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Abstract
For random triangles in hyperbolic planes, we study limit distribu-
tions of lengths of three sides of them. First we establish some relation
between limit probability distributions of random triangles in hyperbolic
planes and certain expectations concerning random triangles in Euclidean
planes. Using this relation, we give an explicit expression for the limit

distributions by an elliptic integral.

RANDOM TRIANGLE; HYPERBOLIC PLANE; LIMIT DISTRIBU-
TION; ELLIPTIC INTEGRAL

1. Introduction

The first problem concerning random triangles in Euclidean planes is perhaps the prob-
lem “what is the probability that a random triangle is acute”, which was proposed and solved
by Woolhouse (1886). Since that time various studies have been made on these subjects. As
for recent references, see Mannion (1990), Arca (1994), Eisenberg and Sullivan (1996), Bary-
shnikov (1996) and so on. On the other hand, it seems to me that there has been no research

on random triangles in hyperbolic planes.

In hyperbolic planes, triangles happen to enjoy some “extraordinary” properties which
those in Euclidean planes do not (see Fenchel (1989)). For example, it happens that they do
not have circumcenters, orthocenters and excenters. Hence a series of “natural” problems
arise, one example of which is “what is the probability that a random triangle has their cir-

cumcenter”’.

In this paper we study random triangles in hyperbolic planes and we calculate limit

probability distributions of lengths of three sides of them. In section 2, we show some con-
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nection between limit probability distributions of random triangles in hyperbolic planes and
certain expectations concerning those in Euclidean planes. In section 3, we give an explicit

expression for the limit probability distributions by an elliptic integral.

2. Connection between random triangles in hyperbolic planes and those in Euclidean

planes

Consider a random triangle ABC in a hyperbolic plane. That is, on a disk with its center
at the origin O and with a radius R, we consider a triangle ABC whose three vertices A, B, and
C are mutually independent and uniformly distributed on the disk. To state more precisely, we
denote the angles which the line segments OA, OB and OC make with the x-axis by 6, ¢ and
yrespectively, and moreover, denote the lengths of the line segments OA, OB and OC by &,
n and § respectively. Then we assume that six random variables 6 ,¢ ,y,§ ,n7, { are mutually
independent, and 6, ¢, yhave the uniform distribution on an interval (0,21), and &, 1, { have

a common probability distribution whose density is given by sinh& d&/(coshR-1) .

We study the simultaneous distribution of a=BC, b= CA and c=AB. Obviously, without
loss of generality, we may assume that the vertex A lies on the x-axis. Then, by the hyperbolic
trigonometry, we have

cosha =coshncosh{ —sinh nsinh {cos(y —¢)
(1 cosh b =cosh{cosh& —sinh {sinh Ecosh y
cosh ¢ =cosh&cosh 7 —sinh Esinh ncos ¢.
Now it is convenient to introduce the following notations:
x =cosha,y=coshb,z=coshc

u=cosh&,v =coshn,w=cosh(,

A =cos(y — @), L =cosy,V =cos .
Then (1) can be written concisely as
x =ow-AJv - 1w -1
) y =wu—pw? =1 -1
| z =uv—vu —1v' -1

Moreover, it can be seen that u,v , and w have simply the uniform distribution on an interval

(1, L+1) , where L = cosh R-1.
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Now we consider the characteristic function for a suitably normalized (x, y, 2),

fi(t,t,,t)=E {exp(%(r,x +t,y +t3z)ﬂ

Then we can show the following lemma.

Lemma 1. The limit characteristic function
f(tl’ ly, t3) = lLl_{E I (tl’ L, tz)

exists and it can be expressed as

f(tu ), t3) = '4‘2"‘/0’22¢dv//0‘1/0‘1/0'1du dv dw
G) exp [it, 1 =A)vw+it, 1 —w)wu +it,(1 - v)uv]

Proof By the definition of characteristic function, we have

_ 1 27 20 L+l eL+t plrl du dv dw
futtnty = o av [T T T

-exp’i—%;—(vw—ﬂ,w/v2 —14w? -1 )+i£—§ wu —puNw? —1+u*—-1)
+—i£—z—(uv—l/\/u2 —1+/v? —1)] .

Obviously it can be written as
1

1 2 21 IPILINR LI |
fo@stt) = Z?_/(; '/O- d¢dl//'/_; L /_: £ /; L du dvaw
L L L
. 1 1 ; 1 1
.exp [ltl (vw—ﬂ,\/vz— 7= w?— F}th (wu —,u\/w2— = ue ?J
. 1 1
+zt3(uv—v\/u2—F Z—FJJ )

Hence follows the lemma with the aid of the bounded convergence theorem.

Let p (x, y, z) denote the probability density corresponding to the characteristic function

[, t2, t;5). From (3), we can derive the following expression of p (x, y, z).

Lemma 2.

@ p(x,y2)
1

1 1 2 @21
Py dody
87 vxyzf° / JA=-D(1 - (1-v)
'1[_)_25<(1—,u)(1—l/) zx_(1=v)1-4) x_y<(1—1)(1—u)}

b s

x 1-1 y 1—u z 1-v
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Proof Consider a characteristic function corresponding to the probability density(4):

f(tl’ %) tz)

= [ [ pt,y2)e 2 ax dy de

1 27 27 do d
:53%71/0«1 ¢dy

-A)A-pu)1-v)

w peo o X dy A7 iGyxtgyaz

_I{yz (1-w)a-v) . (1-v)1-24) ﬂ<(l—l)(1—,u)}

- ) < D)
X 1-1 y 1-u b4 1-v
From the condition

ye_(=m)(i-v)  zx_(=v)(1-4) xy_(1=A)(1-n)

x 1-1 Ty 1-u Tz 1-v

we can derive x<1-A4,y<1-u,z<1-v. In particular we have x<2,y<2,z<2.
Now, changing variables by &= ]—iz and M= ﬁ and {= ]—_Z; we have

~ 1 2 p2m et dEdnd
Jotnts) = 87r2fofod¢d"’/o/ofo %C

cexplit, 1 =) E+it, 1 —p)n+it,(1-v) 1. 1[nE <& CE<n, En< (]
Furthermore we change variables by & =vw, 11=wu, {= uv. Then it can be easily seen that the

d &, . .
Jacobian 5%}% equals +/én¢ and the conditionn{ <&, {&<n, En<{ is quivalent to the

conditionu <1, v<1,w< 1.
Consequently we obtain
~ 1 2m p21 1 el opl
fap ) = o /0 A do dy/'/(;_/o‘ [ du dvaw

-explit, (1 = D vw+it,(1 —pwwu +it,(1 — vIuv]

Thus fis identical to f and the proof is completed.

Now we go into an Euclidean plane and consider a random triangle ABC whose three
vertices A, B, and C are mutually independent and are uniformly distributed on the unit circle
with center at the origin O. Putting X = BC, Y = CA and Z = AB, we investicgate an expecta-

tion
E[——1-1 (YZ >aX, ZX >bY, XY >c2)} ,
XYZ

where a, b, ¢ are constants. We denote this expectation by 7T(a, b, c). Without loss of general-

ity we may assume that vertex A lies at the x-axis. We denote the angles which the line
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segments OB and OC make with the x-axis by ¢ and y respectively. Then we can see easily

X=.2(1-21), Y=2(1-u), Z=2(1-v),

where A, i, v denote cos(y -¢ ), cosy ,cos¢ respectively. Accordingly we have

_1_ 2m p21 d¢dy/
4’ /0 f“ 2«5\/(1—,1)(1—;1)(1—1/)

.1[(1—;1)(1—1/) a (A=na-2) »* (1—;1)<1—u)>_czi]
-V

T(ay b; C) =

s

1-4 2 1-u 2

Therefore, using Lemma 2, we obtain the following result.

2 2vyz 27X 2
p(x,y,Z)=\/ T(\[ Y \/ , \[ xy] ,
Xxyz X y z

3. An expression for limit probability distributions using an elliptic integral
3.1

Theorem 1

Our task of this section is to find an explicit expression for p(x, y, z). By Theorem 1, for
this purpose, it suffices to find an explicit expression for 7(a, b, ¢). We consider a random
triangle ABC in an euclidean plane whose three vertices A, B, and C are mutually indepen-
dent and are uniformly distributed on the unit circle with center at the origin O, and put X =

BC, Y = CA and Z = AB. First we calculate a conditinal expectation when Z = z is given,

Eil(£<—£<—z—, XY>cz) .
XY z X b

Denoting £AOB = 2®, we may assume without loss of generality that both the angles which
the line segments OA, OB make with the x-axis are equal to . Furthermore, letting 6 denote
for the angle which the line segment OC makes with the x-axis, we define a function

X(8) = %:-3%%% |
Then this conditinal expectation is given by an integral

[
27 2|cosf- cosa|’

where the integration is taken over a domain

a <x(0)<231na)

{9 e(0,2m):
2sin @

, |cos@—cos|>csin w}

Dividing the domain of integration into two parts,
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D(w) = {96((0,271:—(0): .a <x(6)<zsmw,cosa)—cos6>csinw}
2sin @
D) = {96(-—-60,(0).’ 'a <x(9)<2smw,cos9—cosw>csinw},
we put
go) = — a6
4 J p(®) cos@— cosO
- 1 do
g(w) =

47 J bo) cosw— cosO

Then we can write T(a, b, ¢) as

5) T(a,b,c)=T,+ T,
where
2 1
(6) T=1|?"do - - glw
0 J-O T - 2sinw g( )
1) =% 240 —— . o)
o 2sin®

Thorougout the remainder in the paper, without loss of generality, we suppose a < b < c.

3.2
First we compute g(® ). Since y (0) is an increasing function, we can define o= o (w)
and = (@) by

x(a)= , 0e(w,2n- o)

2sin@
x(B) = 251;“”, Be(w,2r- )

respectively. Furthermore, when 1 + cos @ > csin o, we define Y=y (@) by

and

COs@—cosy = csinw, Y € (W, 1)

Then, noting that y () is increasing, we see

D(w) = (@), B(@)) N (Y (@),27— Y (@)).
Now we consider the following conditions :

C =< y(w)< f(w)< 2n—y(w)

G, =a(w)< y(w)<2r-y(®)< B(®)

G =y(@< a(w)< f(w)< 2r-y(®)

C,=y(@< x(w)<2r-y(w)< f(®)
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Then
((y(w),B(@)) if the condition C1 holds,
(y(@),2r—y(®)) if the condition C2 holds,
(3) D(w) =4 (a(w),B(w)) if the condition Cs holds,
(a(w),2n—y(®)) if the condition C4 holds,
9 otherwise

Next, introducing a function

we can easily show
62 de 1 (o) o
= [|{tan = |—[|tan = |} -
®) '/9‘1 cos 8 —cos W sinw{ ( 2) ( 2 )}

Moreover, from the definitions of a, B and v, it follows that

4t+a( 1+ 1)

tan9£ t—=
2 4t—a(1+¢%)’
b(1+1%)+ 4¢
tanﬁ — t._(__.T)_____,
2 b(1+1)- 4t
any = t(t+\c),
2 1-ct
where ¢ denotes 22)- . Hence we can derive
4t
(10) l(tang) = log| ———
2 & a(t+t2) )
b(1+1%)
l(tanﬁj = log|—|,
2 4¢
y Nt+c +t —ct?
[{tan = | = log .
2 Ji+c —~t—ct’

Now let Si denote for a set of @’s for which the condition Ci: is satisfied (i =1,2,3,4). Then,

combining (8), (9) and (10), we obtain the following result.

Lemma 3

g(w) = g(1) forme S, (i=1,2,3,4),

4msinw
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where ¢ =tan € and

2
(11) g, (t) = l[tan%)—l(tang)

= 2. X
g, () = ZI(tan 2)

g, (1) = l(tan%)—l(tang)

8.(1) l(tan%)—l(tan%) )

Furthermore, from this lemma and (6), the next lemma follows.

Lemma 4.

1 & +1
7;)_—871:2 = J-Si 12 glr) dr,

il

3.3

We analyse the conditions Ci (i =1,2,3,4) in detail. For this purpose it is convinient to

introduce the following quantities

1
) ZCX
o, (x) = arcsin ,
+ (1) x+c—\/cx(4—cx)
Lo
®_(x) = arcsin 4

x+c+ \/cx(4—cx) ’

and

Furthermore, we put
4c _ ac

and

Then, by an elementary but tedious analysis, we can show the following lemma.
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Lemma 5. [ (@, @0, ®) if c>1,a<b<g,
(wy @, o, b)) if c>l,a<o<b<T,
(w_ brop b)) if c>l,a<o<b,b>T,bc>a+c),

(wy (@)oy B)) if c<l,a<b<o,

|2 otherwise

( (0, B)w,) if c>l,a<b<o,
S, =1 (w+ (b),—gj if c<l,a<b<o,

17} otherwise

[ (@, 0, (@) if c>1,a<b<g,
(@,,04 (@) if c>l,a<o<b<T,

(w,,ws (@) if c<l,a<b<o,

%] otherwise

S, =& atall times.

Combining Lemma 4 and Lemma 5, we have the following lemma, where we put

t, (x) = tan M, r_ (x) = tan w_2(x) <

0)
, 1, =tan—2% and 7_=tan
2

Lemma 7.
Ifc>1anda<b < o, then

2 LPLS| “Pp
(12) 87T, =/ g.(2) dt—/f g di
tab

2
t /1, (@)

e o
vt/‘ t—tf—l g,(r)dr.

1, (b)

Ifa<o<b<1,then

a t_,,()
(13) 87°T, = " () dt + U1t () dt
0o~ tz 83 12 8, .
tab

1 (a)

Ifa<o<b,b> tand bc > a(b + c), then

4 (b) 2
(14) 87°T, :f ! :; 1 g, (@) dr.

L (b)

Ifc<1anda<b < o_, then To can be given by (12) again.
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34

Now we calculate indefinite integrals

2
ft *+1 ( ) (tan )dt,ft jll(tanz)dt.
t’ t 2
For this purpose we need the following two lemmas, the first of which can be easily estab-

lished.

Lemma 7.

2 2 2 _ 2
/t jllogl-” dt=t 1[10g1+t ——1)+4arctan t.
t t t t

In order to state the next lemma, we introduce the following elliptic integral,

ew)=e(;k)

(15) _ /‘" {(1-u?) —c*He? =221 —u?) -1 -u?)"}
’ 1-u*)c* +1-u>)"}
du

'\/(1 —u?)1-k*u?)

where k is a constant.

Lemma 8.

/ t?+1 log At +c¢ ++t—ct? it
t? Jt+¢ =+t —cr?
- ~ ;

=t 11 At +c +Nt Ct + 2 em;k)’
t Jt+¢ =t —er? ce? +1

where k = 1
ct+1

Proof. Integrating by parts, we have
/ t’ +1 log t+c +t—ct’ &
t° Jt+c =+t —ct?

7 -1 log | YLt +Nt—ct® | 7
t Nt +c =t —ct? ’

d [m+\/t—ct ]}
Jt+c =+t —ct?

where
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Sinc¢
d Nt +c +t —ct? J 1—2ct—t?
Nt +c =+t —ct? (1+1),/@ +c)(t—ct2)’

_ (tz—l)(l—th—tz)‘ dt
J_.[ t(t2+1) \/(t+c)(t—CI2) .

By change of variables ¢ = x%/c, it can be written as

we have

_2 (x4—cz)(cz—2c2x2—x4). dx
=2 {r+1) J+e)(1-21)

C
Furthermore, changing variables x by x = +/1— 42, we can complete the proof.

It is convenient to rewrite the results stated in Lemma 11 and Lemma 12 in a more concise

form.

Lemma 9. t2+1 o t2—1 o t2_1
/ —l|tan— |[dt = [|tan — |+ —4 arctan ¢
t 2 t 2 t
2 2 _ 2
f ! jll(tanp—)dt = ! ll(tanﬁj—t 1+4a‘rctant
t 2 N 2 t
t? +1 t? -1
f 3 l(tan Z)dt = l(tanl) r____e(«/l ct;k),
t 2 t 2 C C +
where k = 2
c+1
3.5

Before calculating To, we remark the following.

Lemma 10.
If x < o, then
oa(@, @)=y (w, x), (@, x)=2x-7 (0, (x).
If x < o, then
o (o, (x)) =27- 7 (@, X)), B(®, ) =7 (@, (x)).

Now we can express T, as follows.

Lemma 11.

Ifc>1anda<b < o, then
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4—ab

8n°T, = -—2cotmy (a)—2cotw, (b)+4 - 2w, (a)-2w4 (b)+40,,

2

_c—cx/—;—-i——zl-{e(\/l_ctan QT8 (a))+e(\/l—ctan w, (b))}

Ifc>1anda<o<b< 1, then

8#°T, = —2cotw, (a)-2cota, /4_:b (@)2w, b)+4w,
a
+—2——{e(\/1—ctan [0 (a))+e(\/1—ctan W, ®))}.
c\er +1

Ifc>1anda<o<b,b>71 and bc > a( b + c), then

8°T, = —2cotco+ (b)+2cotw_ (b)-2wm, b)+20_ (b)

+——— {e(\/1—-ctan w b))—e(J1—ctan w_ B))}-
’\/—— \/ + \/7

cVe® +1

Ifc<landa <b < o_, then

87°T, = —2cot@y (a)—2cota, (b)+4 | 2=

204 (@)-2wp b)+40,

+—_—

cm {—e(\/l ctan wy (a))— e(\/l ctan wy (b)) +2eW1-c)}-

Proof. Since the proof are similar for all cases, we only prove for the case ¢ > 1,a<b <

o . Using Lemma 3, Lemma 4 and Lemma 9, we have

) @t 41 o B
87°T, = frab > {l(tanz)-—l(tana dt
'+(b)t +1
+ [ (a) { (tan (tan )} dt

2 _ _ 4 (@)
I:t - ll(tan%)+t 1—-4arctant:|
t

e t
+/ tan
t, (b)
tab

2 2 4 (b)
—|L ll(tan—@)+t 1—4arctan t:l
|t 2 t )

t, (b)
e(\1—ct ):|
t,(a)

|t J—__
+[2- ’2;116 %) J__eﬁ—c)}

1, (b) ’
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" From Lemma 10 it follows that

l [tan a(w+2 (@ ))) _, [tan y(w+2 (a))J

and
l(tan _B(_wtz(i))J — l(tan 271.'_)/((0_,, (b)))= l(tan ’J/(a)_g (b))) ‘

2

Furthermore, we can readily see that
()

[|tan - (@) ltanM = log [2

2 2 a

and since t.=1/c,
] 0

Accordingly,
2 2 _ 2 _
1, (a) 1+z+ (b) 1_2.tab 1_2w+ (@)-20, b)+40,
t, (a) ty (b) La

{e(ﬁl —cty (a))+e(1—cty (D)}
+

87°T,

cc?
Finally, noting that
2 _ 2 _
() =1 —2cotaw, (x), and 1=——200twab=—-2 4 ab’
ry (x) t, ab

we can complete the proof.

3.6
Now we begin the calculation of T. Since x(0) is a decreasing function, we can define

a=&w) and B=pf(w) b

@) = 25;60, o e (-0, 0)
and ~\ _2sin®w
x(ﬁ) == B € (-0, o)

respectively. Furthermore, when 1 - cos @ > ¢ sin @, we define 7 = ¥( ) by
cosy—cos@ = csin®, ¥ € (0, w)

Then, noting that y (0) is decreasing, we see

Ko) = (Bo).do))  (-7(0).70)).
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Now we consider the following conditions :

J>('311”1'\))_1
|
X
e

N N
N
—_—~
e

SN— N
N

0
—~~

e

N N—
N
/'\l/-\
e

N -

Then ) _
(-y7(®), &(@)) if the condition C, holds,

(-y(w), y(w)) if the condition éz holds,
D(w) =J (B(a)), @(w)) if the condition C, holds,

B(w), 7(@))  if the condition C, holds,

2] otherwise

On the other hand, from the definitions of & B and y , it follows that

& 4t—a(1+ 1)
tan— = t-——— 2
2 4t+ a1+ 1)
tané ~ 'b(1+t2)—4t,
2 b(1+ )+ 4t

tanL = ‘/—t(t_c) ,
2 1+ ct

() .
where t denotes tan — . Hence we can derive

2
a 4t
[|[tan— | = log|——|,
2 g(a(l+t2)]
3 b(1 +¢>
l tanﬁ = log ——————) ,
2 4t
; tan—? ~ log Nt+ct® +4/t —c
2 Jt+et? —Jt—c

Now let §,~ denote for a set of w ‘s for which the condition C~', is satisfied i =1, 2, 3, 4). Then,

corresponding to Lemma 5, we can show the following result.
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Lemma 12.

~ (a)c,z) ifa<b<o.
S, = 2

%] otherwise

On the other hand, §,,S, and §, are 6 at all times.
Accordingly, in contrast to to Lemma 3 and Lemma 4, we have the next simple result.

Lemma 13. £
87[2T:‘/t; _;ng(t)dt,

= Y=2 1] tan
g, @)=2 l(tanzj.

For an integral which appears in the above lemma, we can establish the next formula.

where

Lemma 14.

2 y 2 _ y
ft jll(tan_ZJdt=t ll(tan—z)——z—e 1-S5k |,
t 2 t 2 C’\’C2+1 t

2

cVet+1

Proof. The proof of this lemma goes along almost the same line as that of Lemma 9. The

where k =

only differrence appears in the last step of the proof of Lemma 9, where we change variables

xby x = +/1—u* . However in the present proof we need change variablesby x = c¢/+/1—u” .

Then, Lemma 13 and Lemma 14 together gives the following lemma.

Lemma 15. 4
8T = - —4 o IZ
" cet+1 e( C)
3.7

Now, combining Lemma 11 and Lemma 15, we can state our main result.

Theorem 2.

If c>1anda<b < o, then
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(17) 87°T(a,b,c)

4—ab
ab

= —2cotwy (a)-2cotwy (b)+4

-204 (a)-2w4 (b)+ 40,

2 _fe(f1-ctan @, @)+e(I-ctanwy )} .

c\e?+1

Ifc>1and a<o<b< 7,then

(18) 87°T (a,b,c)

4 —ab
ab

= —2cota, (a)-2cotw, (b)+4

2w, (a)-2wm, b)+4a,,

—_— J_{e(\/l —ctan . (b))- e(\/l —ctan w4 (a))}.

cVet+1
Ifc>1and a<o<b,b>71 and bc >a (b +c) , then

(19) 87* T (a,b,c)
= —ZCota)_,_ (b)+2cotw_ (b)-2w4 b)+20w_ (b)

C\/C +1

Ifc<land a<b < o_,then T (a, b, c) can be given by (17) again.

+———{e(1-ctanw, (b))—e(|/1—ctan w_ (b))},
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