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Abstract

Denote by [M < R™] the set of isotopy classes of . embeddings of an #-manifold
M in Euclidean m-space. In topology, the computation of this set is an interesting
subject. The set [M c R**~1] has been studied when 7 is even or M is orientable [15].
Hence, in this article, we shall study the set (M c R**~!] for an n-manifold M for
which 7 is odd and M is unorientable. Further we compute [P(m, n) c R¥™+4n—1]
for the Dold manifold of type (m, #) of dimension m + 2n, both m and 7 being
odd.

§ 1. Introduction

Throughout this note, “z-manifold” and “embedding” will mean closed connected
differentiable manifold of dimension # and differentiable embedding, respectively.
Denote [M < R™] the set of isotopy classes of embeddings of a manifold M in Euclidean
m-space R”. The set [M c R?**~'] for an n-manifold M has been investigated when
n is even or M is orientable [15]. In this note the set [M c R¥~1] is studied for
an n-manifold M for which # is odd and M is unorientable, under the following

condition :

Condition (1.1). Hy(M; Z) is z'somorphié to a direct sum of some copies
of the group of order 2, Z,.

Theorem A, Let n be odd and n > 6 and assume that an wunorientable
n-manifold M satisfies Condition (1.1) above. Then there is a bijection

(Mc R 1] = QA-t*H"Y(M; Z2) @ H"Y(M; Z)] x H*"¥(M ; Zp)
xH\(M ; Z) x H™ W M* ; Z,)/Sg?p,H?" -3(M* | Z[v]),

where the map t : M x M— M x M is defined by interchanging factors, the
space M* = (M x M — AM)/Z, (AM is the diagonal in M x M) is the reduced

39



YASUI, T.

symmetric product of M, v is the first Stiefel-Whitney class of the double
covering M x M — AM—> M*, and Z[x] for x € H(X ; Z,) is a sheaf of
coefficients over X, locally isomorhic to Z, twisted by x. The following infor-
mation is sufficient to determine H>~\(M* ; Z;)/Sq?p,H*»~3(M* ; Z[v]) :

(i) the integral cohomology groups H{(M ; Z) for n—3<i<n,

(ii) the actions of Sq* on H(M ; Z,) for i =n—3, n—2,

(iii) the actions of wy(M) on H{(M ; Z,) for i =n—3, n—2.

Remark. If 7 is odd and # > 4, then any n#-manifold can be embedded in
Euclidean (27n—1)-space, . [ 8]. Moreover the group H?*~Y(M* ; Z,) is isomor-
phic to H*-1(M ; Z,) by [11, § 2].

The Dold manifold P(m,n) of type (m,n) of dimension m + 21#, both m and =
being odd, satisfies the condition (1.1) above (see §4).

Theorem B. Assume that both m and n are odd and that m + 2n > 6. Then

if m3,
#[P(m,n) C R2m+(n-]:| ={8 tf m=

w ifm=1,

where #S denotes the cardinality of the set S.

Remark. For all the other Dold manifolds P(m,n) with m + 21n > 5, it has been
proved that

H#[P(m,n) CR2m+4n-1]
=16 if n=3(4), either m=2o0r m=0(4) and m >0,
=38 ifm=00Q2),n=14), m>00rif m=2(4), n=314), m=4,
4 ifmz22,n=002),n>00rif m=314), n=0,
=2 ifm=1,8=02),n>00rif m#£3{4), m#2", n=0,
o z'fm=0.

In fact [P(m,n) c R¥**¥~1] for m,n > 0 with m = 0(2) or 7 = 0(2) has been
proved in [15, Proposition 5] and that for m = 0 or # = 0 has been given, e.g., in
[ 4, Theorem (2.4)], [ 1, p.299], [ 8, Theorem 0.1] and [13, Theorem C], because
P(m,0) and P(0,7n) are the real and the complex projective spaces, respectively.

As for the existence of embeddings of P(m,7) in Euclidean (2m+-4n—1)-space,
we have the following

Theorem C. Assume that m + 2n > 4. Then the Dold manifold P(m,n) of
type (m,n) is embedded in Euclidean (2m+4n—1)-space if and only if (m,n) +
27,0) for r = 3.
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This note is essentially a sequel to the paper entitled “Enumerating embeddings of
n-manifolds in Euclidean (2r—1)-space” [15]. Thus we shall use the same definitions
and notations as those of [15].

- - .The remainder of this note is organized as follows : In §2, the cohomology groups
H™=2(M* ; Z[v]) and pH?"~3(M* ; Z[v]) are ‘calculated for an odd dimensional
manifold M satisfying the condition (1.1) above. The proofs of Theorems A, B and
C are given in §§ 3—5, respectively. o '

§ 2. Cohomology of M*

We begin this section by explaining notations.

Z,<a> denotes the cyclic group of order 7, Z,, generated by a ( < ).

Z,[x] for x € H|(X ; Z;) denotes the sheaf of coefficients over X, locally iso-
morphic to Z,, twisted by x (# < 00), and =~ = - ' '

Pr i HI(X ; ZLx]) — HI(X ; Z[x]) (s= 00, 5= 0(r)),
Br i H™W(X; Z[x]) — HY(X ; Z[x]) (r < )
denote the reduction mod 7 and the Bockstein operator, - respectively, twisted by x.

Then B, and B, for x = 0 are the ordinary ones p, and §,. Moreover the following
relations are well-known (e.g.[ 2] and [10]) ;

@.D B2 =S5g"+x, B2 =Sq.
Let M be an unorientable n#-manifold and assume that

HY(M ; Z) = Z,<BoM'> (S¢'M' = M is the generator of H'(M ; Z,)),

2.9 H® (M, Z) = 3 Zym,py<Xm,i> (direct sum) for m < n-1,
2.2 1=sigr(m)

Xoni = Brom.)Ym.i (.}.’m,x‘ € Hm_l(M , zr(m..l'))) Jor a(m) < i <y(m),
where the order r(m, ) is infinite for 1< 7 < a(m), a power of 2 for a(m) < §
< B(m) and a power of odd prime for f(m) < i < y(m), and if a(m) <i<j
< y(m) then either (*(m,i), r(m, j)) =1 or r(m,i) | r(m, j) holds.

For brevity,

(2.2) denote a(m), ﬂ(m)', r(m), r(m,i), xXpm, and yu,; in (2.2), respectively,
by :
a, B, r, r(1), x; and y; when m =n-1,
o, B, 1, @, % and y; when m =n—2,

a”, B, ", v'(i), x; and y;' when m =n-3.
If an z-manifold M satisfies the condition (1.1) above, then so does H*~2(M ;
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Z[w,(M)]) by Poincaré duality, and it is expressed in the form

2.3) H" M ; Z[lw(M)]) =l§§5azz<322f> (zi € H*"X(M ; Zp)).

Theorem 2.4. Let n be odd and n > 4. If M is an unorientable n-manifold
satisfying the condition (2.3), then
(1) there exists a short exact sequence
0—>[H" XM ; Zp) + o(H"" (M ; Z)QH""{(M ; Z))]
— H?-2(M* ; Z[v]) — H\(M ; Z) —> 0,

and
(@)  BHPTM* Z[v])
= ¥ Hi+ % Z<p(u® (Sq" + wi(M))z)? + UL ®z))>,
15755 1Si<a
where ¢ =1 — t*, t being defined by interchanging factors, and
H| = {po(px @ M) | x € H" %M ; Z)},
= {pa(Px ®p2y) | xEH"Y M ;Z), yE H'" (M ; 2)},

H
Hy = Z:,SﬂZz<po(pzxs ® p2yi + (r()/r(E)e2yi @ p2x5) >,

a<i<j=

Hy=_ % Z:<po(py, @M + 502y, @ M) >,

a

Hy = 3 Z<pa(p2yi® pr%i) >.
a<isp
(Here the description of the elements in H*(M* ; Z,) is due to[11, §2].)

Proof. The Zy-action on M x M, defined via the map ¢, determines two quotient

spaces
A2M = (M x M)[Z,, dM = (AM)/Z,.

Hence A2M — 4M = M* holds and there is an exact sequence (e, g., [15, Lemma
1.3D

y K
2.5) > H=3C LM, AM ; ZLv]) —> H=3(M* ; Z[9])

j* ]
——)HZ”—S(PM : 2[v]) —> H2*"2( M, AM ; Z[v])

i* ]*
27, ez gar  zoTy o 22 PM  Z00]) —> -,

where PM is the tangent projective bundle over M and j*» =v, j being an embedding

PM c M* (see [14, §1D).
By [9, 9.2 Proposition and its proof], there are isomorphisms
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@2.6)  0:H(M; Zlm(M)]) + H™(M ; Zp) —> H?=5(PM ; Z[v]),

¢ - H""2(M ; ZLwy(M)T) + H™"1(M ; Zp) —» H*=¥(PM ; Z[v]),
0'(x) = Ba(v""%x) for x & H"™"\(M ; 2p),
PO(3) = CB_o" M)A for y & HR"2(M ; Z[wy(M)]).

For any z € H*"3(M ; Z,), we see easily

P2j* B2p(u? @ 22) = Pafoj*p(u? @ 22),

= (8q! + v)( X wvn-i-15giz) by (2.1) and [11, §2],
05i=3
= (v7-1 4 vn-20(M) + vr-3w,(M))(wn(M) + Sg)z by[13,(2.5)],
= P20'Ba(2) by (2.6) and (2.1).
Since 7 is a monomorphism on H?*=3(PM ; Z[v]) by (2.6) and (2.3), we have
@.n F*Bp(u? ® 22) = 0'Ba(2i) for 1<i<a.
On the other hand, we have
2.8 36’ (x) = Pa(vn—24x%) for x € H"™ (M ; Z5)

by (2.6) and [14, Lemma 1.5]). Therefore it follows from (2.7-8), together with
(14, Lemma 3.2(4) and Proposition 5.4], that

i
2.9 0-G +G6;3+6 L*HZ"_Z(M* VARA))
6-15%
——ZSH" WM Z[wy (M)]) —> 0
is an exact sequence and that j* : H=3(M* ; Z[v]) —> j*H?3(M* ; Z[v]) is a
split epimorphism. Hence and from [14, Proposition 5.5] and [15, Lemmas 2.8—9],
it follows that

2.1  pH*3(M* ; Z[v])

= 3 i*Hj
15555

+1<:ZISaZz< p(u @ ((Sq* + wi(M))z;)2 + U1 ® 2:)) >,

Here G; (: =1,3,7) and Hj (j =1,.--,5) are the same as those in [14, Propositions
5.4—5]. By the definitions of G; and H; [14] and by [15 Lemma 3.3], we see easily
that there are isomorphisms

Gy + Ga o (1 = P*YHPY(M ; 2) @ H'\(M 3 2)),

Gy —> H""2(M ; Z,),

*) This relation is different from that of Rigdon [9 ], but his relation can be modified in such
a way as was stated in (2.6)
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and equalities
i*Hj = H; for1<j<5. _
Hence and from the fact that H*~Y(M ; Z[w,(M)]) is. isomorphic to Hy(M ;Z) by

Poincaré duality, the theorem follows.

Tt

§ 3. Proof of Theorem A.
The following proposition plays an important role for proving Théorermn A.
Proposition 3.1 (e.g., [13, Proposition 10.11). Let n be odd and n > 6.

Then for an n-manifold M, there is a bijection

[Mc R = H¥ "3 (M* | Z[v]) x H?~I(M* | Zy) /Sq*pH" ~3(M™* ; Z[v]).

Because for an #-manifold M satisfying the condition (2.3), the group H2*~2(M* :
Z[v]) is given in Theorem 2.4(1), it is sufficient to study Coker Sg2p;. We now
recall the following fact.

Lemma 3.2 (Thomas [11, Proposition 2.97). There is an isomorphism

pa( @ M) . H" (M ; Zp) *i H#=W(M* | Zy),
defined by
pa( ® M)(x) = po(x ® M) for x & H"™\(M ; Z,).
By the argument similar to that used in proving [15, Lemma 7.2], we have the

following lemma.

Lemma 3.3. Let n be odd and n > 6 and assume that M is an unorientable
n-manifold satisfying (2.3) above. Then Im Sq2p; is a Zy-vector space generated
by the elements listed below :

(1) po(Sq2px ® M) for xe H" 3(M ; Z),

(2) po(Sqg202x Q P23 for xe H*"¥(M ; 2), y € H""\(M ; 2),
(3) - pa(p2x; ® Sq202y; + (r(§D/r())Sq?2yi @ P2%5) for a<i<jgB,

4) po(Sg20y, @ M + Sg28g'029, @ M) for ' <k <SP,

(5) 00(Sq202y; Q) p2%:) for ¢ <i <8,

(6) po(w(M)Sqiz; ® M) for1sis<a,

where ¢ =1 + t*.
First notice that the Z,-bese of Hi(M ; Z,) and the action of Sg! on it are
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completely determined by the integral cohomology structure (2.2). In particular
S={ox;, py; |11SiSp", ’ <j < B}

is a Zy-base of H®" ¥ M ;Zy). Thus if z; can be expressed explicitly as a linear
combination of the elements in § and if the action of w\(M) on H" %M : Z,) is
given, then w)(M)Sq'z; (1<i < a) in Lemma 3.3(6) can be expressed explicitly as
a linear combination of the elements of the base of H*~Y(M ; Z,). Here, by (2.1)
and (2.3), we have

Ker B, = Ker (S¢' + wi(M)) in H"=3(M ; Zy),

a=p"+p — o — dimz, Ker (Sg' + w,(M)).
If the action of w (M) on H" 3(M ; Z,) is given, then we can choose the elements
z; (1 =i £ a), each of which is expressed explicitly as a linear combination of elements
in § above, so as to satisfy (2.3). Therefore if the actions of w;(M) on HI(M : Z5)
for i =n—2, n—3 are given explicitly, then w)(M)Sq'z; (1 <i < a) can be deter-
mined completely. Hence and by the argument similar to that used in proving [15,
Corollary 7.3], we have the following

Corollary 3.4. Let n be odd and n =17 and let M be an unorientable
n-manifold whose integral cohomology groups H(M ;Z) for n—-3<i<n are
given as in (2.2). Moreover assume that Hy(M ;Z) satisfies the condition
(1.1) above. Then the following information is sufficient to determine Im
Sq°ps

(i) the actions of Sq%on HI(M : Zy) for i =n-3, n-2,
@ii)  the actions of wi(M) on H(M ;Z;)  for i =n—3, n—2.

Remark., The actions of Sg* on H'(M;Z) for i =n—3, n—2 are given,
e.g., by [1, pp. 273—4] as follows :

Sg%x = (wa(M) + w(M)D)x for x € H""%(M ; Z,),
8% = (wo(M) + w(M)? + wi(M)Sg)x for x e H*"¥%(M ; 2,).

Hence we can replace the information (i) in Corollary 3.4 by
(i) the actions of wy(M) on H(M ; Z;) for i = n—3, n—2.

Theorem A follows from Proposition 3.1, Theorem 2.4 (1) and Corollary 3.4.
§4. Proof of Theorem B

The Dold manifold P(m,7n) of type (m,n), introduced by Dold [3], is the
quotient space obtained from $™ x CP* by identifying (x,z) with (—%,2), $” and
CP" being the usual m-sphere and the complex projective space of complex dimension
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n. In [3], P(m,n) is given a cell-decomposition with k-cell (C;, D;) for each pair
(i,7), £, j =0, for which i + 2j =k <m + 2n, and the boundary operator satisfies

' (1 + (=19 (Cimy, Dj)  for i >0,
4.D o(Ci, Dy ={
0 for i =0.

Let C'D/ denote the cochain which assigns 1 to (Ci,D;) and 0 to all the other
(i + 2j)-cells or its integral cohomology class if it is a cocycle, and let c’d’ denote
the mod 2 cohomology class defined by the cochain C:D/. Then it has been shown in
[3] that

H*(P(m,n) ; Zy) = Zy[c]/(c™") ® Z[d]/(d"*),
“.2) Sg'd = cd,
';Z(;wi(P(m'”)) = A+ +c¢+d)",

where
c=cd, d =c%d.
In particular we have
4.3) Sgd = je*, sqdl = jai* + (4 ),
wi(P(m,n)) = (m +n + 1)c.

In the rest of this section, assume that m + 2% >6, m = 1(2) and n = 1(2).
The last two are equivalent to the condition

w,(P(m,n)) =c + 0, dim P(m,n) =m + 2n = 1(2).

Under this assumption, the cohomology groups of P(m,n) can easily be calculated by
using (4.1-3) and the Bockstein exact sequence.

Lemma 4.4. Let n =1(2) and m =1(2). Then
Hm*22=Y(P(m,n) ; Z) = 0,

if mz=3,

ifm=1,

H™+ 2= (P(m, n) ; Zp) = Zp<c™7'd">,

Hm+2n—2(P(m’ n) ;Z) 5 ﬂz(c'”‘:"d") 1f mz= 3’

Z.
H"'*Z”"(P(m,n) ;Z[:C]) = {ZZ

Hm+2n—2(P(m, ”) ; Z[:c]) = Zz,
H"“Z”’Z(P(m,n) 1 Zy) =2Zy + 2y tf m 3.

From Theorem 2.4 and Lemma 4.4, it follows that
if nis odd and m = 3,

8
4.5 H¥m+An=2(p(m n)* A =
“.5 # (Pom.m D {oo if nis odd and m =1,
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and that

po‘(c’"_ad" ® cmd" + cm—zdn ® C'""ld”)
€ PHHNT3(P(m, m)* | Z[]) if mz3.

Using (4.2—3), we have
Sq2pa(c™ 3" ® c™d" + ¢™ 2" @ ¢ d™) = pa(c™™1d" ® c™d™).
Hence and from Lemma 3.3, it follows that
Sq¥p HE =3 P(m, m)* ; Z[v]) = H™ 4 Y(P(m,m)* ;Z;)  if m=3,

which, together with (4.5), establishes Theorem B.
§5. Proof of Theorem C

R. D. Rigdon [9, 11,24 Theorem] has proved that an unorientable z-manifold
M (n > 4) is embedded in Euclidean (2#—1)-space if and only if its (#—1)-th mod
2 normal Stiefel-Whitney class #,-1(M) vanishes, On the other hand, it is known
(e,g. [5, Theorem (1.1)] and [8]) that an orientable #-manifold M (n>4) is
always embedded in Euclidean (2n—1)-space and #,-i(M) =0 for an orientable
n-manifold M. Thus we have the following

Theorem 5.1. For n > 4, an n-manifold M is embedded in Euclidean
(2n—1)-space if and only if its (n—1)-th mod 2 normal Stiefel-Whitney class
vanishes.

Therefore to prove Theorem C, it is sufficient to calculate @Wm.2:—1(P(m, 2)).

By (4.2), we have a relation

T BPOm M) = L+ (L+ 6 +d)7

= (igo(m —i1+i)ci)(j§0(n -;- j)(c+ d)j) i

and in particular

6D BmaPonm) =2 (S )i

0sism—1
If n=0, then a simple calculation yields

_ 21— 2—i) -
68 BuaPm ) = _% (5173

M —1Y m—1 eml ifm=2",
=( m—l)c = 0 : r
if m+£2.
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Otherwise let

n=2"+s D=s<2",0=57).

We can put

i=2""1 +k 0=/, 05k<2h).

Ifh+s<2, thenk+25<k+s+2 <2 and so

2s+k

. 2r4-1( H 1) 2 k .
(2n+z) _( J+D+25+ ) = (]-Il:l)(zf+k+s) =0(2),

n+i) = 214+ 2 s +k

and if B +5s=2", then 0k +5s—-2"<k< 2! and so

. r+le _or . —or
() =TT =0T 2.

The above two relations, together with (5.2), imply

6.9

W +2n-1(P(m,n)) =0 for n > 0.

Therefore Theorem 5.1 and (5.3~4) imply Theorem C.
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