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Abstract

This paper proposes a new design method of a nonlinear prediction
●

algorithm in continuos-time stochastic systems. The observd value con-
1

sists of nonlinearly modulated signal and additive white Gaussian obseト

vation noise. The prediction algorithm is designed based on the same idea
●

as the extended Kalman filter is obtained from the recursive least-squares

Kalman filter in linear continuous-time stochastic systems. The proposed

predictor necessitates the information of the autocovariance function of
●

the signal, the variance of the observation noise, the nonlinear observation

function and its differentiated one with respect to the signal. The proposed
●

predictor is compared in estimation accuracy with the MAP predictor from

both theoretical and numerical aspects.

1. Introduction

In linear least-squares estimation problem, recursive least-squares estimation algorithms

[3] have been devised. They use the covariance information of the signal and observation

noise. The linear estimation algorithms are used limitedly within linear systems and can not

be applied to estimation problem in nonlinear systems directly. From this respect, this paper
●

presents a new design method of the nonlinear predictor by use of the covariance information

for the signal with nonlinear observation mechanism in continuous-time stochastic systems.

●

Here, the observed value consists of the nonlinear function of the signal and additive white
●

Gaussian observation noise. In this paper, the prediction algorithm is devised based on same

idea as the extended Kalman filter [ 1 ],[2],[4] for nonlinear estimation problem. The extended

Kalman filter is designed based on the recursive least-squares Kalman filter in linear stochas
●
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tic systems. In this paper, the extended predictor using the covariance information is designed
●                                                                                                                            ●

in the relation with the recursive linear least-squares predictor in [Theorem l】 by use of the

covariance information in linear continuous-time stochastic systems. The present predictor

uses the information of the autocovariance function of the signal, the variance of the observa-
●

tion noise, the nonlinear function of the signal and its differentiated one with respect to the
●

●                                                                                                                                                                                                                      ●

signal. The proposed nonlinear prediction algorithm estimates the signal recursively via an

updated observed value.

Incidentally, as an approach, which uses the same information as the present predictor,

to the nonlinear estimation and modulation problem, the MAP (maximum a posterior) esti-

mation technique [5] is developed. The current nonlinear predictor is compared in estimation

accuracy with the nonlinear MAP predictor in continuous-time stochastic systems both theo-

retically and numerically.

2. Recursive least-squares prediction problem in linear continuous-time stochastic sys-

tems

As a step toward the extended prediction problem, we consider recursive least-squares

prediction problem in linear continuous-time stochastic systems.

Let an observation equation be given by
●

y(t) -H(t)x(t) +v(t),　　　　　　　　　　　　　　　　　　　　　　　　　　　(1)

wherey(t) is an observed value of dimension m, x(t) is a zero-mean signal of dimension n and

v(t) is white Gaussian observation noise with the variance /?.

E[v(t)vT(s)] -R8(t -s)　　　　　　　　　　　　　　　　　　　　　　　(2)

Here, the symbol " T "represents transpose and the symbol o (t-s) the Dirac delta function. We

assume that the signal x(t) is uncorrelated with the observation noise v(s) as

E[x(t)vT(s)]-0, 0 <s,t <サ=.　　　　　　　　　　　　　　　　　　　　(3)

Let x(t,t +α) represent the α time ahead prediction estimate of the signal x(t). Let x(t,t + α)

be expressed by

x(t,t+α;- / h(t,s)y(s)ds,　　　　　　　　　　　　　　(4)

where h(t,s) is an impulse response function. Minimizing the mean-square value of the pre-

diction error x(t +α) -x(t,t +α)

J =E[(x(t +α) -x(tJ +α)Y (x(t +α) -x(t,t +α))】,

we obtain the Wiener-Hopf integral equation [4]

E[x(t +a)yT(s)] = h(t,s ')E[y(s ')yT(s)]ds :

(5)

(6)
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If we substitute (1) into (6), use the stochastic property of the signal x(t) and observation

noise v(t) and represent the autocovariance function of the signal by Kx(t,s)(-E[x(t)x (s)]) ,

we obtain

h(t,s)R -Kx(t +a,s)HT(sト/h(t,s')H(s')Kx(s',s)ds甘(s).　　　　　(7)

We assume that the autocovanance function of the signal is expressed in the semi-degenerate
●

kernel from T31 of

K (t,s) -E[x(t)xT(s)]

i

A(t)BT(s),　o<s<t,

B(t)AT(s),　o<t<s,

(8)

where A(t) and B(s) are w-by-7 bounded matrices.

In section 3, we derive the recursive leasトsquares predictor under the above assump-

tions in linear continuous-time stochastic systems as a step toward the nonlinear extended

predictor.

3. Recursive least-squares prediction algorithm in linear continuous-time stochastic

systems

【Theorem 1 ] presents the recursive least-squares prediction algorithm in linear continu-

ous-time stochastic systems.

【Theorem l】

Let the observation equation be given by (1), let the autocovariance function Kx(t,s) of

the signal x(t) be expressed in the semi-degenerate kernel form of (8) and let the signal be

uncorrelated with the observation noise v(s) as (3). Then, the recursive least-squares algo-

rithm for the αtime ahead prediction estimate x(t,t + α) of the signal x(t) consists of (9)-(13)

in linear continuous-time stochastic systems.

α time ahead prediction estimate ofx(t): x(t,t + α)

x(t,t +a) -A(t +a)e(t)

Filtering estimate ofx(t): x(t,t)

x(t,t) -A(t)e(t)

de(t)

dt
-J(t,t)(y(t) -H(t)x(t,t)), e(0) -0

J(t,t) -(BT(t) -r(t)AT(t))HT(t)R-
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dr(i)

dt
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鹿児島大学教育学部研究紀要　自然科学編　第49巻(1998)

-J(tJ)H(t)(B(t) -A(t)r(t)), r(0) -0

Since K (t,s) -A(t)BT(s) for 0 <s <t from(8), (7) is written as

h(t,s)R -A(t +a)Bl(s)Hl(s)-
/ h(t,s ')H(s ')Kx(s ',s)ds甘(s).

If we introduce the function J(t ,s) which satisfies

J(t,s)R -BI (s)H'(s)-

we obtain

J(t,s ')H(s ')KX(s ',s)ds W (s),

h(t,s) -A(t +a)J(t,s)

for the impulse response function h(t,s).

If we differentiate (15) with respect to t, we have

里色坐R - -J(t,t)H(t)KJt,s)HT(s)丁響H(s ')Kx(s ',s)ds HT(s).∂J　　　　　　　　　　　　　　　　　　　　　∂J

From (15) and (17), we have a partial differential equation

∂J(∫,∫)

∂J
= -J(t,t)H{t)A{t)J(t,s)

for J(t,s).

Ifwe putg=Hn (15), we have

J(U)R -B'(t)H'(t)- f J(t,s Off(s ')Kx(s ',t)ds W (t).

Since K (t,s)-B(t)AT(s) for 0 <t <s from (8), (19) is written as

J(t,t)R -BT(t)HT(t) - I J(t9s ')H(s ')B(s ')ds 'AT(t)HT(t).

If we introduce the function r(t) given by

rrり-暇 (t,s ')H(s ')B(s ')ds '

weobtain(12)forthefunctionJ(t,t).

Ifwedi飴rentiate(21)withrespecttotanduse(18),wehave

等-J(t,t)H(t)B(t)-J(t,t)H(t)A(t)fj(t,s')H(s'Ms')ds'.

J｡

(13

(14)

(15)

(16)

(17

(18

(19)

(20)

(21)

(22

From (21) and (22), we obtain the differential equation (13) for r(t). The initial condition on

the differential equation for r(t) at t=O is r(0)=O from (21).
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If we substitute (16) into (4) and introduce the function e(t) given by
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e(t) = (t,s ')y(s ')ds ',
(23)

we obtain (9) for the α time ahead prediction estimate x(t,t +α) ofx(t).

If we differentiate (23) with respect to t and use (1 8), we obtain the differential equation

(ll) for e(t). The initial condition on the differential equation for e(t) at t=O is e(0)=O from

(23).　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　□

In section 4, referring to the linear prediction algorithm of [Theorem l], we design the

extended predictor using the covariance information.
●

4. Design of extended predictor for estimating signal with nonlinear observation mecha-
●

●

nism

Let the signal be observed with nonlinear mechanism by

●

y(t) - f(x(t),t) +v(t),　　　　　　　　　　　　　　　　　　　　　　　　　　(24)

where the signal x(t) and the observation noise v(t) have the same stochastic properties as

those in section 2.

(24) can be expressed as a Taylor series by expanding about nominal trajectory xH(t)

財l室

y(t)-y〝(t) - f(x(t),t)-f(xjt),t)+v(t),　yjt) -f(xn(t),t)

∂′(∫(〟,〟

x(t)=xtt (t)

(x(t) -xn(t)) +h.o.t +v(t)

-H(t)(x(t) -xjt)) +h.o.t +v(t), H(t) =
∂′(∫(〟,〟

dx(t)
wnnLぢ (25)

Here, "h.o.t." are terms in powers of x(t) -xn(t) greater than one and H(t) is m-by-n matrix.

A linearization of this relation to the first order yields the perturbation measurement model of

8y(t) -H(t)Sx(t)+v(t), 8y(t) -y(t)-y (t), Sx(t) -x(t)-x (t).　　　　　(26)

The output of predictor, which is called the linearlized predictor or perturbation predictor,based

on the observation equation (26) would be the optimal prediction estimate of Sx(t). This

could be added to the nominal value xn(t) to obtain the estimate of the signal x(t). From (26)

we find that we can estimate x(t) in terms of y(t) -yn(t) +H(t)xn(t), yn(t) -f(xn(t),t), through the

relationship y(t) -y (t) +H(t)x (t) -H(t)x(t) +v(t). In the continuous-time systems, x (t) is

set to the filtering estimate x(t,t) of x(t) [1],[2].Since y(t)-f(x(t,t),t)+H(t)
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x(t,t)(-H(t)x(t) +v(t)) has an equivalent information toy(t), the filtering estimate x(t,t) ofx(t)

can be estimated by the observed valuey(t).

As in the extended Kalman filter we also use the linearlized observation matrix H(t) in

the current filtering equations. Although (12) and (13) in [Theorem l] do not include the term

of the observed valuey(t), H(t), given by H(t) -
df(x(t), t)

x(t)=x(t,t)

, in these equations might

be dependent on the observed value. According to the guideline in the design of the extended
●

Kalman filter[1],[2], H(t) in (ll),(12) and (13) are replaced with Hit) =
df{x{t¥t)

mSB.ちim E

in

the current nonlinear extended prediction problem using the covariance information.
●

Also, based on the procedure in the design of the extended Kalman filter from the Kalman
●

filter, the term HH(t)x(t,t)" in (ll) is replaced with Hf(x(t,t)9t)" in the current nonlinear

extended predictor. (9) is included as it is also in the extended predictor using the covanance

information.

[Theorem 2] summarizes the extended prediction algorithm using the covanance infor-

mation. The validity of the above design technique is examined by a numerical simulation
●

example in section 6.

【Theorem 21

Let the nonlinear observation equation be given by (24), let the autocovariance function

of the signal x(t) be expressed by (8) in the semi-degenerate kernel form, let H(t) be given by

H(t) -
df(x(t),t)

x(t)=x(t,t)

and let the signal x(t) and the observation noise v(s) be uncorrelated

as (3). Then, the recursive least-squares algorithm for the α time ahead prediction estimate

x(t,t + α) of the signal x(t) consists of (27)-(31) in continuous-time stochastic systems with

●

nonlinear observation mechanism of the signal.

a time ahead prediction estimate ofx(t): x(t,t +a)

x(t,t +a) -A(t +a)e(t)

Filtering estimate ofx(t): x(tJ)

x(t,t) -A(t)e(t)

de(t)

dt
= J(t,t)(y(t)-f(x(t,t¥t)¥　e(0)=0

(Filtering estimate off(x(t),t): f(x(t,t),t))

(27)
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/(*,*) -(BT(t) -r(t)AT(t))HT(t)R-

=J(t,t)H(t)(B(t) -A(t)r(t)), r(0) -0

(30)

(31)

87

5. Comparison of estimation accuracy of current predictor with MAP prediction algo-

rithm

In this section, we introduce the MAP predictor 【 in estimating stochastic signal with

nonlinear observation mechanism.

In estimating the a time ahead signal, the MAP prediction estimate of the signal x(t) is
●

givenby

x(t,t+a)-fKx(t+a,s')

Jo

df(x(s '),S ')

If we substitute the relations H(s 0 -

x(s ')=x(s ',s ')

R-'(y(s ') -f(x(s ',s '),s '))ds '.

x(Sつ=x(s′,Sつ

0<s<t,from(8)into(32),wehave

x(t,t+a)-A(t+a)fBT(s')HT(s')R-'(y(s')-f(i(s',s'),s'))ds'.

J｡

Ifweintroducethefunctionq(t)expressedby

q(t)-fBT(s')HT(s')R-'(y(s')-f(i(s',s'),s'))ds'

Jo

(32)

and K (t+a,s/) -A(t +a)BT(s/),

(33)

(34

and differentiate (34) with respect to t, we obtain the recursive MAP prediction equations as

follows :

x(t,t +α) -A(t +α)q(t),

dq(t)

dt
=BT(t)HT(t)R~'(y(t) -f(｣(t,t),t)), q(0) =0,

where the initial condition on the differential equation (36) at t-0 is clear from (34). The

MAP prediction estimate is calculated by (35) and (36) in terms of the same information as in

[Theorem 2] for the nonlinear extended predictor using the covariance information.

Let us compare the predictor in [Theorem 2] with the MAP predictor from the theoreti-
●

cal point of estimation accuracy.

If we differentiate (27) with respect to t and use (29), we have

dx(t,t+a)　dA(t+a)

dt dt
e(t) +Art +a)J(t,t)(y(t) - f(x(t,t),t)), (37
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where A(t+a )J(t,t) represents the predictor gain. From (16) and (30), the predictor gain

h(t,t)(=A(t+a )J(t,t)) might be expressed by

h(t,t) -(A(t + cc)BT(.t) -Ait +a)r(t)AT(t))HT{t)R '.　　　　　　　　　　　(38)

Let hMAP(t,t) represent the prediction gain for the MAP predictor. Then we have hMAP(t,t)

-A(t +a)BT(t)HT(t)R-'from (35) and (36).

If we compare the MAP prediction equations (35) and (36) with the proposed prediction

algorithms in [Theorem 2], we find that the MAP prediction equations are obtained by setting

r(t)=O in the prediction algorithms of [Theorem 2],

Let Px¥t + a,t + a) represent the prediction error variance function of the proposed pre-

dictor. From (4), (16) and (21), PAt +a,t +a) might be developed as

pJt +叫+a) -E[(x(t +a) -x(t,t +a))(x(t +a) -x(t,t +a)y ]

-E[(x(t +a) -x(t,t +a))x(t +ay ]

-KJt +a,∫ +a)-∫h(t,s)E[y(s)x(t +a)']ds

-K (t +a,t +a) -A(t +a)r(t)AT(t -ha).
(39)

Let P-(t+α,t+α) represent the autovariance function of the prediction estimate x(t,t +α),

i.e., Ps(t +α,i +α) =A(t +α)r(t)AT(t +α). Let P.¥ (t +a,t +a) represent the prediction error

variance function of the MAP predictor. It is clear that the autovariance function of the pre-

diction estimate for the MAP predictor is the zero square matrix of order n and ^MAP ('+α,

i +α)-K (t+α,i +α). Since PM +α,i +α)and PM +α,i +α) are nonnegative definite ma-

trices, the relationship

*MAP(t +a,t +a)(-Kx(t +a,t +a))0 <P.(t+a,t+a) <P. (40)

is valid. Hence, it is seen that the proposed predictor is superior or equal to the MAP predictor

in estimation accuracy.

6. A numerical simulation example

In this section a simulation example is demonstrated. The example shows the prediction

for a stochastic signal with a nonlinear observation mechanism.
●

●

Let the observation equation be given by

y(t) -f(x(t),t) +v(t), f(x(t),t) -(i +x(t))2, (41
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where we assume that the process of the signal x(t) is stationary stochastic with the

●

autocovanance function given by

KM,s)-K (t-s)

-Pe-k(l-s) P-10, k-0.5

From (8) and (42), we have the functions A(t) and B(s) expressed by

A(t) -Pe~kt, B(s) -eks.

H(t) is given by

Hit)
df(x(t),t)

x(t)=x(t,t)

-2(l +x(t,t)).

(42)

(43)

(44)

If we substitute the expressions for f(x(t,t),t) , H(t), A(t) and B(t) above into the prediction

algorithm of [Theorem 2], we can calculate the prediction estimat占i(t,t + α) and the filtering

estimate f(x(t,t),t) of f(x{t),t) recursively.
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Fig.l Sequences of f(x(t),t) (solid line) and the observed value y(t)

(dashed line) for the observation noise N(0,0.4 ).
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2.5 3.5

Timet

Fig.2 Sequences off(x(t),t) (solid line) and the observed valuey(t) (dashed

line) for the observation noise N(0,0.6 ).

Fig.l and Fig.2 illustrate the sequences off(x(t),t) (solid line) and the observed value

y(t) (dashed line) for the observation noises N(Q,0.42) and N(0,0.6 ) respectively. Fig.3 and

Fig.4 illustrate the sequences off(x(t),t) (solid line) and its filtering estimate /(ぷit,t),t)

(dashed line) for the observation noises N(0,0.4 ) and N(0,0.62) respectively.
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Fig.3　Sequences off(x(t),t) (solid line) and its filtering estimate

f(x(t,t),t) (dashed line) for the observation noise N(0,0.4 ).
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Timet

Fig.4　Sequences off(x(t),t) (solid line) and its filtering estimate

f(x(tjt),t) (dashed line) for the observation noise N(0,0.6 ).
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Fig.5　Signal x(t) (solid line) and its prediction estimate x(t,t +0.02)

(dashed line) for the observation noise N(0,0.4 ).

Fig.5 and Fig.6 illustrate the signal x(t) (solid line) and its prediction estimate

x(t9t +0.02) (dashed line) for the observation noises N (0,0.4*) and N (0,0.6 ) respectively.
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0.5　　　　　　　　　　　　　　　　　　　　　　　.5　　　　　　　　　　　2
Time t

2.　　　　　　　　　　　　　　　　　　　　　　　3.5

Fig,6　Signal x(t) (solid line) and its prediction estimate x{t,t +0.02)

(dashed line) for the observation noise N(0,0.6 ).

Table 1 shows the M.S.V. (mean square value) of the filtering error f(x(t),t) -f(x{t,t¥t)

by the current extended filter in [Theorem 2] and the MAP filter. The M.S.V. is calculated by
l　票___　　　　　　_,>N,...　_.‥つ　　　　　　　　　　　　　　　　　.　‥　　　y､ _ーノ〈〈　_,､

∑(f(x(iA),iA) - f(x(iA,iA),iA))1 A - 0.005, for the observation noises N(0,0.3 ), N(0,0.<f)

and N(0,0.62). Table 2 shows the mean square values of the filtering error x(t) -x(t9t) and

the predction errors, x(t+0.005トx(t,t+0.005), *(f+0.01トx(ut+0.01), x(t+0.015)-x(t9t+0.015)

and x(t+0.02)- x(t,t+0.02) , by the current and MAP estimation techniques for the observation

noises N(0,0.32), N(0,0.42) and N(0,0.6 ). The estimation accuracy of the filtering estimates

ofx(t) andf(x(t),t) and the prediction estimates is improved as the variance of the observation

Table 1 M.S.V. of the filtering error f(x(t),t) -f(x(t,t),t) by the current

extended filter in [Theorem 2] and the MAP filter for the obser-

vation noises N(0,0.32), N(0,0.42), and N(0,0.62).

腎hite 紘.S.V. of filtering error

Gaussian

observation

noise

f {x (t¥ t) - f (坤 ,0 ,0

Current MAP filtering

filtering

method

method

〟(0,0.32)
0◆0 117915 0.077817 1

〟(0,0.4 2) 0▲0 176885 0.12337 1

〟(0,0.6 2) 0.0317369 0.182 146

700
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Table 2 Mean square values of the filtering error x(t) -x(t,t) and the predic-
tion errors, x(t+0.005)-x(t,t+0.005) , x(t+0.01)-x(t,t+0.01),

x(t+0.015トjcO,f+0.015) and x(t+0.02)-x(t,t+0.02) , by the current

and MAP estimation tecniques for the observation noises N(0,0.3 ),

N(0,0.^) and N(0,0.62).
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White M.S.V. of filtering error I.S.V. of prediction error LS.V. of prediction error I.S.V. of prediction error I.S.V. of prediction error

Gaussian

observation

noise

x(t)- x(tj ) x(t+ 0.005)- xitj + 0.005) X(t十0.01)- x(t,t十0.01) X(t十0.015)- x(t,t+ 0.015) x(t+0.02)- x(t,t+ 0.02)

Current MAP filtering Current ■AP Current LAP Current MAP Current ーAP

filtering

method

method method prediction

method

method prediction

method

method prediction

method

method prediction

method

〟(0,0.32) 1.15834×10一38.64372×10-37.64118×10ー3 0.0 150286 7.6827×i0-3 0.0150497 7.77347×i0-3 0.0150873 7.84929×i0-30.0151878

〟(0,0.42) 1.6982 1×10-, 0.0139731 8.02219X i0-3 0.0202167 8.06229×10ー3 0.0202116 8.15152×lO"3 0.0202224 8.22955×i0-3 0◆0203 107

〟(0,0.62) 3.02907×i0-3 0.0204096 9.07164×10ー} 0.0263766 9 11055×i0-3 0.0263415 9.19869×10ー3 0.0263308 9.28147×10ー} 0.0263892

noise becomes small in both the extended and MAP estimators. Also, the mean square values

of the filtering errors, x(t)-x(t,t) and f(x(t),t) -f(x(t,t),t) , and the prediction errors by the

proposed estimators might be smaller than those by the MAP filter and predictor respectively.

This shows that the estimation accuracy of the proposed filter and predictor for the stochastic

●

signal is better than the MAP estimators. Also, as the pretiction time α becomes large, both

the current and MAP predictors have a tendency that the M.S.V. of the prediction error

becomes large.

For reference, the state-space model for generating the signal x(t) with the autocovanance

function (42) is given by

dx(t)

dt
- -kx(t) +u(t), E[u(t)u(s)] -2kP卑t -s).

(45)

It should be noted that we have assumed that the state-space model of (45) is unknown.

7. Conclusions

This paper has designed the extended nonlinear predictor using the covariance informa-
●                                                                                                                                             ●

tion for the signal observed through the nonlinear observation mechanism and with additive
●

white Gaussian noise. The proposed nonlinear predictor in [Theorem 2】 is devised based on

the linear predictor, using the covariance information, of [Theorem l] according to the same

technique as the extended Kalman filter from the linear least-squares Kalman filter. It is

shown that the prediction error variance of the proposed predictor is less or equal to that of

the conventional MAP predictor in the continuous-time stochastic systems.

The numerical simulation results have shown that the proposed extended nonlinear pre-
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dictor is feasible. That is, from the numerical simulation results, the estimation accuracy of

the proposed nonlinear predictor is superior to that of the MAP nonlinear predictor for the

estimation of the stochastic signal. This is reasonable from the relationship (40).
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