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               1. What is the embedding problem? 

 After the establishment of the concept of manifold, the embedding problem of 
manifolds has long been one of the main topics in topology.

Definition of immersion Let M^m and N^n be differentiable connected manifolds 
without boundary, of dimenssions m and n, respectively. M^m is usualy assumed to 
be compact. A differentiable map f : M^m —> N^n is called an immersion if the rank df_x, 
of its differetial df at x is equal to m(= dim M^m) for each x  M^m. 

Definition of embedding A map f : M^m —> N^n is called an embedding if f is an 
immersion and if f : M^m --> f (M^m) is a homeomorphism. 

Definition of homotopy A map f : M --> N is homotopic to g : M --> N if 
there exists a continuous map F : M x [0, 1] --> N such that F(x , 0) = f(x) and 
F(x, 1) = g(x) for each x  M. In other words, there exists a continuous 1-parameter 
family { f_t}_t   such that f_0 = f and f_1 = g. Both F and { f_t}_t   are called a 
homotopy of f to g 

Definition of isotopy Two embeddings f,g : M -->4 N are said to be isotopic if there 
exists a differentiable map F : M x [0, 1] —4 N such that F(x, 0) = f(x), F(x, 1) = 
g(x) and F( , t) : M --> N (x -->F(x, t)) is an embedding for each t   [0,1]. In other 
words, there exists a differentiable 1-parameter family of embeddings { f_t}_t  such 
that f_0=f and f_1=g. 

Both relations "homotopic" and "isotopic" are equivalence relations. 

Existence problem For a continuous (or differentiable) map f : M^m --> N^n, does 
there exist an embedding g : M^m --> N^n homotopic to f ? If N^n = R^n, then any 
map of M^m --> R^n is nullhomotopic. Thus the existence problem is replaced with the 
embeddability of M^m into R^n. 

For an embedding f : M —> N, we denote by Emb[M, N]_[f]the set of isotopy classes 
of embeddings homotopic to f . If N = R^n, we use Emb[M, R^n] instead. 

Classification problem (or Enumeration problem) For an embedding f : M --> 
N, 

(1) determine the set Emb[M, M]_[f], 
                                    314
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(2) characterize each element of Emb[M, N]_[f] by using characteristic classes, numbers 
and some other topological invariants of M, N and f . 

                  2. FROM WHITNEY TO HAEFLIGER 

 H. Whitney proved the following theorem in [20]: 

Theorem 2.1 (Whitney). (1) If n > 2m + 1, then each map f : M^m --> N^n is 
homotopic to an embedding. 
(2) If n > 2m + 2, then any two embeddings homotopic to f : M^m --> N^n are isotopic. 

In the case where N^n = R^n, more strict results hold. 

Theorem 2.2. (1)(Whitney) If n > 2m,, then there exists an embedding of M^m to 

(2)(Wu) If n > 2m + 1, then any two embeddings of M^m to R^n are isotopic. 

  Both theorems are best-possible in a sense. 

Let n = 2^{r(1)} + • • • + 2^{r(s)}, 0 < r(1) < • • • < r(s) be the dyadic expansion of n and 
let  (n) = s. 

Immersion conjecture For each n-manifold Mn, does there exist an immersion of 
M^n to R^{2n- (n)}? 

Embedding conjecture For each n-manifold M^n, does there exist an embedding 

of M^n to R^{2n- (n)+1}? The immersion conjecture has been proved affirmatively by R... 
Cohen[4], while the embedding conjecture may be an obsolete word. 

  A. Haefliger generalized Whitney's theorem (Theorem 2.1) in two ways [6] and [8]. 

Theorem 2.3 (Haefliger). Let f : M^m --> N^n be (k + 1)-connected, that is, f_# : 

 (M) -->  (N) is injective for i < k and surjective for i = k + 1. 
(1) If 2n > 3(m + 1) and n > 2m-k, then f is homotopic to an embedding. 
(2) If 2n > 3(m + 1) an.d n > 2m-k, then any two embeddings homotopic to f are 
isotopic. 

Remark. This theorem for k = -1 coincides with Theorem 2.1. 

A map h :X x X --> Y x Y is called Z_2-equivariant if h(x_1, x_2) = (y_1, y_2) implies 
h(x_2, x_1) _ (y_2, y_1) and  X denotes the diagonal {(x, x) x   X} of X x X. 

Theorem 2.4 (Haefliger). Let M^m and N^n be manifolds of dimension m and n, 
respectively . 
(1) Assume that 2n > 3(m + 1). Then f : M -+ N is homotopic to an embedding if 
and only if there exists a Z_2-equivariant homotopy F_t : M x M --> N x N, (t   [0, 1]) 
such that F_0 = f x f and F_^{-1}( N) =  M. 
(2) Assume that 2n > 3(m + 1) and two embeddinys f,g : M --> N are homotopic, 
e.g., by a homology { f_u}_u [0,1] . Then they are isotopic if and only if there exists a 
2-parameter family of Z_2-equivariant maps {F_{u,v}}_{u,v [0,1]) such that H_{u,0}= fu x fa and 

H_{u,1}^{-1}( N) =  M.
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 Furthermore, Haefliger[7] considered obstructions for a map f : M^m-->N^n to be ho- 
motopic to an embedding. Let 

  and let  and  be the 
 classes (or the diagonal classes) of M^m and N^n, respectively.

 Theorem 2.5 (Haefliger). If f : M^m --> N^n is homotopic to an embedding, then 
 (1)  and 

(2)  

 Remark. If f is homotopic to an immersion, then (2) holds, thus (1) is essential 
for embeddings. Haefliger assumed that both M^m and N^n are compact, but the 
compactness of N^n can be dropped. 

 These theorems are very important in the study of embddings. However they have 
not been applied to the embedding problem sufficciently in the cases where N^n is not 
euclidean spaces. For example, the next theorem[24] could be proved in 1962. 

Theorem 2.6 (Yasui). Each map   is homotopic to an 
embedding by Theorem 2.3, and this is best-posible in the sense that for each integer 
n, there exists an n-manifold   a map  such that   
is not homotopic to an embedding.

                     3. AFTER HAEFLIGER'S WORK 

 In 1970's, Haefliger's two methods were reconsidered by J.-P. Dax[5], H. A. 
Salomonsen[14] and L. L. Larmore[9], [10]. For an embedding f : M --> N, Let 

, where Map(M, N) and Emb(M, N) denote the spaces of all continuous/differentiable 
maps and all embeddings of M to N, respectively. For   and  

, let   be the composite of homotopies   and  . 
Then the group  acts on   from the left. It is known 
that     

They investigated the set  . Roughly speaking, Dax and Salomonsen 
improved the first method of Haefliger(Theorem 2.3). They approximate a given map 
by a generic map and consider eliminating its singular point set. So thier method is 
called the singularity method. Larmore used the second method of Haefliger(Theorem 
2.4) to convert the embedding problem into the lifting problem of fibrations. That is 
why his method is called the classical method. 

 Dax[5] treated and calculated, e.g.,

while Larmore[9], [10] determined, e.g.,

  for simply connecte M,   .
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B.-H. Li and his studens, e.g., P. Zhang [11], [12], [25] followed Dax, and Yasui[23] 
followed Larmore. They treated or determined, e.g., the following sets:    

 Unfortunately, both singularity method and classical method are, so far, not suc-
cessful in the existence problem. In the classical method, one needs the obstruction 
theory in pair fibrations, while the canonical element to determine the obstruction 
is uncertain in the singularity method. Thus in both methods, the study of the 
obstructions to embeddings is impending. 

               4. APPROACHES FROM COBORDISM THEORY 

  After Thom's paper [18], not only manifolds but also maps, immersions and em-
beddings have been studied from the point of view of cobordism theory. 

Definition of cobordism of manifolds Let M_0 and M_1 be n-dimensional compact 
manifolds. M_0 is cobordant to M_1. if there exists an (n + 1)-dimensional compact 
manifold W with boundary M_0   M_1 (disjoint union). (W, M_0, M_1) is called a cobor-
dism. One can easily define its oriented version. 

Problem For an n-manifold M^n, determine the lowest dimension of euclidean space 
in which an n-manifold cobordant to M^n is embedded. 

As for this problem, R. L. W. Brown[2] showed 

Theorem 4.1 (Brown). Each n-manifold M^n is cobordant to an n-manifold which 
is embedded in  . Further, for each n, there exists an n-manifold Mn such 
that any manifold cobordant to M^n is not embedded in  

 I. Takada[17] improved this theorem for orientable manifolds. 

Theorem 4.2. Each orientable n-manifold M^n is cobordant to an n-manifbld which 
is embedded in  , where the integer  (n) is determined by n = 

  . 

  The oriented version of Brown's theorem might not have been discussed. 

Definitions of cobordism of maps (1)(Stong's sense) Let  (i = 0, 1) 
be maps. f_0 is said to be cobordant to f_1 if there exist cobordisms (W, M_0, M_1) and 
(V, N_0, N_1) and a map F:W-->V such that  (i=0,1). 
(2) Let   (i = 0,1) be maps. f_0 is said to be cobordant to f_1 if 
there exists a cobordism (W, M_0, M_1) and a map F : W --> N x [0,1] such that 

 (i=0,1). 
(3) Let f2 : Min -* N" (i = 0, 1) be maps. fo is said to be cobordant to fi if there 
exists a cobordism (W, M_0, M_1) and a map F : W --> N such that   . 

Existence problem Let f : M^m --> N^n be a map. Does there exist an embedding 
cobordant to f ? 

  R. L. W. Brown[3] contributed the existence problem in Stong's sense.



318 TSUTOMU YASUI 

 Theorem 4.3 (Brown). A map f : M^m --> N^n (n > m) is cobordant to an embedding 
if and only if the following conditions hold: 

(1) All Stiefe-Whitney numbers of f involving w_i(f ) for i > n - m are zero. 
(2) All Stiefel-Whitney numbers of the type  • • • 

  are equal to  . 

Here w_I(V) for I = (i(1), ... , i(p)) means   . 
For a map f : M^m --> N^n between compact manifolds, let 

  and let 

 . M. A. Aguilar and G. Pastor[1] determined more explicit conditions in some cases. 

Theorem 4.4 (Aguilar and Pastor). Let n >_ 2k + 1 (k = 1, 2). Then f : M^n --> 
N^{2n-k} (k = 1, 2) is cobordant t0 an embedding if and only if 

(1)  , 
(2)  . 

A neccessary and sufficient condition that f : M^n --> N^{2n-3} is cobordant to an 
embedding will be determined by a way similar to [1] but by a tedious calculation. 
However, the following proposition is easily obtained. 

Proposition 4.5 (Yasui). Let n > 2k+1. Then f : M^n --> N^{2n-k} is cobordant to 
an embedding if one of the following conditions is satisfied: 

(1)   
(2)   , 
(3)  and either   or 

  . Definitions of cobordism of embeddings Let   be an 
embeddings. 
(1) We denote f_0 ~ f_1 if f_0 is cobordant to f_1 in Stong's sense, where the map 
F : W --> V is also an embedding. Let 

This set is known to be an abelian group. 

(2) Assume that N_0 = N_1 = N. We denote f_0 ~' f_1 if f_0 is cobordant to f_1, where 
the map F : W --> N x [0,1] is an embedding. Let 

 and   its oriented version. 

The following theorem is proved by using the Thom-Pontrjagin construction:
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 Theorem 4.6. (1)  , the bordism group of the Thom 
space of the universal (n - m)-plane bundle. 
(2)  . 

G. Pastor[13], A. Sziics[16], M. Yu Zvagel'skii[26] et al. determined some of the 
groups in Theorem 4.6 more explicitly, e.g., 

             , 

 mod finite 2-primary groups. 

 The embedding problem is still developing, though it is slow, both in the classical 
approaches and approaches from cobordism theory. 
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