r}(t) . \tag{26}
\end{equation*}
$$

To series (24) and (25) applying Theorem 1, we see that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\log \underline{F}_{r}(t)}{\log t}=\underline{\mu}_{r} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\log \bar{F}_{r}(t)}{\log t}=\bar{\mu}_{r} \tag{28}
\end{equation*}
$$

where $\underline{\mu}_{r}$ is the unique root of the equation

$$
\begin{equation*}
\sum_{j=1}^{m} p_{j} \underline{\lambda}_{j}^{\mu}=1 \tag{29}
\end{equation*}
$$

and $\bar{\mu}_{r}$ is the unique root of the equation

$$
\begin{equation*}
\sum_{j=1}^{m} p_{j} \underline{\lambda}_{j}^{\mu}=1 \tag{30}
\end{equation*}
$$

Setting

$$
\underline{\chi}_{r}(\lambda)=i \epsilon_{r} \quad \text { and } \quad \bar{\chi}_{r}(\lambda)=(i+1) \epsilon_{r}
$$

for $i \epsilon_{r}<\lambda \leq(i+1) \epsilon_{r}$ ，we define functions \underline{g}_{r} and \bar{g}_{r} by

$$
\underline{g}_{r}(\mu)=\sum_{n=0}^{n_{\max }} q_{n} \int_{(0,1)^{n}} \ldots \int \sum_{j=1}^{n} \underline{\chi}_{r}\left(\lambda_{j}\right)^{\mu} d P_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

and

$$
\bar{g}_{r}(\mu)=\sum_{n=0}^{n_{\max }} q_{n} \int_{(0,1)^{n}} \ldots \int \sum_{j=1}^{n} \bar{\chi}_{r}\left(\lambda_{j}\right)^{\mu} d P_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

respectively．We can write（29）and（30）concisely by $\underline{g}_{r}(\mu)$ and $\bar{g}_{r}(\mu)$ respectively．Furthermore，we define a function g by

$$
\begin{aligned}
g(\mu) & =\sum_{n=0}^{n_{\max }} q_{n} \int_{(0,1)^{n}} \ldots \int \sum_{j=1}^{n} \lambda_{j}^{\mu} d P_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
& =\mathrm{E}\left(\sum_{j=1}^{N}\left(\Lambda_{j}^{(N)}\right)^{\mu}\right) .
\end{aligned}
$$

Then it is easily seen that
1．For each $r, \underline{g_{r}}$ and $\overline{g_{r}}$ are non－increasing continuous functions．
2．Since both $\underline{\chi}_{r}(\lambda)$ and $\underline{\chi}_{r}(\lambda)$ converge to λ as $r \rightarrow \infty$ ，the bounded convergence theorem implies that both $\underline{g}_{r}(\mu)$ and $\bar{g}_{r}(\mu)$ converge to $g(\mu)$ for each μ ．

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA
3. $\left\{\underline{g}_{r}: r=1,2, \ldots\right\}$ is a non-decreasing sequence of functions, and $\left\{\bar{g}_{r}: r=1,2, \ldots\right\}$ is a non-increasing sequence of functions. That is, for every r,

$$
\underline{g}_{r}(\mu) \leq \underline{g}_{r+1}(\mu) \quad \text { and } \quad \bar{g}_{r}(\mu) \geq \bar{g}_{r+1}(\mu)
$$

for every μ.
Accordingly, Dini's theorem implies that in any compact interval of μ, \underline{g}_{r} and \bar{g}_{r} converge to g uniformly.

Let μ be the root of the equation $g(\cdot)=1$. Then from uniform convergence just proved and the fact that \underline{g}_{r} and \bar{g}_{r} are non-increasing, it follows immediately that

$$
\underline{\mu}_{r} \rightarrow \mu \quad \text { and } \quad \bar{\mu}_{r} \rightarrow \mu
$$

as $r \rightarrow \infty$. Thus, by letting r large, we can make the difference of two limits in (27) and (28) arbitarily small. Therefore by (26) the proof of Theorem 1 is completed.

For each n, let $\left(A_{1}^{(n)}, \Theta_{1}^{(n)}, \ldots, A_{n}^{(n)}, \Theta_{n}^{(n)}\right)$ be a random vector with probability distribution P_{n}. Concerning the distribution P_{n} we temporarily use the assumption.
$(\tilde{\mathrm{A}})$ there is a constant $\delta_{\min }(>1)$ such that

$$
\min _{0 \leq n \leq n_{\max }} \min _{1 \leq j \leq n} \frac{\sin \Theta_{j}^{(n)}}{\sin A_{j}^{(n)}} \geq \delta_{\min }
$$

By Lemma 2 in Section 2, this assumption means that every line $l\left(A_{j}^{(n)}, \Theta_{j}^{(n)}\right)$ is at least $\cosh ^{-1}\left(\delta_{\min }\right)(>0)$ distant from the line l_{\emptyset}.

We put

$$
\Lambda_{j}^{(n)}=\frac{\sin A_{j}^{(n)}}{\cos A_{j}^{(n)}+\sin \Theta_{j}^{(n)}}
$$

for $j=1, \ldots, n$, and define an operator Λ by

$$
(\Lambda f)(t)=\mathrm{E}\left(\sum_{j=1}^{N} f\left(t \Lambda_{j}^{(N)}\right)\right)=\sum_{n=0}^{n_{\max }} q_{n} \mathrm{E}\left(\sum_{j=1}^{n} f\left(t \Lambda_{j}^{(n)}\right)\right) .
$$

By the assumption（ $\tilde{\mathrm{A}})$ ，there is a positive number ϵ_{0} such that the support of P_{n} is contained in the interval $\left(0,1-\epsilon_{0}\right)^{n}$ ．Let ϵ be an arbitary positive number smaller than ϵ_{0} ，and put

$$
\left(\underline{\Lambda}_{\epsilon, 1}^{(n)}, \ldots, \Lambda_{\epsilon, n}^{(n)}\right)=\left((1-\epsilon) \Lambda_{1}^{(n)}, \ldots,(1-\epsilon) \Lambda_{n}^{(n)}\right)
$$

and

$$
\left(\bar{\Lambda}_{\epsilon, 1}^{(n)}, \ldots, \bar{\Lambda}_{\epsilon, n}^{(n)}\right)=\left(\frac{1}{1-\epsilon} \Lambda_{1}^{(n)}, \ldots, \frac{1}{1-\epsilon} \Lambda_{n}^{(n)}\right) .
$$

Denote probability distributions of these random vectors by \underline{P}_{ϵ} and \bar{P}_{ϵ} respectively．Because of the assumption（ $\tilde{\mathrm{A}})$ the supports of \underline{P}_{ϵ} and \bar{P}_{ϵ} are contained in the interval $(0,1)^{n}$ ．Finanlly we define operators $\underline{\Lambda}_{\epsilon}$ and $\bar{\Lambda}_{\epsilon}$ by

$$
\left(\underline{\Lambda}_{\epsilon} f\right)(t)=\mathrm{E}\left(\sum_{j=1}^{N} f\left(t \underline{\Lambda}_{\epsilon, j}^{(N)}\right)\right)
$$

and

$$
\left(\bar{\Lambda}_{\epsilon} f\right)(t)=\mathrm{E}\left(\sum_{j=1}^{N} f\left(t \bar{\Lambda}_{\epsilon, j}^{(N)}\right)\right)
$$

Lemma 1．Let ϵ be an arbitary positive number smaller than ϵ_{0} ．Under the assumption $(\tilde{\mathrm{A}})$ ，there exists an integer k_{0} such that

$$
\begin{align*}
& \sum_{\mathbf{i} \in \mathbf{T}_{k_{0}}}\left(\underline{\Lambda}_{\epsilon}^{k-k_{0}} f\right)\left(\cosh \rho \sin \alpha_{\mathbf{i}}\right) \tag{31}\\
& \leq \mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k}} f\left(\cosh \rho \sin \alpha_{\mathbf{i}}\right) \mid \mathcal{F}_{k_{0}}\right) \tag{32}\\
& \leq \sum_{\mathbf{i} \in \mathbf{T}_{k_{0}}}\left(\bar{\Lambda}_{\epsilon}^{k-k_{0}} f\right)\left(\cosh \rho \sin \alpha_{\mathbf{i}}\right) \tag{33}
\end{align*}
$$

for all $k>k_{0}$ ．

Proof of Lemma 1．By Lemma 1 in Section 2 and the assumption（ $\tilde{\mathrm{A}})$ ， we have

$$
\tan \alpha_{i_{1} \ldots i_{k}} \leq \tan \alpha_{i_{1} \ldots i_{k-1}} \cdot \frac{\sin \alpha_{i_{k}}}{\sin \theta_{i_{k}}} \leq \frac{1}{\delta_{\min }} \cdot \tan \alpha_{i_{1} \ldots i_{k-1}}
$$

Applying this inequality $(k-1)$ times，we get

$$
\tan \alpha_{i_{1} \ldots i_{k}} \leq\left(\frac{1}{\delta_{\min }}\right)^{k-1} \cdot \tan \alpha_{i_{1}} \leq \frac{1}{\sqrt{\delta_{\min }^{2}-1}} \cdot\left(\frac{1}{\delta_{\min }}\right)^{k-1}
$$

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA because $\tan \alpha_{i_{k}} \leq \frac{1}{\sqrt{\delta_{\min }^{2}-1}}$ by $(\tilde{\mathrm{A}})$. Hence, for arbitarily small ϵ, there is an integer k_{0} such that $\cos \alpha_{i_{1} \ldots i_{k}}>1-\epsilon$ for all $k \geq k_{0}$. Then we have

$$
\sin \alpha_{i_{1} \ldots i_{k}} \leq \tan \alpha_{i_{1} \ldots i_{k}} \leq \sin \alpha_{i_{1} \ldots i_{k-1}} \cdot \frac{\lambda_{i_{k}}}{1-\epsilon}
$$

and

$$
\sin \alpha_{i_{1} \ldots i_{k}}=\tan \alpha_{i_{1} \ldots i_{k}} \cos \alpha_{i_{1} \ldots i_{k}} \geq \sin \alpha_{i_{1} \ldots i_{k-1}} \cdot(1-\epsilon) \lambda_{i_{k}}
$$

where

$$
\lambda_{i_{k}}=\frac{\sin \alpha_{i_{k}}}{\cos \alpha_{i_{k}}+\sin \theta_{i_{k}}}
$$

Accordingly, since f is non-decreasing, we see that

$$
\begin{align*}
f & \left(\cosh \rho \sin \alpha_{i_{1} \ldots i_{k-1}} \cdot(1-\epsilon) \lambda_{i_{k}}\right) \tag{34}\\
& \leq f\left(\cosh \rho \sin \alpha_{i_{1} \ldots i_{k}}\right) \\
& \leq f\left(\cosh \rho \sin \alpha_{i_{1} \ldots i_{k-1}} \cdot \frac{\lambda_{i_{k}}}{1-\epsilon}\right) \tag{35}
\end{align*}
$$

From (35), it follows that

$$
\begin{aligned}
& \mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k}} f\left(\cosh \rho \sin \alpha_{\mathbf{i}}\right) \mid \mathcal{F}_{k-1}\right) \\
& \\
& =\sum_{i_{1} \ldots i_{k-1} \in \mathbf{T}_{k-1}} \mathrm{E}\left(\sum_{j=1}^{N_{i_{1} \ldots i_{k-1}}} f\left(\cosh \rho \sin \alpha_{i_{1} \ldots i_{k}}\right) \mid \mathcal{F}_{k-1}\right) \\
& \quad \leq \sum_{\mathbf{i} \in \mathbf{T}_{k-1}} \mathrm{E}\left(\sum_{j=1}^{N} f\left(\cosh \rho \sin \alpha_{\mathbf{i}} \bar{\Lambda}_{\epsilon, j}^{(N)}\right) \mid \mathcal{F}_{k-1}\right) \\
& \quad=\sum_{\mathbf{i} \in \mathbf{T}_{k-1}}\left(\bar{\Lambda}_{\epsilon} f\right)\left(\cosh \rho \sin \alpha_{\mathbf{i}}\right)
\end{aligned}
$$

Repeating this procedure $\left(k-k_{0}+1\right)$ times, we get an upper estimate (33) for (32). Similarly, from (34), we can derive a lower estimate (31).Thus the proof of Lemma 1 is completed.

Recall that $M(\rho)$ denotes the total length of portions of lines $\left\{l\left(\alpha_{\mathbf{i}}, \theta_{\mathbf{i}}\right)\right.$: $\mathbf{i} \in \mathbf{T}\}$ inside the disk D_{ρ}. Let $A(\rho)$ be the area of D_{ρ}.

Lemma 2. Under the assumption ($\tilde{\mathrm{A}})$,

$$
\lim _{\rho \rightarrow \infty} \frac{\log \mathrm{E}(M(\rho))}{A(\rho)}=\mu
$$

鹿児島大学教育学部研究紀要 自然科学編 第48巻（1997）

where μ is the unique root of the equation

$$
\mathrm{E}\left(\sum_{j=1}^{N}\left(\Lambda_{j}^{(N)}\right)^{\mu}\right)=1
$$

Proof of Lemma 2．Put

$$
\underline{F}_{\epsilon}(t)=\sum_{k \geq 0}\left(\underline{\Lambda}_{\epsilon}^{k} f\right)(t)
$$

and

$$
\bar{F}_{\epsilon}(t)=\sum_{k \geq 0}\left(\bar{\Lambda}_{\epsilon}^{k} f\right)(t) .
$$

Using Theorem 2，we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\log \underline{F}_{\epsilon}(t)}{\log t}=\underline{\mu}_{\epsilon} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\log \bar{F}_{\epsilon}(t)}{\log t}=\bar{\mu}_{\epsilon} \tag{37}
\end{equation*}
$$

where $\underline{\mu}_{\epsilon}$ is the unique root of the equation

$$
\underline{g}_{\epsilon}(\mu)=\mathrm{E}\left(\sum_{j=1}^{N}\left(\underline{\Lambda}_{\epsilon, j}^{(N)}\right)^{\mu}\right)=1
$$

and $\bar{\mu}_{\epsilon}$ is the unique root of the equation

$$
\bar{g}_{\epsilon}(\mu)=\mathrm{E}\left(\sum_{j=1}^{N}\left(\bar{\Lambda}_{\epsilon, j}^{(N)}\right)^{\mu}\right)=1 .
$$

Now we will show that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\log \mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k_{0}}} \underline{F}_{\epsilon}\left(t \sin \alpha_{\mathbf{i}}\right)\right)}{\log t}=\underline{\mu}_{\epsilon} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\log \mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k_{0}}} \bar{F}_{\epsilon}\left(t \sin \alpha_{\mathbf{i}}\right)\right)}{\log t}=\bar{\mu}_{\epsilon} \tag{39}
\end{equation*}
$$

Because of（36），for any small positive number ξ ，there is a sufficiently large t_{0} such that

$$
C_{1} t \underline{\mu}_{\epsilon}-\xi \leq \underline{F}_{\epsilon}(t) \leq C_{2} t \underline{\mu}_{\epsilon}+\xi
$$

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA for all $t>t_{0}$, where C_{1} and C_{2} are constants. Take a positive number η sufficiently small so as the probability of the event $\left\{\max _{\mathbf{i} \in \mathbf{T}_{k_{0}}} \sin \alpha_{\mathbf{i}}>\eta\right\}$ be positive. Then we have

$$
C_{1}\left(t \sin \alpha_{\mathbf{j}}\right) \underline{\underline{\mu}}_{\epsilon}-\xi I\left(\sin \alpha_{\mathbf{i}}>\eta\right) \leq \underline{F}_{\epsilon}\left(t \sin \alpha_{\mathbf{j}}\right)<C_{2}\left(t \sin \alpha_{\mathbf{j}}\right) \underline{\mu}_{\epsilon}+\xi
$$

for all $t>t_{0} / \eta$ and for every $\mathbf{i} \in \mathbf{T}_{k_{0}}$, where $I(\cdot)$ denotes the indicator function of events. Summing up with \mathbf{i} and taking expectations, we get

$$
\begin{array}{rl}
C_{1} & \mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k_{0}}}\left(\sin \alpha_{\mathbf{i}}\right)^{\underline{\mu}-\xi} I\left(\sin \alpha_{\mathbf{i}}>\eta\right)\right) t \underline{\mu}_{\epsilon}-\xi \\
& \leq \mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k_{0}}} \underline{F}_{\epsilon}\left(t \sin \alpha_{\mathbf{i}}\right)\right) \\
& \leq C_{2} \mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k_{0}}}\left(\sin \alpha_{\mathbf{i}}\right)^{\mu_{\epsilon}+\xi}\right) t^{\underline{\mu}}+\xi
\end{array}
$$

Hence it follows that

$$
\begin{aligned}
& \underline{\mu}_{\epsilon}-\xi \\
& \leq \lim _{t \rightarrow \infty} \inf \frac{\log \mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k_{0}}} \underline{F}_{\epsilon}\left(t \sin \alpha_{\mathbf{i}}\right)\right)}{\log t} \\
& \leq \lim \sup _{t \rightarrow \infty} \frac{\log \mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k_{0}}} \underline{F}_{\epsilon}\left(t \sin \alpha_{\mathbf{i}}\right)\right)}{\log t} \\
& \leq \underline{\mu}_{\epsilon}+\xi .
\end{aligned}
$$

Since ξ can be made arbitarily small, we obtain (38). Similarly we can show (39).

Put

$$
M_{k_{0}}(\rho)=\sum_{k \geq k_{0}} \sum_{\mathbf{i} \in \mathbf{T}_{k}} f\left(\cosh \rho \sin \alpha_{\mathbf{i}}\right)
$$

After summing up (31), (32), and (33) over $k \geq k_{0}$, we take their expectations. Then we have

$$
\begin{aligned}
& \mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k_{0}}} \underline{F}_{\epsilon}\left(\cosh \rho \sin \alpha_{\mathbf{i}}\right)\right) \\
& \quad \leq E\left(M_{k_{0}}(\rho)\right)
\end{aligned}
$$

$$
\leq \mathrm{E}\left(\sum_{\mathbf{i} \in \mathbf{T}_{k_{0}}} \bar{F}_{\epsilon}\left(\cosh \rho \sin \alpha_{\mathbf{i}}\right)\right)
$$

Using（36）and（37），we get
（40）$\underline{\mu}_{\epsilon} \leq \lim \inf _{\rho \rightarrow \infty} \frac{\log E\left(M_{k_{0}}(\rho)\right)}{\cosh \rho} \leq \lim \sup _{\rho \rightarrow \infty} \frac{\log E\left(M_{k_{0}}(\rho)\right)}{\cosh \rho} \leq \bar{\mu}_{\epsilon}$ ．

Finally we put

$$
g(\mu)=\mathrm{E}\left(\sum_{j=1}^{N}\left(\Lambda_{j}^{(N)}\right)^{\mu}\right)
$$

It is easily seen that
1．\underline{g}_{ϵ} and \bar{g}_{ϵ} are continuous non－increasing functions．
2．As ϵ decreases，$\underline{g}_{\epsilon}(\mu)$ decreases（ to state exactly，do not increase）and $\bar{g}_{\epsilon}(\mu)$ increases（do not decrease）for every μ ．

3．By the bounded convergence theorem，as ϵ tends to 0 ，both $\underline{g}_{\epsilon}(\mu)$ and $\bar{g}_{\epsilon}(\mu)$ converge to $g(\mu)$ for each μ ．

Accordingly，Dini＇s theorem implies that in any compact set of μ ，both \underline{g}_{ϵ} and \bar{g}_{ϵ} converge to g uniformly．Hence it follows that both $\underline{\mu}_{\epsilon}$ and $\bar{\mu}_{\epsilon}$ converge to a common limit μ which is the root of the equation $g(\cdot)=1$ ． Therefore，from（40），we deduce

$$
\lim _{\rho \rightarrow \infty} \frac{\log E\left(M_{k_{0}}(\rho)\right)}{\cosh \rho}=\mu
$$

Since the number of terms of $M(\rho)-M_{k_{0}}(\rho)$ does not depend on ρ ，we can complete the proof of Lemma 2 ．

We arrive at an appropriate place to state our main theorem．Throwing out the assumption（ $\tilde{\mathrm{A}})$ ，we introduce the the assumption that
（A4）there is a positive constant $\omega_{0}<\frac{\pi}{2}$ such that $\max _{1 \leq j \leq n} A_{j}^{(n)}<\omega_{0}$ for every n ．

Let ϵ be a positive number，and put

$$
\chi_{\epsilon}(t)=\left\{\begin{array}{ll}
\frac{(1+\epsilon)^{2}}{t} & \text { for } 1 \leq t \leq(1+\epsilon)^{2} \\
1 & \text { for } t>(1+\epsilon)^{2}
\end{array} .\right.
$$

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA
For each n, we define random vectors

$$
\left(\underline{A}_{\epsilon, 1}^{(n)}, \underline{\Theta}_{\epsilon, 1}^{(n)} \ldots, \underline{A}_{\epsilon, n}^{(n)}, \underline{\Theta}_{\epsilon, n}^{(n)}\right) \quad \text { and } \quad\left(\bar{A}_{\epsilon, 1}^{(n)}, \bar{\Theta}_{\epsilon, 1}^{(n)} \ldots, \bar{A}_{\epsilon, n}^{(n)}, \bar{\Theta}_{\epsilon, n}^{(n)}\right)
$$

by

$$
\left\{\begin{array}{l}
\sin \underline{A}_{\epsilon, j}^{(n)}=\frac{1}{1+\epsilon} \sin A_{j}^{(n)} \\
\sin \Theta_{\epsilon, j}^{(n)}=\sin \Theta_{j}^{(n)}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\sin \bar{A}_{\epsilon, j}^{(n)}=(1+\epsilon) \sin A_{j}^{(n)} \\
\sin \bar{\Theta}_{\epsilon, j}^{(n)}=\chi_{\epsilon}\left(\frac{\sin \Theta_{j}^{(n)}}{\sin A_{j}^{(n)}}\right) \sin \Theta_{j}^{(n)}
\end{array}\right.
$$

 ifies the assumption $(\tilde{\mathrm{A}})$, and moreover, if we choose ϵ so that $(1+\epsilon)^{2} \sin \omega_{0}<$ 1 , then a random vector $\left(\left(\bar{A}_{\epsilon, 1}^{(n)}, \bar{\Theta}_{\epsilon, 1}^{(n)} \ldots, \bar{A}_{\epsilon, n}^{(n)}, \bar{\Theta}_{\epsilon, n}^{(n)}\right)\right.$ also satifies the assumption $(\tilde{\mathrm{A}})$. Denote a realization of $A_{j}^{(n)}, \Theta_{j}^{(n)}, \underline{A}_{j}^{(n)}, \underline{\Theta}_{j}^{(n)}, \bar{A}_{j}^{(n)}$ and $\bar{\Theta}_{j}^{(n)}$ by $\alpha_{j}, \theta_{j}, \underline{\alpha}_{j}, \underline{\theta}_{j}, \bar{\alpha}_{j}$ and $\bar{\theta}_{j}$ respectively. When $\alpha_{\mathbf{i}}$ and $\theta_{\mathbf{i}}$ for $\mathbf{i} \in \mathbf{T}_{k-1}$ are given, we define $\alpha_{\mathbf{i}}$ and $\theta_{\mathbf{i}}$ for $\mathbf{i} \in \mathbf{T}_{k}$ by the recursive formula stated in Lemma 1 of Section 2.

Lemma 3. For every $\mathbf{i} \in \mathbf{T}$,

$$
\underline{\alpha}_{\mathbf{i}} \leq \alpha_{\mathbf{i}} \leq \bar{\alpha}_{\mathbf{i}}
$$

Proof of Lemma 3. We prove this lemma by induction on k. Obviously the lemma is true for $k=1$. Assume that the assertion holds for $k-1$. Denote $\cos \alpha_{i_{1} \ldots i_{k-1}}, \cos \underline{\alpha}_{i_{1} \ldots i_{k-1}}$ and $\cos \bar{\alpha}_{i_{1} \ldots i_{k-1}}$ by $\xi, \underline{\xi}$ and $\bar{\xi}$ respectively. By the assumption of induction, we have $\underline{\xi} \geq \xi \geq \bar{\xi}$.

We first argue about $\tan \underline{\alpha}_{i_{1} \ldots i_{k}}$. We have

$$
\begin{aligned}
& \frac{\sin \underline{\alpha}_{i_{k}}}{\cos \underline{\alpha}_{i_{k}}+\underline{\xi} \sin \underline{\theta}_{i_{k}}} \\
& =\frac{\frac{1}{1+\epsilon} \sin \alpha_{i_{k}}}{\sqrt{1-\left(\frac{1}{1+\epsilon}\right)^{2} \sin ^{2} \alpha_{i_{k}}}+\underline{\xi} \sin \theta_{i_{k}}} \\
& \leq \frac{\sin \alpha_{i_{k}}}{\sqrt{1-\sin ^{2} \alpha_{i_{k}}}+\underline{\xi} \sin \theta_{i_{k}}} \\
& \leq \frac{\sin \alpha_{i_{k}}}{\cos \alpha_{i_{k}}+\xi \sin \theta_{i_{k}}}
\end{aligned}
$$

鹿児島大学教育学部研究紀要 自然科学編 第48巻（1997）

Since $\sin \underline{\alpha}_{i_{1} \ldots i_{k-1}} \leq \sin \alpha_{i_{1} \ldots i_{k-1}}$ by the assumption of induction，using Lemma 1 in Section 2，we get

$$
\begin{equation*}
\tan \underline{\alpha}_{i_{1} \ldots i_{k}} \leq \tan \alpha_{i_{1} \ldots i_{k}} \tag{41}
\end{equation*}
$$

Next we argue about $\tan \bar{\alpha}_{i_{1} \ldots i_{k}}$ ．When $\frac{\sin \theta_{i_{k}}}{\sin \alpha_{i_{k}}}>(1+\epsilon)^{2}$ ，we have

$$
\begin{aligned}
& \frac{\sin \bar{\alpha}_{i_{k}}}{\cos \bar{\alpha}_{i_{k}}+\bar{\xi} \sin \bar{\theta}_{i_{k}}} \\
& =\frac{(1+\epsilon) \sin \alpha_{i_{k}}}{\sqrt{1-(1+\epsilon)^{2} \sin ^{2} \alpha_{i_{k}}}+\bar{\xi} \sin \theta_{i_{k}}} \\
& \geq \frac{\sin \alpha_{i_{k}}}{\sqrt{1-\sin ^{2} \alpha_{i_{k}}}+\bar{\xi} \sin \theta_{i_{k}}} \\
& \geq \frac{\sin \alpha_{i_{k}}}{\cos \alpha_{i_{k}}+\xi \sin \theta_{i_{k}}}
\end{aligned}
$$

Hence follows that

$$
\begin{equation*}
\tan \alpha_{i_{1} \ldots i_{k}} \leq \tan \bar{\alpha}_{i_{1} \ldots i_{k}} \tag{42}
\end{equation*}
$$

On the other hand，when $\frac{\sin \theta_{i_{k}}}{\sin \alpha_{i_{k}}} \leq(1+\epsilon)^{2}$ ，we have

$$
\begin{aligned}
& \frac{\sin \bar{\alpha}_{i_{k}}}{\cos \bar{\alpha}_{i_{k}}+\bar{\xi} \sin \bar{\theta}_{i_{k}}} \\
& =\frac{(1+\epsilon) \sin \alpha_{i_{k}}}{\sqrt{1-(1+\epsilon)^{2} \sin ^{2} \alpha_{i_{k}}}+\bar{\xi} \cdot(1+\epsilon)^{2} \sin \alpha_{i_{k}}} \\
& =\frac{\sin \alpha_{i_{k}}}{\sqrt{\left(\frac{1}{1+\epsilon}\right)^{2}-\sin ^{2} \alpha_{i_{k}}}+\bar{\xi} \cdot(1+\epsilon) \sin \alpha_{i_{k}}}
\end{aligned}
$$

It is easily seen that if we set $g(t)=\sqrt{t^{2}-a^{2}}+\frac{a b}{t}$ ，where both a and b are constants smaller than 1 ，then $g(t) \leq g(1)$ for all $t \leq 1$ in a neighbourhood of 1 ．Thus，choosing sufficiently small ϵ ，we have

$$
\sqrt{\left(\frac{1}{1+\epsilon}\right)^{2}-\sin ^{2} \alpha_{i_{k}}}+\bar{\xi} \sin \alpha_{i_{k}} \cdot(1+\epsilon) \leq \sqrt{1-\sin ^{2} \alpha_{i_{k}}}+\bar{\xi} \sin \alpha_{i_{k}}
$$

Accordingly，

$$
\frac{\sin \alpha_{i_{k}}}{\sqrt{\left(\frac{1}{1+\epsilon}\right)^{2}-\sin ^{2} \alpha_{i_{k}}}+\bar{\xi} \cdot(1+\epsilon) \sin \alpha_{i_{k}}}
$$

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA

$$
\begin{aligned}
& \geq \frac{\sin \alpha_{i_{k}}}{\cos \alpha_{i_{k}}+\bar{\xi} \sin \theta_{i_{k}}} \\
& \geq \frac{\sin \alpha_{i_{k}}}{\cos \alpha_{i_{k}}+\xi \sin \theta_{i_{k}}},
\end{aligned}
$$

from which follows (42). Thus the proof of Lemma 3 is completed.

Theorem 3. Assume that (A1), (A2), (A3), and (A4). Then

$$
\lim _{\rho \rightarrow \infty} \frac{\log \mathrm{E}(M(\rho))}{A(\rho)}=\mu
$$

where μ is the unique root of the equation

$$
\mathrm{E}\left(\sum_{j=1}^{N}\left(\Lambda_{j}^{(N)}\right)^{\mu}\right)=1
$$

Proof of Theorem 3. Put

$$
\underline{\Lambda}_{\epsilon, j}^{(n)}=\frac{\sin \underline{\underline{A}}_{\epsilon, j}^{(n)}}{\cos \underline{A}_{\epsilon, j}^{(n)}+\sin \underline{\Theta}_{\epsilon, j}^{(n)}}
$$

and

$$
\bar{\Lambda}_{\epsilon, j}^{(n)}=\frac{\sin \bar{A}_{\epsilon, j}^{(n)}}{\cos \bar{A}_{\epsilon, j}^{(n)}+\sin \bar{\Theta}_{\epsilon, j}^{(n)}}
$$

for $j=1, \ldots, n$, and define

$$
\underline{g}_{\epsilon}(\mu)=\mathrm{E}\left(\sum_{j=1}^{N}\left(\underline{\Lambda}_{\epsilon, j}^{(N)}\right)^{\mu}\right)
$$

and

$$
\bar{g}_{\epsilon}(\mu)=\mathrm{E}\left(\sum_{j=1}^{N}\left(\bar{\Lambda}_{\epsilon, j}^{(N)}\right)^{\mu}\right)
$$

Moreover we put

$$
\underline{M}_{\epsilon}(\rho)=\sum_{\mathbf{i} \in \mathbf{T}} f\left(\cosh \rho \sin \underline{\alpha}_{\mathbf{i}}\right)
$$

and

$$
\bar{M}_{\epsilon}(\rho)=\sum_{\mathbf{i} \in \mathbf{T}} f\left(\cosh \rho \sin \bar{\alpha}_{\mathbf{i}}\right) .
$$

From Lemma 3 it follows that

$$
\underline{M}_{\epsilon}(\rho) \leq M(\rho) \leq \bar{M}_{\epsilon}(\rho) .
$$

鹿児島大学教育学部研究紀要 自然科学編 第48巻（1997）

Since the assumption $(\tilde{\mathrm{A}})$ holds for both random vectors $\left(\underline{A}_{\epsilon, 1}^{(n)}, \underline{\Theta}_{\epsilon, 1}^{(n)} \ldots, \underline{A}_{\epsilon, n}^{(n)}, \underline{\Theta}_{\epsilon, n}^{(n)}\right)$ and $\left(\bar{A}_{\epsilon, 1}^{(n)}, \bar{\Theta}_{\epsilon, 1}^{(n)} \ldots, \bar{A}_{\epsilon, n}^{(n)}, \bar{\Theta}_{\epsilon, n}^{(n)}\right)$ ，using Lemma 2，we get

$$
\lim _{\rho \rightarrow \infty} \frac{\log \mathrm{E}\left(\underline{M}_{\epsilon}(\rho)\right)}{A(\rho)}=\underline{\mu}_{\epsilon}
$$

where $\underline{\mu}_{\epsilon}$ is the unique root of the equation $\underline{g}_{\epsilon}(\cdot)=1$ ，and

$$
\lim _{\rho \rightarrow \infty} \frac{\log \mathrm{E}\left(\bar{M}_{\epsilon}(\rho)\right)}{A(\rho)}=\bar{\mu}_{\epsilon},
$$

where $\bar{\mu}_{\epsilon}$ is the unique root of the equation $\bar{g}_{\epsilon}(\cdot)=1$ ．
Then，using an argument similar to that which we have done in the proof of Lemma 2 with the help of Dini＇theorem，we can complete the proof．

5 Tesselations with strictly or statistically congruent domains

In this section we study tessellations which satisfy a cosmographic prin－ ciple，that is，tessellations with symmetry．To state it exactly，in case with－ out randomness，we construct tessellations with congruent（unbounded） domains，and in case with randomness，those with＂statistically＂congruent domains．

Our method of construction is as follows：
1．Consider an experiment that on the circle $\partial \mathbf{D}$ ，we drop $n+1$ arcs with a constant length $2 \omega_{0}$ so that they do not mutually overlap． Here the word＂arc＂denotes the concept in the Euclidean geometry． Parametrize these arcs by position of their center，and denote them by $\left\{\tilde{t}_{j}: j=0,1, \ldots, n\right\}$ ，where $0 \leq \tilde{t}_{j}<2 \pi$ for every j ．

2．Out of these arcs we choose an arc，say \tilde{t}_{0} ，at random，and put $t_{j}=$ $\tilde{t}_{j}-\tilde{t}_{0} \bmod 2 \pi$ for $j=1, \ldots, n$ ．Note that to each arc corresponds a line in \mathbf{D} ．Let ϕ_{0} be a translation which moves an $\operatorname{arc} \tilde{t}_{0}$ to the line l_{\emptyset} ．

3．Moving lines which correspond to $\operatorname{arcs}\left\{t_{j}: j=1, \ldots, n\right\}$ by the translation ϕ_{0} ，we get n lines in the half－plane H ，which we denote by $\left\{l\left(\alpha_{j}, \theta_{j}\right): j=1, \ldots, n\right\}$ ．

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA Suppose that $n+1$ random arcs $\left\{\tilde{T}_{j}: j=0,1, \ldots, n\right\}$ are placed according to a symmetric probability distribution \tilde{S}_{n}, where the word "symmetric" means that

$$
\tilde{S}_{n}\left(d \tilde{t}_{\sigma(0)}, d \tilde{t}_{\sigma(1)}, \ldots, d \tilde{t}_{\sigma(n)}\right)=\tilde{S}_{n}\left(d \tilde{t}_{0}, d \tilde{t}_{1}, \ldots, d \tilde{t}_{n}\right)
$$

for any permutation σ on $\{0,1, \ldots, n\}$. Put $T_{j}=\tilde{T}_{j}-\tilde{T}_{0} \bmod 2 \pi$ for $j=1, \ldots, n$. Let Q_{n} be the probability distribution of a random vector $\left(A_{1}, \Theta_{1}, \ldots, A_{n}, \Theta_{n}\right)$ which specify n random lines correponding to n arcs. We put

$$
\Lambda_{j}=\frac{\sin A_{j}}{\cos A_{j}+\sin \Theta_{j}}
$$

for every $j=1, \ldots, n$, and denote by P_{n} the probability distribution of a random vector $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)$. Then a random vector $\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)$ can be obtained directly from (T_{1}, \ldots, T_{n}).

Lemma 1.

$$
\Lambda_{j}=\frac{1-\cos \omega_{0}}{\cos \omega_{0}-\cos T_{j}}
$$

for $j=1, \ldots, n$.

Proof Lemma 1. We can see easily that a translation ϕ_{0} which moves points $\mathrm{e}^{ \pm i \omega_{0}}$ to points ± 1, is given by

$$
\phi_{0}(z)=\frac{i\left(r_{0}-z\right)}{1-r_{0} z},
$$

where $r_{0}=\frac{1-\sin \omega_{0}}{\cos \omega_{0}}$. Let t_{j}, α_{j} and θ_{j} be a realization of T_{j}, A_{j} and Θ_{j} respectively. Since lines $l\left(\alpha_{j}, \theta_{j}\right)$ are obtained by translating arcs t_{j} by ϕ_{0}, we have

$$
\mathrm{e}^{i\left(\theta_{j} \pm \alpha_{j}\right)}=\phi_{0}\left(\mathrm{e}^{i\left(t_{j} \pm \omega_{0}\right)}\right)
$$

for $j=1, \ldots, n$. After an elementary but tedious calculation, we can obtain

$$
\left\{\begin{align*}
\cot \alpha_{j} & =\frac{\cos \omega_{0}}{\sin ^{2} \omega_{0}}\left(1-\cos t_{j}\right) \tag{43}\\
\frac{\cos \theta_{j}}{\sin \alpha_{j}} & =\frac{1}{\sin \omega_{0}} \sin t_{j}
\end{align*}\right.
$$

Substituting (43) into

$$
\lambda_{j}=\frac{\sin \alpha_{j}}{\cos \alpha_{j}+\sin \theta_{j}},
$$

we get

$$
\lambda_{j}=\frac{1-\cos \omega_{0}}{\cos \omega_{0}-\cos t_{j}}
$$

which is that we have to prove．

Example 1．Consider a non－random tessellation where
1．at every time of generation，a constant number n new lines are gen－ erated，that is，$q_{n}=1$ ．

2．supposing that n lines are arranged so as to be $\theta_{1}<\theta_{2}<\cdots<\theta_{n}$ ， all distances between lines

$$
d\left(l\left(\alpha_{j}, \theta_{j}\right), l\left(\alpha_{j+1}, \theta_{j+1}\right)\right)
$$

are identical to each other and equal to $\cosh ^{-1} \delta$ for $j=0, \ldots, n$ ， where $l\left(\alpha_{j}, \theta_{j}\right)$ for $j=0$ and $j=n+1$ denote l_{\emptyset} ．

We can explicitly construct this model by dropping $n+1$ arcs such that $\tilde{t}_{j}=\frac{2 \pi j}{n+1}$ for $j=0,1, \ldots, n$ ．Thus，by Lemma 1 ，we have

$$
\lambda_{j}=\frac{1-\cos \omega_{0}}{\cos \omega_{0}-\cos \frac{2 \pi j}{n+1}} .
$$

As for an indeterminate value ω_{0} ，it is determined by solving a system of three equations（43）and $\frac{\sin \theta_{j}}{\sin \alpha_{j}}=\delta$ for $j=1$ ．By an easy calculation we get

$$
\sin ^{2} \omega_{0}=\frac{1-\cos t_{1}}{\delta-1}
$$

The fractal dimenson μ of this non－random tessellation are calculated by solving the equation

$$
\begin{equation*}
\sum_{j=1}^{n} \lambda_{j}^{\mu}=1 \tag{44}
\end{equation*}
$$

To our regret，it seems that we can solve this equation only by numerical methods．On the other hand，the simplest case $n=2$ ，we can solve（44） and see that

$$
\mu=\frac{\log 2}{\log \frac{1}{\lambda_{1}}}=\frac{\log 2}{\log \left(\sqrt{(\delta+1)\left(\delta-\frac{1}{2}\right)}+\delta\right)} .
$$

Example 2．Consider a random tessellation where
1．$q_{n}=1$ ．
2．a random vector $\left(T_{1}, \ldots, T_{n}\right)$ has the uniform probability distribution on the set

$$
D=\left\{\left(t_{1}, \ldots, t_{n}\right): \omega_{0}<t_{1}-\omega_{0}<t_{1}+\omega_{0}<\cdots<t_{n}-\omega_{0}<t_{n}+\omega_{0}<2 \pi-\omega_{0}\right\} .
$$

A class of random fractal tessellations in hyperbolic planes, Yukinao ISOKAWA
Then the fractal dimension of this random tessellation is equal to the root μ of the equation

$$
\begin{equation*}
\sum_{j=1}^{n} \int \cdots \int_{D}\left(\frac{1-\cos \omega_{0}}{\cos \omega_{0}-\cos t_{j}}\right)^{\mu} d t_{1} \cdots d t_{n}=1 \tag{45}
\end{equation*}
$$

It seems that we can solve this equation only by numerical methods. Even in the simplest case $n=2$ where the equation (45) reduces to

$$
2 \int_{2 \omega_{0}}^{2 \pi-4 \omega_{0}}\left(\frac{1-\cos \omega_{0}}{\cos \omega_{0}-\cos t}\right)^{\mu} d t=1
$$

we can not solve in the closed form.

Acknowledgements

I am indebted to Professor Hitotsuyanagi for his helpful discussion on the hyperbolic geometry.

References

Mandelbrot, B. B. (1982) Fractal Geometry of Nature. W.H.Freeman, San Francisco.

Falconer, K. J. (1993) Fractal Geometry. Wiley, New York.
Fenchel, W. (1989) Elementary Geometry in Hyperbolic Space W.de Gruyter, Berlin.

