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Abstract

This paper proposes a new design method of a nonlinear prediction

algorithm in continuos-time stochastic systems. The observd value con-

sists of nonlinearly modulated signal and additive white Gaussian obser-

vation noise. The prediction algorithm is designed based on the same idea

as the extended Kalman filter is obtained from the recursive least-squares

Kalman filter in linear continuous-time stochastic systems. The proposed

predictor necessitates the information of the autocovariance function of

the signal, the variance of the observation noise, the nonlinear observation

function and its differentiated one with respect to the signal. The proposed

predictor is compared in estimation accuracy with the MAP predictor from

both theoretical and numerical aspects.
1. Introduction

In linear least-squares estimation problem, recursive least-squares estimation algorithms
[3] have been devised. They use the covariance information of the signal and observation
noise. The linear estimation algorithms are used limitedly within linear systems and can not
be applied to estimation problem in nonlinear systems directly. From this respect, this paper
presents a new design method of the nonlinear predictor by use of the covariance information
for the signal with nonlinear observation mechanism in continuous-time stochastic systems.
Here, the observed value consists of the nonlinear function of the signal and additive white
Gaussian observation noise. In this paper, the prediction algorithm is devised based on same
idea as the extended Kalman filter [1],[2],[4] for nonlinear estimation problem. The extended

Kalman filter is designed based on the recursive least-squares Kalman filter in linear stochas
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tic systems. In this paper, the extended predictor using the covariance information is designed
in the relation with the recursive linear least-squares predictor in [Theorem 1] by use of the
covariance information in linear continuous-time stochastic systems. The present predictor
uses the information of the autocovariance function of the signal, the variance of the observa-
tion noise, the nonlinear function of the signal and its differentiated one with respect to the
signal. The proposed nonlinear prediction algorithm estimates the signal recursively via an
updated observed value.

Incidentally, as an approach, which uses the same information as the present predictor,
to the nonlinear estimation and modulation problem, the MAP (maximum a posterior) esti-
mation technique [5] is developed. The current nonlinear predictor is compared in estimation
accuracy with the nonlinear MAP predictor in continuous-time stochastic systems both theo-

retically and numerically.

2. Recursive least-squares prediction problem in linear continuous-time stochastic sys-
tems

As a step toward the extended prediction problem, we consider recursive least-squares
prediction problem in linear continuous-time stochastic systems.

Let an observation equation be given by

y(@) =H(@®)x(t) +v(2), (D
where y(#) is an observed value of dimension m, x(¢) is a zero-mean signal of dimension n and
v(t) is white Gaussian observation noise with the variance R.

Epv@ty ()] =Rt ~s) (2)
Here, the symbol “ T "represents transpose and the symbol 6 (z-s) the Dirac delta function. We
assume that the signal x(#) is uncorrelated with the observation noise v(s) as

E[x@Ww'(s)]1=0, 0<s,t<co, A3
Let x(¢,t + @) represent the o time ahead prediction estimate of the signal x(¢). Let x(¢,¢ + )
be expressed by

ir+a)= [ “hs)ysids, 4)
where A(t,s) is an impulse response function. Minimizing the mean-square value of the pre-
diction error x(t + o) —x(t,t + o)

J =E[(x(t + @) —x(t,t + )" (x(t + @) —X(t,t +A))], 5)

we obtain the Wiener-Hopf integral equation [4]

E[x(t+)y"(s)] = f,, "h(t,s)E[y(s)y" (s)]ds". (6)
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If we substitute (1) into (6), use the stochastic property of the signal x(¢) and observation
noise v(¢) and represent the autocovariance function of the signal by K, t,s)(=E[x(t)x" ()],

we obtain
h(t,s)R =K, (t +o,s)H" (s) - /0‘ ’h(t,s’)H(s K, (s’s)ds H (s). ™
We assume that the autocovariance function of the signal is expressed in the semi-degenerate
kernel from [3] of
K, (t,s) = E[x(t)x" (s)]
A()B"(s), 0<s=<t, )
Bt)A"(s), 0<t<s,

where A(¢) and B(s) are n-by-1 bounded matrices.
In section 3, we derive the recursive least-squares predictor under the above assump-
tions in linear continuous-time stochastic systems as a step toward the nonlinear extended

predictor.

3. Recursive least-squares prediction algorithm in linear continuous-time stochastic
systems
[Theorem 1] presents the recursive least-squares prediction algorithm in linear continu-

ous-time stochastic systems.

[Theorem 1]

Let the observation equation be given by (1), let the autocovariance function K_(¢,s) of
the signal x(¢) be expressed in the semi-degenerate kernel form of (8) and let the signal be
uncorrelated with the observation noise v(s) as (3). Then, the recursive least-squares algo-
rithm for the & time ahead prediction estimate x(¢,¢ + ) of the signal x(¢) consists of (9)~(13)

in linear continuous-time stochastic systems.

o time ahead prediction estimate of x(¢): X(¢,t + )
xX(t,t +a) =A(t +Q)e(t) )

Filtering estimate of x(¢): x(¢,t)

x(t,t) =A(t)e(t) (10)
de(t) o
5 =J () (y@) —H(t)x(t,t)), e0)=0 (11)

J(t,t) =(B"(t) -r()A" ¢)H" ()R (12)
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d:l(‘) = J(t,OH@)(BE) — ADr(t), r(0)=0 (13)

Proof
Since K, (t,s) =A(t)B (s) for 0 <s <t from(8), (7) is written as

h(t,s)R = A(t +0)B" (s)H" (s) - /o "h(t,s)H(s)K,(s’,s)ds H' (s). (14)

If we introduce the function J(¢,s) which satisfies

Jt,s)R=B"(5)H"(5)- [ Tt )H(s")K, (s, )ds H (s), (15)
we obtain
h(t,s) =A(t +)J(t,s) (16)

for the impulse response function A(%,s).

If we differentiate (15) with respect to t, we have

aJ(t,s) 8J(t s’)
Jt

R=-J(t,t)H(t)K (t,s)H" (s) - f ——2"2H(s)K, (s',s)ds H" (s). a7

From (15) and (17), we have a partial differential equation

aJ(t,s)

NETE =-J(t,0)H@)A@®)J(¢,s) (18)

for J(t,s).

If we put s=t in (15), we have

J(t,t)R=B"(t)H" (1) —/o.rl(t,S’)H(s K, (s5t)dsH' (¢). (19)
Since K, (t,s) =B(t)A" (s) for 0 <t <s from (8), (19) is written as

J(t,H)R =BT(t)HT(t)—_/:J(t,S’)H(s )B(s’)ds’A” (t)H' (t). (20)
If we introduce the function r(¢) given by

r(t) = [J(t,s)H (s )B(s s’ @21
we obtain (12) for the function J(&,2).

If we differentiate (21) with respect to t and use (18), we have

dr( t)
dt

From (21) and (22), we obtain the differential equation (13) for 7(¢). The initial condition on

=J(t,t)H(t)B(t) - J(t,t) H(t)A(t) fJ(t s)H(s")B(s)ds’. (22)

the differential equation for r(¢) at £=0 is r(0)=0 from (21).
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If we substitute (16) into (4) and introduce the function e(#) given by
¢ 2
e(t) = [J(t,s)y(s )ds’, (23)
we obtain (9) for the o time ahead prediction estimate x(¢,t + &) of x().
If we differentiate (23) with respect to t and use (18), we obtain the differential equation
(11) for e(¢). The initial condition on the differential equation for e(?) at £=0 is e(0)=0 from
(23). ]
In section 4, referring to the linear prediction algorithm of [Theorem 1], we design the

extended predictor using the covariance information.

4. Design of extended predictor for estimating signal with nonlinear observation mecha-
nism

Let the signal be observed with nonlinear mechanism by

y(@) = f(x(0),) +v(0), 24
where the signal x(¢) and the observation noise v(#) have the same stochastic properties as
those in section 2.

(24) can be expressed as a Taylor series by expanding about nominal trajectory X, (¢)
[11,[2]:

Y(O) =y, (8) = f(x(2),0) = f(x,(2),8) +v(2),  y,(t) =f(x,(¢)1)

_aramy )
~ ox(t) x(r):x,.(t)(x(t) X, (1) +hot +v(t)

If (x(t)t) .
ox(t) x(t)=xp(t) (25)

=H(t)(x(t)-x,(t)) +ho.t +v(t), H(t)=
Here, “h.o.t.” are terms in powers of x(f) —x, (¢) greater than one and H(?) is m-by-n matrix.
A linearization of this relation to the first order yields the perturbation measurement model of

Oy(t) =H(t)ox(t) +v(t), Oy(t) =y(®)-y,(®), Ox(t)=x(®)—x,(®). (26)

The output of predictor, which is called the linearlized predictor or perturbation predictor,based
on the observation equation (26) would be the optimal prediction estimate of dx(¢). This
could be added to the nominal value x,(¢) to obtain the estimate of the signal x(¢). From (26)
we find that we can estimate x(¢) in terms of y(¢)-y,(t)+H(t)x,(t), y,(t)=f(x,(t)t), through the
relationship y(¢) —y, (¢) + H(¢)x, (¢t) = H(t)x(t) +v(¢). In the continuous-time systems, x,(f) is
set to the filtering estimate x(¢,¢) of x(¢) [1],[2].Since y(t)—f(x(t,t),t)+H(t)
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R(t,e)(=H( t)x(t)+v(t)) has an equivalent information to y(#), the filtering estimate x(¢,t) of x(t)
can be estimated by the observed value y(2).

As in the extended Kalman filter we also use the linearlized observation matrix H(¢) in
the current filtering equations. Although (12) and (13) in [Theorem 1] do not include the term

If (x(8),t)

ax(t) x(t)=k(t,t)
be dependent on the observed value. According to the guideline in the design of the extended
If (x(#),¢)

ox(t) .
x(8)=x(t,t)
the current nonlinear extended prediction problem using the covariance information.

of the observed value y(¢), H(t), given by H(t) = , in these equations might

Kalman filter[1],[2], H(?) in (11),(12) and (13) are replaced with H(¢) =

Also, based on the procedure in the design of the extended Kalman filter from the Kalman
filter, the term *“ H(¢)X(¢,t)” in (11) is replaced with * f(X(¢,¢),£)” in the current nonlinear
extended predictor. (9) is included as it is also in the extended predictor using the covariance
information.

[Theorem 2] summarizes the extended prediction algorithm using the covariance infor-
mation. The validity of the above design technique is examined by a numerical simulation

example in section 6.

[Theorem 2]
Let the nonlinear observation equation be given by (24), let the autocovariance function

of the signal x(¢) be expressed by (8) in the semi-degenerate kernel form, let H(Z) be given by
of (x(t),t)

8x(t) x(1)=E(t,t)
as (3). Then, the recursive least-squares algorithm for the « time ahead prediction estimate

H(t) = and let the signal x(#) and the observation noise v(s) be uncorrelated

x(t,t + ) of the signal x(¢) consists of (27)~(31) in continuous-time stochastic systems with

nonlinear observation mechanism of the signal.

o time ahead prediction estimate of x(2): X(t,t +a)

2(t,t +a) = A(t +a)e(t) 27

Filtering estimate of x(2): x(¢,t)
x(t,t) =A(t)e(t) (28)

de(t) _
dat

JH(y(0) - f(x(1),1), e0)=0 (29)

(Filtering estimate of f(x(¢),t): f(X(t,2),t))
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J@,t)=(B"(t)-r()A"(¢)H ()R (30)
dr(t)
dt

=J(t, ) H@)(B@)-A@®r@)), r(0)=0
(€29)

5. Comparison of estimation accuracy of current predictor with MAP prediction algo-
rithm

In this section, we introduce the MAP predictor [5] in estimating stochastic signal with
nonlinear observation mechanism.

In estimating the o time ahead signal, the MAP prediction estimate of the signal x(?) is

given by
¢ T ’ ’
Bt +)= [(K, 140,59 LEC D) R (y(s")~ F(¥(s'57),s s’ (32)
0 ax(s ) x(s')=x(s"8")
If we substitute the relations H(s ") =M and K, (t +a,s) =A@t +)B" (s,
ax(s ,) x(s)=x(s"s")

0 <s <t, from (8) into (32), we have

21,6 +0) = A(t +a)/0'B’(s YHT ()R (y(s") — f(3(s’,s),s))ds". (33)

If we introduce the function g(¢#) expressed by

q(t) = fo "BT(s)HT ()R (y(s") — f(R(s,5)ys")ds” (34)

and differentiate (34) with respect to t, we obtain the recursive MAP prediction equations as

follows:
(.1 +0) = At +)q(t), (35)
A B OH R (5(1) - S (0,1,0), 4(0) =0, | (36)

where the initial condition on the differential equation (36) at =0 is clear from (34). The
MAP prediction estimate is calculated by (35) and (36) in terms of the same information as in
[Theorem 2] for the nonlinear extended predictor using the covariance information.

Let us compare the predictor in [Theorem 2] with the MAP predictor from the theoreti-
cal point of estimation accuracy.

If we differentiate (27) with respect to t and use (29), we have

di(t,t +a) dA(t +a)

& a e(t) +A(t +a@)J(1,1)(y(t) —f(x(1,2),)), 37
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where A(t+o )J(t,t) represents the predictor gain. From (16) and (30), the predictor gain
h(t,t)(=A(t+o )J(t,t)) might be expressed by

h(t,t) =(A(t +)B" (t) - A(t +o)r(t)A" (t))H" ()R (38)
Let h,,,(t,t) represent the prediction gain for the MAP predictor. Then we have h,,,,(¢,t)
=A(t +0)B" (t)H" (¢t)R™ from (35) and (36).

If we compare the MAP prediction equations (35) and (36) with the proposed prediction
algorithms in [Theorem 2], we find that the MAP prediction equations are obtained by setting
r(t)=0 in the prediction algorithms of [Theorem 2].

Let P.(t +a,t + ) represent the prediction error variance function of the proposed pre-

dictor. From (4), (16) and (21), P, (¢ +a,t + ) might be developed as

P.(t +at +@) =E[(x(t +@) —X(t,t +@))(x(t +@) —X(t,t +@))" ]
=E[(x(t +a) —X(t,t +a)x(t +a)" |
=K. (t +at +@) [ h(t,s)E[y(s)x(t +a)" ]ds

, (39)
=K (t+o,t +a) —A(t +a)r(t)A" (t +a).

Let P.(t+a,t+«) represent the autovariance function of the prediction estimate x(¢,t + ),
ie., P(t+a,t +a)=A(t + ar)A’(t +a). Let anm (t + ot + ) represent the prediction error
variance function of the MAP predictor. It is clear that the autovariance function of the pre-
diction estimate for the MAP predictor is the zero square matrix of ordern and P, (¢ +0,
t+a)=K (t+o,t +0a). Since P.(t +a,t +a)and P,(t +a,t + ) are nonnegative definite ma-
trices, the relationship

O0<P(t+ot+a) <P, (t+0nt+0)(=K,(t+04t +0)) (40)

is valid. Hence, it is seen that the proposed predictor is superior or equal to the MAP predictor

in estimation accuracy.

6. A numerical simulation example
In this section a simulation example is demonstrated. The example shows the prediction
for a stochastic signal with a nonlinear observation mechanism.

Let the observation equation be given by

y(&) = fF(x(@),t) +v(), f(x(8),t) =(1+x())’, (41)
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where we assume that the process of the signal x(¢) is stationary stochastic with the
autocovariance function given by
K. (t,s)=K_(t —5)
=Pe™*"™, P=10, k=0.5 . 42)
From (8) and (42), we have the functions A(¢) and B(s) expressed by

A(t)=Pe™, B(s)=e". (43)
H(t) is given by
ax(t) x(£)=x(t,t)
=2(1+x(¢,1)). 44)

If we substitute the expressions for f(x(t,¢),t), H(t), A(t) and B(¢) above into the prediction
algorithm of [Theorem 2], we can calculate the prediction estimate x(t,t + ¢r) and the filtering

estimate f(x(¢,¢),t) of f(x(t),t) recursively.

f(x(t),t) and y(t)

0 ] 1 ! L L [
0 0.5 1 1.5 2 2.5 3 3.5

Time t

Fig.1 Sequences of f(x(¢),t) (solid line) and the observed value y(%)
(dashed line) for the observation noise N(0,0.4).
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flx(tt) and y(t)

It 1 i i i
o 0.5 1 1.5 2 2.5 3 3.5
Time t

Fig.2 Sequences of f(x(2),t) (solid line) and the observed value y(¢) (dashed
line) for the observation noise N(0,0.6°).

Fig.1 and Fig.2 illustrate the sequences of f(x(#),¢) (solid line) and the observed value
y(t) (dashed line) for the observation noises N(0,0.4°) and N( 0,0.6°) respectively. Fig.3 and
Fig.4 illustrate the sequences of f(x(¢),t) (solid line) and its filtering estimate f(x(¢,¢),t)
(dashed line) for the observation noises N(0,0.4°) and N(0,0.6°) respectively.

P
FAe

X\:,!\(\.m : X
BNy \/\ﬁf,-.,-. P .
J“A‘\‘(ZA O

% ong

f(x(t)) and its filtering estimate
o w

0.5 -

0 - ik i L ] 1.
o 0.5 1 1.5 2 2.5 3 3.5
Time t

Fig.3 Sequences of f(x(¢),t) (solid line) and its filtering estimate
f(x(t,t),t) (dashed line) for the observation noise N(i 0,0.4).
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T

N
o

-
]
T

flx(t)) and its filtering estimate
N

0.5 -

o ; L \ i i
(o] 0.5 1 1.6 2 2.5 3 3.5

Time t

Fig.4 Sequences of f(x(t),t) (solid line) and its filtering estimate
f(x(¢,2),t) (dashed line) for the observation noise N(0,0.6°).

o
Y

1
o

Signal and prediction estimate
°© o o o
N W 2 o

o
-
1

t i i i {
0.5 1 1.5 2 2.5 3 3.5
Time t

o
o

Fig.5 Signal x(¢) (solid line) and its prediction estimate x(Z,¢ +0.02)
(dashed line) for the observation noise N(0,0.4’).

Fig.5 and Fig.6 illustrate the signal x(¢) (solid line) and its prediction estimate

X(t,t +0.02) (dashed line) for the observation noises N (0,0.4°) and N (0,0.6°) respectively.
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1 . : . .

o
o

Signal and prediction estimate
<} o
» 4]

°
0

0.2 -

0.1

i
i i

o . i ; |
[o] 0.5 1 1.6 2 2.5 3 3.5
Time t

Fig.6 Signal x(¢) (solid line) and its prediction estimate X(¢,¢ +0.02)
(dashed line) for the observation noise N(0,0.6°).

Table 1 shows the M..S.V. (mean square value) of the filtering error f(x(¢),£) — f (x(¢,¢),t)
by the current extended filter in [Theorem 2] and the MAP filter. The M.S.V. is calculated by
502 2( f(x(id),iA) - f(X(iA,iA),iA))*, A=0.005,for the observation noises N(0,0.3°), N(0,0.4)
and N( 0,0.6°). Table 2 shows the mean square values of the filtering error x(¢) —x(¢,t) and
the predction errors, x(t+0.005)—x(t,t+0.005), x(t+0.01)— x(¢,t+0.01), x(¢+0.015)— x(,+0.015)
and x(r+0.02) - x(t,£+0.02), by the current and MAP estimation techniques for the observation
noises N(0,0.3°), N(0,0.4’) and N(0,0.6°). The estimation accuracy of the filtering estimates

of x(¢) and f(x(t),t) and the prediction estimates is improved as the variance of the observation

Table 1 M.S.V. of the filtering error f(x(t),t) — f(x(¢,t),t) by the current
extended filter in [Theorem 2] and the MAP filter for the obser-
vation noises N(0,0.3%), N(0,0.4°), and N(0,0.6°).

¥hite M.S.V. of filtering error
Gaussian S(x(0),0) - f(E(,0),1)
observation

noise

Current NAP filtering
filtering method
method
N(0,0.3) | 0.0117915 | 0.0778171
N(0,0.4%) | 00176885 | 0.123371
N(0,0.6") | 00317369 | 0182146
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Table 2 Mean square values of the filtering error x(¢) —x(¢,¢) and the predic-
tion errors, x(z+0.005)— x(z,¢ +0.005) , x(¢+0.01)— x(¢, +0.01),
x(t+0.015)— x(#,£+0.015) and x(¢+0.02)— x(7,:+0.02) , by the current
and MAP estimation tecniques for the observation noises N( 0,0.3°),
N(0,0.4°) and N(0,0.6°).

Vhite M.S.V. of filtering error [ N.S.V. of prediction error | K. S.V. of prediction error | K.S.V. of prediction error | N.S.V. of prediction error
Gaussian x(t)-x(1,1) x(2+0.005) - (7,1 +0.005)| x(f+0.01) - %(¢,# +0.01) |x(z+0.015) -%(#,+0.015) | x(¢+0.02) - £(¢,7+0.02)
observation
noise
Current NAP filtering Current NAP Current NAP Current NAP Current NAP
filtering method method prediction method prediction method prediction method prediction
method method method method method

N(0,0.3") 1115834 x10°(8.64372x107{7.64118x10"*| 0.0150286 |7.6827x10| 0.0150497 |7.77347x10°| 0.0150873 |7.84929 x10*{0.0151878

N(0,0.4%) |1.69821x10”| 0.0139731 |8.02219x10| 0.0202167 |8.06229x10~*| 0.0202116 [8.15152x10"| 0.0202224 [8.22955x107| 0.0203107

N(0,0.6") |302907x10°| 0.0204096 [9.07164x10"| 0.0263766 |9.11055x10| 0.0263415 |9.19869x107| 0.0263308 [9.28147x10~| 0.0263892

noise becomes small in both the extended and MAP estimators. Also, the mean square values
of the filtering errors, x(¢t) —%(t,¢) and f(x(t),t) — f(£(¢,t),t), and the prediction errors by the
proposed estimators might be smaller than those by the MAP filter and predictor respectively.
This shows that the estimation accuracy of the proposed filter and predictor for the stochastic
signal is better than the MAP estimators. Also, as the pretiction time o¢ becomes large, both
the current and MAP predictors have a tendency that the M.S.V. of the prediction error
becomes large.

For reference, the state-space model for generating the signal x(t) with the autocovariance
function (42) is given by

dx(t)
dt

(45)

=—kx(t) +u(t), E[u(t)u(s)] =2kPXt —s).

It should be noted that we have assumed that the state-space model of (45) is unknown.

7. Conclusions

This paper has designed the extended nonlinear predictor using the covariance informa-
tion for the signal observed through the nonlinear observation mechanism and with additive
white Gaussian noise. The proposed nonlinear predictor in [Theorem 2] is devised based on
the linear predictor, using the covariance inforﬁation, of [Theorem 1] according to the same
technique as the extended Kalman filter from the linear least-squares Kalman filter. It is
shown that the prediction error variance of the proposed predictor is less or equal to that of
the conventional MAP predictor in the continuous-time stochastic systems.

The numerical simulation results have shown that the proposed extended nonlinear pre-
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dictor is feasible. That is, from the numerical simulation results, the estimation accuracy of
the proposed nonlinear predictor is superior to that of the MAP nonlinear predictor for the

estimation of the stochastic signal. This is reasonable from the relationship (40).
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