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Estimation of Multivariate Signal Using
Covariance Information In Linear Discrete-Time Systems
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Abstract

This paper proposes estimation algorithms for the filter and the fixed-point smoother
which are suitable for recursive estimation of multivariate signal. The signal is observed with
additive white Gaussian noise. The algorithms use the covariance information of the signal
and the observation noise.

A numerical simulation example is shown to examine if the algorithms are valid.

1. Introduction

The Kalman filter [1] assumes full knowledge of the state-space model, which generates
the signal process, insignal estimation problems. This paper presents an alternative estimation
technique that estimates the multivariate signal recursively in terms of updated observed value
by extending the recursive Wiener filter [2] in continuous-time systems to the filter and the
fixed-point smoother in linear discrete-time systems. The estimators use the information of
the system matrix @, the observation matrix H and the autovariance function of the state
variable, K:«(k, k), for the state-space model of the signal. We show that these quantities
are realized from the autocovariance data of the signal generated by the AR model. From
Ref. [3] , Kk, k) is evaluated by the autocovariance data of the signal of finite number.
As a consequence, we are able to estimate the multivariate signal from the knowledge of the
autocovariance function of the signal, the variance of the observation noise and the observed
value. Also, we show, by appropriate choice of H, that some elements of @ contain the AR
parameters obtained by solving the multivariate Yule-Walker equations for the signal process

via the AR model.
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2. Least-Squares Estimation Problems in Linear Discrete -Time Systems

Let an observation equation be given by y(k) =Hx(k)+v(k), z2(k)=Hx(k), where y(k)
is an m-dimensional observed value, H is an mXm * n observation matrix, 2(k) is a signal,
x(k) is a zero-mean state-variable and v(k) is white Gaussian observation noise with the
variance R as E[v(k) v'(s)] =R éo(k—s). Here, the symbol “T” represents transpose and
0o(k—s) the Kronecker Delta function, which satisfies 6 (k—s)=1 for k=s and 6(k—s)=
0 for k#s. It is assumed that x(k) and v(s) are uncorrelated: E [x(k)v™(s)] =0, 0<s,
k<o. Let us assume that the fixed-point smoothing estimate x(k, L) of x(k) at the fixed-

point k is expressed by
L
x(k, L) = X h(k, i, L) y(D), (1)
i=1

where h(k, i, L) is referred to as the impulse response function. Minimizing the mean-square
value of the fixed-point smoothing error x(k) — x(k, L), J(L)=E{[x(k)— x(k, L)]"
[x(k)— x(k, L)]}, we obtain the Wiener-Hopf equation [4] :

L
E [x(R)y()] =X h(k, i, L) E [y(i) y'(s)]. (2)
. i=1

=

Let K.(k, s) denote the crosscovariance function of x(%k) with y(s) and K.(k, s) the autoco-
variance function of 2(k). From the statistical assumptions for the signal and observation noise,

we optain

L
Ik, s, L) R=K.(k, s)— % h(k, i, L) K.(i, s) (3)

i=1

which the optimal impulse response function h(k, i, L) satisfies in linear least-squares

smoothing problems. Here, K.(k, s) is expressed by

Kk, s)=H®**K., (s, s) I(k—s)+ K« (k, (P *H"I(s—F),

I['(s, s) =®K,(s, s), Ku(s, s) =K:(s, s) H". (4)

® represents the stable system matrix of the state-space modal for x(k), K:(s, s) the

autovariance function of x(k) and 1(k—s) the unit step function.
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3. Recursive Least-Squares Algorithms for Filtering and
Fixed-Point Smoothing Estimates

[Theorem 1] shows the recursive least-squares algorithms for the filtering and fixed-point

smoothing estimates.

[Theorem 1]

Let the autocovariance function Ki:(k, s) be given by (4), let Kk, s) be the autocovariance
function of x(k) and let the variance of white Gaussian observation noise be R. Then, the
recursive least-squares algorithms for the filtering and fixed-point smoothing estimates
consist of (5)—(0) in linear discrete-time systems.

Fixed-point smoothing estimate of x(k) : x(k, L)

x(k, L)=x(k, L=1)+h(k, L, L) [(L) —H®x(L—1, L—1)] (5)

h(k, L, L)=[K{k, k) (®)** H'—q(k, L—1) ®"H"] [R+HK.(L, L)H"—
H® B(L—1) ¢'H]™! (6)

q(k, L)=q(k, L—1)®™+h(k, L, L) H[K.L, L)— ®B(L—1) ®7],
q(L, L)=B(L) (7

Filtering estimate of x(L) : x(L, L)
x(L, D=0x(L—1, L-D+G(L)[y(L)—H® x(L—1, L—1)], x(0, 0)=0 (8)
B(L)=®B(L—1)® + G(L) H[ KL, L)— ®B(L—1) ®"], B(0)=0 9)

G(L)=[K.(L, )H'- ®B(L—1) ®"H"] [R+HK.(L, L)H™—H® B(L—1)
®’H"]! 10

Proof of [Theorem 1] is omitted.

4, Realization Using Autocovariance Data of Signal

Let us estimate H, ® and K.k, k), which are used in [Theorem 1], from the autocovariance
data of the signal z(k). We assume the wide-sense stationarity as K:(k, s)=K.(k—s) and

K.k, s)=K.(k—s) for the autocovariances.
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Let the m-dimensional signal z(%k) be generated by the multivariate AR model of order n :

2R)=— i aiz(k—i)+e(k), Ele(R)e" (9)]= 0 6o(k—s). 1
i =1
In the linear least-squares estimation problem considered, we place restrictions on the AR
model the minimum phase condition. That is, all roots of the characteristic equation det
(I+aiz'+ az?+  » * +a.2")=0 must lie'inside the unit circle in the z plane [5].

Let the observation matrix in the observation equation y(k)=z(k)+v(k), 2(k)=Hzx(k),
for the state-variable vector x(k)=[x:(k) xLk) * * * xn(k)]*, be given by H= [I 0]. Here,
H consists of the identity matrix of order m and mXm * (n—1) zero matrix. The AR model
is expressed in the state space form of x(k+1)= ®x(k)+ E(k), E(R)=[0 0+ « 1],
E[¢(R) ¢"(R)]= 0, { (k)= e(k+n) with

0 I......Ow
0 0 I O0e=+=+ 0

®= L] L] L] L] L] L] L] L] L] L] N (12)
0 L] L4 L] L] L] L] L 0 I
“a, —an—l e _a2 _al

| J

where I represents m X m identity matrix. It follows from Ref. [3] that K«(k, k) is given by
Kk, R)=[ OK.”' (k, k) ®7]"". Hence, K.(k, k) is represented with its matrix elements as
Kk, =E[x(k) x"(k)]

(K.(0) K'(I) -+ K'(n—D)
K.(0) KO -+ K'(n—2
= ® 6 6 06 0 0 06 0 0 0 0 0 0 o . (13)
K.(n—2) «»+ KO KD
| K.(n—DK.(n—2) « + K.(0)

The n * m square matrix K.(k, k) is referred to as the Hankel matrix. For the Hankel matrix
with rank m * n, m * n dimensional realization for z(k) exists [6]. The AR parameters are
calculated by solving the Yule-Walker equations K. (I —i) &+ K. (2—1i) a:"+ « « « +
K{n—1-10) a-+K(n—1i) a’=—KA{—1i), i=1, 2, * + +, n. Henceforce, if we substitute
H, @ and K.k, k) thus evaluated form the autocovariance function of the signal with the
variance R of the observation noise and the observed value into [Theorem 1], we can calculate

the filtering and fixed-point smoothing estimates as illustrated in section 5.
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5. A Digital Simulation Example

Let the signal be generted by the multivariate AR model of order n=2 in (11). Here,

|

Filtering estimate 22 (k,k)
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Fig.2 z:(k) and z«(k, k) vs. k for N(O, 0. 5%).
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v(kR)=[v:(k) v:(k)]". Fig.l illustrates the signal z:(k) (solid line) and its filtering
estimate 2:(k, k) (dotted line) vs. k for the white Gaussian cbservation noise N(0, 0. 5?).

Fig.2 illustrates the signal z«{k) (solid line) and its filtering estimate z:(k, k) (dotted line)
vs. k for the observation noise N(0, 0. ). Fig.3 illustrates the fixed-point smoothing

4

3_‘ 5 L

«~ B

3 b

o i

B I

o dc

w -

IR/ |
i L/ 50 100 L
o - ;

o \ —~

a8 a

8 L

a | 2, (8)=-1.19533

N

(]

2 i

o~

<]

~ Fig.3 2,(8, L) vs. L, 9= L <28.
2

J

~N

(N 5

V]

I L

)

g

R i

ES)

o

oy d ¢ b

o

: // 1 1
: — 50 loo L
2 ‘a

o

s L z,(8)=-1.25149

. I

v

o

OISR

Fig.4 2:(8, L) vs. L, 9= L <28.

estimate z:(8, L) of 2/(8) at the fixed-point k=8 vs. L,9<L<28. Similarly, Fig.4 illustrates

the fixed-point smoothing estimate z:(8, L) of 2A8) vs. L, 9SL=<28. Graphs (a), (b), (¢)
and (d) in Figs.3 and 4 illustrate z:(8, L) and 2:(8, L) for N(0, 0. 19, N(0, 0. 3%, N(0,

0. 5) and N(0, 0. 7) respectively. Table 1 shows the mean-square values (M. S. V.) of the
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White Gaussian M.S.V. of filtering error M.S.V. of fixed-point smoothing
observation error
noise

MS.V. of MS.V. of MS.V. of M.S.V. of

z,(k)-z,(kk) z,(k)-z,(k,k) z,(k)-z,(kk+L), | z,(k)-z,(kk+L),

L=1,2,++-,20 L=1,2,+ « +,20

N(0,0.1%) 8.1293x 107> 9.12001 %107 7.7911x107° 8.99787%x107>
N(0,0.3%) 0.0696955 0.0616346 0.0637725 0.0605362
N(0,0.5%) 0.179085 0.155135 0.160711 0.151362
N(0,7%) 0.310622 0.278445 0.274731 0.268542

Table1 M. S. V. of the filtering and fixed-point smoothing errors.

filtering errors z:(k)—zi(k, k), 2(k)—z:(k, k) and the fixed-point smoothing errors z:(k)
—2:(k, k+L), z{k)—2z:(k, k+L), ISL=20, for N(0, 0. I*), N0, 0. 3, N(0, 0. 5) and
N(0, 0. 7%). The M. S. V. of the filtering errors and the smoothing errors are calculated by

200 20 200
2 (Zi(k)"‘ Ei(k, k))z /200, and 2 2 (Zi(k)"" éi(k, k+])) /4000, i=1, 2.
k=1 ji=1 k=1

Table 1 shows that the M. S. V. for the filtering and fixed-point smoothing errors become
small as the noise variance decreases, and the M. S. V. of the smoothing errors are smaller

slightly than those of the filtering errors.

6 . Conclusions

This paper has proposed the technique, which estimates the multivariate signal in recursive
least-squares estimation problems, from the autocovariance data of the signal, the variance

of the observation noise and the observed value.

A numerical simulation example has shown that the estimation technique by use of the

covariance information is feasible.
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