Notes on enumerating embeddings of unorientable n-manifolds in Euclidean ($2 n$-1)-space for odd n

Tsutomu YASUI
Department of Mathematics, Faculty of Education, Yamagata University, Yamagata, Japan
(Received August 24, 1983)

Abstract

Denote by $\left[M \subset R^{m}\right]$ the set of isotopy classes of embeddings of an n-manifold M in Euclidean m-space. In topology, the computation of this set is an interesting subject. The set [$M \subset R^{2 n-1}$] has been studied when n is even or M is orientable [15]. Hence, in this article, we shall study the set $\left[M \subset R^{2 n-1}\right]$ for an n-manifold M for which n is odd and M is unorientable. Further we compute $\left[P(m, n) \subset R^{2 m+4 n-1}\right]$ for the Dold manifold of type (m, n) of dimension $m+2 n$, both m and n being odd.

§1. Introduction

Throughout this note, " n-manifold" and "embedding" will mean closed connected differentiable manifold of dimension n and differentiable embedding, respectively. Denote $\left[M \subset R^{m}\right]$ the set of isotopy classes of embeddings of a manifold M in Euclidean m-space R^{m}. The set $\left[M \subset R^{2 n-1}\right]$ for an n-manifold M has been investigated when n is even or M is orientable [15]. In this note the set [$M \subset R^{2 n-1}$] is studied for an n-manifold M for which n is odd and M is unorientable, under the following condition :

Condition (1.1). $H_{2}(M ; Z)$ is isomorphic to a direct sum of some copies of the group of order $2, Z_{2}$.

Theorem A. Let n be odd and $n>6$ and assume that an unorientable n-manifold M satisfies Condition (1.1) above. Then there is a bijection

$$
\begin{aligned}
{\left[M \subset R^{2 n-1}\right] } & =\left(1-t^{*}\right)\left[H^{n-1}(M ; Z) \otimes H^{n-1}(M ; Z)\right] \times H^{n-2}\left(M ; Z_{2}\right) \\
& \times H_{1}(M ; Z) \times H^{2 n-1}\left(M^{*} ; Z_{2}\right) / S^{2} q^{2} \gamma_{2} H^{2 n-3}\left(M^{*} ; Z[v]\right),
\end{aligned}
$$

where the map $t: M \times M \rightarrow M \times M$ is defined by interchanging factors, the space $M^{*}=(M \times M-\Delta M) / Z_{2}(\Delta M$ is the diagonal in $M \times M)$ is the reduced

YASUI, T.
symmetric product of M, v is the first Stiefel-Whitney class of the double covering $M \times M-\Delta M \longrightarrow M^{*}$, and $Z[x]$ for $x \in H_{1}\left(X ; Z_{2}\right)$ is a sheaf of coefficients over X, locally isomorhic to Z, twisted by x. The following information is sufficient to determine $H^{2 n-1}\left(M^{*} ; Z_{2}\right) / S^{2} \tilde{\rho}_{2} H^{2 n-3}\left(M^{*} ; Z[v]\right)$:
(i) the integral cohomology groups $H^{i}(M ; Z)$ for $n-3 \leqq i \leqq n$,
(ii) the actions of $S q^{2}$ on $H^{i}\left(M ; Z_{2}\right)$ for $i=n-3, n-2$,
(iii) the actions of $w_{1}(M)$ on $H^{i}\left(M ; Z_{2}\right)$ for $i=n-3, n-2$.

Remark. If n is odd and $n>4$, then any n-manifold can be embedded in Euclidean ($2 n-1$)-space, cf. [8]. Moreover the group $H^{2 n-1}\left(M^{*} ; Z_{2}\right)$ is isomorphic to $H^{n-1}\left(M ; Z_{2}\right)$ by $[11, \S 2]$.

The Dold manifold $P(m, n)$ of type (m, n) of dimension $m+2 n$, both m and n being odd, satisfies the condition (1.1) above (see §4).

Theorem B. Assume that both m and n are odd and that $m+2 n>6$. Then

$$
\#\left[P(m, n) \subset R^{2 m+4 n-1}\right]= \begin{cases}8 & \text { if } m \geqq 3 \\ \infty & \text { if } m=1\end{cases}
$$

where $\# S$ denotes the cardinality of the set S.

Remark. For all the other Dold manifolds $P(m, n)$ with $m+2 n>5$, it has been proved that

$$
\begin{aligned}
& \#\left[P(m, n) \subset R^{2 m+4 n-1}\right] \\
& =16 \text { if } n \equiv 3(4) \text {, either } m=2 \text { or } m \equiv 0 \text { (4) and } m>0 \text {, } \\
& =8 \text { if } m \equiv 0(2), n \equiv 1(4), m>0 \text { or if } m \equiv 2(4), n \equiv 3(4), m \geqq 4 \text {, } \\
& =4 \text { if } m \geqq 2, n \equiv 0(2), n>0 \text { or if } m \equiv 3(4), n=0 \text {, } \\
& =2 \text { if } m=1, n \equiv 0(2), n>0 \text { or if } m \neq 3(4), m \neq 2^{r}, n=0 \text {, } \\
& =\infty \quad \text { if } m=0 \text {. }
\end{aligned}
$$

In fact $\left[P(m, n) \subset R^{2 m+4 n-1}\right]$ for $m, n>0$ with $m \equiv 0(2)$ or $n \equiv 0(2)$ has been proved in [15, Proposition 5] and that for $m=0$ or $n=0$ has been given, e.g., in [4, Theorem (2.4)], [1, p.299], [8, Theorem 0.1] and [13, Theorem C], because $P(m, 0)$ and $P(0, n)$ are the real and the complex projective spaces, respectively.

As for the existence of embeddings of $P(m, n)$ in Euclidean ($2 m+4 n-1$)-space, we have the following

Theorem C. Assume that $m+2 n>4$. Then the Dold manifold $P(m, n)$ of type (m, n) is embedded in Euclidean $(2 m+4 n-1)$-space if and only if $(m, n) \neq$ $\left(2^{r}, 0\right)$ for $r \geqq 3$.

This note is essentially a sequel to the paper entitled "Enumerating embeddings of n-manifolds in Euclidean ($2 n-1$)-space". [15]. Thus we shall use the same definitions and notations as those of [15].
\therefore The remainder of this note is organized as follows: In § 2, the cohomology groups $H^{2 n-2}\left(M^{*} ; Z[v]\right)$ and $\tilde{\rho}_{2} H^{2 n-3}\left(M^{*} ; Z[v]\right)$ are calculated for an odd dimensional manifold M satisfying the condition (1.1) above. The proofs of Theorems A, B and C are given in $\S \S 3-5$, respectively.

§ 2. Cohomology of M^{*}

We begin this section by explaining notations.
$Z_{r}<a>$ denotes the cyclic group of order \dot{r}, Z_{r}, generated by $a(r \leqq \infty)$.
$Z_{r}[x]$ for $x \in H_{1}\left(X ; Z_{2}\right)$ denotes the sheaf of coefficients over X, locally isomorphic to Z_{r}, twisted by $x(r \leqq \infty)$, and

$$
\begin{aligned}
& \tilde{\rho}_{r}: H^{i}\left(X ; Z_{s}[x]\right) \longrightarrow H^{i}\left(X ; Z_{r}[x]\right) \quad(s \leqq \infty, s \equiv 0(r)), \\
& \hat{\beta}_{r}: H^{i-1}\left(X ; Z_{r}[x]\right) \longrightarrow H^{i}(X ; Z[x]) \quad(r<\infty)
\end{aligned}
$$

denote the reduction mod r and the Bockstein operator, respectively, twisted by x. Then $\tilde{\rho}_{r}$ and $\tilde{\beta}_{r}$ for $x=0$ are the ordinary ones ρ_{r} and β_{r}. Moreover the following relations are well-known (e.g.[2] and [10]);

$$
\begin{equation*}
\tilde{\rho}_{2} \tilde{\beta}_{2}=S q^{1}+x, \quad \rho_{2} \beta_{2}=S q^{1} \tag{2.1}
\end{equation*}
$$

Let M be an unorientable n-manifold and assume that

$$
\begin{align*}
& H^{n}(M ; Z)=Z_{2}<\widetilde{\beta}_{2} M^{\prime}>\quad\left(S q^{1} M^{\prime}=M \text { is the generator of } H^{n}\left(M ; Z_{2}\right)\right) \\
& H^{m}(M ; Z)=\sum_{1 \leqq i \leq r(m)} Z_{r(m, i)}<x_{m, i}>\text { (direct sum) for } m \leqq n-1 \tag{2.2}\\
& x_{m, i}=\beta_{r(m, i)} y_{m, i}\left(y_{m, i} \in H^{m-1}\left(M ; Z_{r(m, i)}\right)\right) \text { for } \alpha(m)<i \leqq \gamma(m)
\end{align*}
$$

where the order $r(m, i)$ is infinite for $1 \leqq i \leqq \alpha(m)$, a power of 2 for $\alpha(m)<i$ $\leqq \beta(m)$ and a power of odd prime for $\beta(m)<i \leqq \gamma(m)$, and if $\alpha(m)<i<j$ $\leqq \gamma(m)$ then either $(r(m, i), r(m, j))=1$ or $r(m, i) \mid r(m, j)$ holds.

For brevity,
(2.2)' denote $\alpha(m), \beta(m), \gamma(m), r(m, i), x_{m, i}$ and $y_{m, i}$ in (2.2), respectively, by

$$
\begin{array}{ll}
\alpha, \beta, \gamma, r(i), x_{i} \text { and } y_{i} & \text { when } m=n-1, \\
\alpha^{\prime}, \beta^{\prime}, r^{\prime}, r^{\prime}(i), x_{i}^{\prime} \text { and } y_{i}^{\prime} & \text { when } m=n-2, \\
\alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}, r^{\prime \prime}(i), x_{i}^{\prime \prime} \text { and } y_{i}^{\prime \prime} & \text { when } m=n-3 .
\end{array}
$$

If an n-manifold M satisfies the condition (1.1) above, then so does $H^{n-2}(M$;
$\left.Z\left[w_{1}(M)\right]\right)$ by Poincare duality, and it is expressed in the form

$$
\begin{equation*}
H^{n-2}\left(M ; Z\left[w_{1}(M)\right]\right)=\sum_{1 \leqq i \leqq a} Z_{2}<\widetilde{\beta}_{2} z_{i}>\quad\left(z_{i} \in H^{n-3}\left(M ; Z_{2}\right)\right) \tag{2.3}
\end{equation*}
$$

Theorem 2.4. Let n be odd and $n>4$. If M is an unorientable n-manifold satisfying the condition (2.3), then
(1) there exists a short exact sequence

$$
\begin{aligned}
& 0 \longrightarrow\left[H^{n-2}\left(M ; Z_{2}\right)+\sigma\left(H^{n-1}(M ; Z) \otimes H^{n-1}(M ; Z)\right)\right] \\
& \longrightarrow H^{2 n-2}\left(M^{*} ; Z[v]\right) \longrightarrow H_{1}(M ; Z) \longrightarrow 0,
\end{aligned}
$$

and
(2) $\tilde{\rho}_{2} H^{2 n-3}\left(M^{*} ; Z[v]\right)$

$$
=\sum_{1 \leq i \leq 5} H_{j}^{\prime}+\sum_{1 \leq i \leq a} Z_{2}<\rho\left(u \otimes\left(\left(S q^{1}+w_{1}(M)\right) z_{i}\right)^{2}+U\left(1 \otimes z_{i}\right)\right)>
$$

where $\sigma=1-t^{*}$, t being defined by interchanging factors, and

$$
\begin{aligned}
& H_{1}^{\prime}=\left\{\rho_{\sigma}\left(\rho_{2} x \otimes M\right) \mid x \in H^{n-3}(M ; Z)\right\}, \\
& H_{2}^{\prime}=\left\{\rho_{\sigma}\left(\rho_{2} x \otimes \rho_{2} y\right) \mid x \in H^{n-2}(M ; Z), y \in H^{n-1}(M ; Z)\right\}, \\
& H_{3}^{\prime}=\sum_{\alpha<i<j \leq \beta} Z_{2}<\rho \sigma\left(\rho_{2} x_{i} \otimes \rho_{2} y_{j}+(r(j) / r(i)) \rho_{2} y_{i} \otimes \rho_{2} x_{j}\right)>, \\
& H_{4}^{\prime}=\sum_{a^{\prime}<k \leq \beta^{\prime}} Z_{2}<\rho_{\sigma}\left(\rho_{2} y_{k}^{\prime} \otimes M+S q^{1} \rho_{2} y_{k}^{\prime} \otimes M^{\prime}\right)>, \\
& H_{5}^{\prime}=\sum_{\sigma<i \leq \beta} Z_{2}<\rho \sigma\left(\rho_{2} y_{i} \otimes \rho_{2} x_{i}\right)>.
\end{aligned}
$$

(Here the description of the elements in $H^{*}\left(M^{*} ; Z_{2}\right)$ is due to [11, §2].)
Proof. The Z_{2}-action on $M \times M$, defined via the map t, determines two quotient spaces

$$
\Lambda^{2} M=(M \times M) / Z_{2}, \Delta M=(\Delta M) / Z_{2}
$$

Hence $\Lambda^{2} M-\Delta M=M^{*}$ holds and there is an exact sequence (e, g., [15, Lemma 1.3])

$$
\begin{align*}
& \cdots \longrightarrow H^{2 n-3}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \tag{2.5}\\
& \\
& \quad \xrightarrow{j^{*}} H^{2 n-3}(P M ; Z[v]) \xrightarrow{\delta} H^{2 n-3}\left(M^{*} ; Z[v]\right) \\
& H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \\
& \xrightarrow{i *} H^{2 n-2}\left(M^{*} ; Z[v]\right) \xrightarrow{j^{*}} H^{2 n-2}(P M ; Z[v]) \longrightarrow \cdots,
\end{align*}
$$

where $P M$ is the tangent projective bundle over M and $j^{*} v=v, j$ being an embedding $P M \subset M^{*}($ see $[14, \S 1])$.

By [9, 9.2 Proposition and its proof], there are isomorphisms

$$
\begin{equation*}
\theta: H^{n-1}\left(M ; Z\left[w_{1}(M)\right]\right)+H^{n}\left(M ; Z_{2}\right) \xrightarrow{\cong} H^{2 n-2}(P M ; Z[v]) \tag{2.6}
\end{equation*}
$$

$$
\begin{array}{cl}
\theta^{\prime}: H^{n-2}\left(M ; Z\left[w_{1}(M)\right]\right)+H^{n-1}\left(M ; Z_{2}\right) \xrightarrow{\cong} H^{2 n-3}(P M ; Z[v]), \\
\theta^{\prime}(x)=\widetilde{\beta}_{2}\left(v^{n-3} x\right) & \text { for } x \in H^{n-1}\left(M ; Z_{2}\right), \\
\boldsymbol{\rho}_{2} \theta^{\prime}(y)=\left(\sum_{0 \leq i \leq 2} v^{n-i-1} w_{i}(M)\right) \tilde{\rho}_{2}(y)^{*)} & \text { for } y \dot{\varepsilon} \dot{H}^{n-2}\left(M ; Z\left[w_{1}(M)\right]\right) .
\end{array}
$$

For any $z \in H^{n-3}\left(M ; Z_{2}\right)$, we see easily

$$
\begin{aligned}
\tilde{\rho}_{2} j * \widetilde{\beta}_{2} \rho\left(u^{2} \otimes z^{2}\right)=\chi_{2} \tilde{\beta}_{2} j^{*} \rho\left(u^{2} \otimes z^{2}\right), & \text { by (2.1) and }[11, \S 2], \\
& =\left(S q^{1}+v\right)\left(\sum_{0 \leqq i \leq 3} v^{n-i-1} S q^{i} z\right) \quad \\
& =\left(v^{n-1}+v^{n-2} w_{1}(M)+v^{n-3} w_{2}(M)\right)\left(w_{1}(M)+S q^{1}\right) z \quad \text { by }[13,(2.5)], \\
& =\tilde{\rho}_{2} \theta^{\prime} \tilde{\beta}_{2}(z) \quad \text { by }(2.6) \text { and (2.1). }
\end{aligned}
$$

Since $\boldsymbol{\gamma}_{2}$ is a monomorphism on $H^{2 n-3}(P M ; Z[v])$ by (2.6) and (2.3), we have

$$
\begin{equation*}
j * \AA_{2} \rho\left(u^{2} \otimes z_{i}{ }^{2}\right)=\theta^{\prime} \widetilde{\beta}_{2}\left(z_{i}\right) \quad \text { for } 1 \leqq i \leqq a . \tag{2.7}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\delta \theta^{\prime}(x)=\tilde{\beta}_{2}\left(v^{n-2} \Lambda x\right) \quad \text { for } x \in H^{n-1}\left(M ; Z_{2}\right) \tag{2.8}
\end{equation*}
$$

by (2.6) and [14, Lemma 1.5]. Therefore it follows from (2.7-8), together with [14, Lemma 3.2(4) and Proposition 5.4], that

$$
\begin{align*}
& 0 \rightarrow G_{1}+G_{3}+G_{7} \xrightarrow{i *} H^{2 n-2}\left(M^{*} ; Z[v]\right) \tag{2.9}\\
& \xrightarrow{\theta^{-1} j^{*}} H^{n-1}\left(M ; Z\left[w_{1}(M)\right]\right) \longrightarrow 0
\end{align*}
$$

is an exact sequence and that $j^{*}: H^{2 n-3}\left(M^{*} ; Z[v]\right) \longrightarrow j^{*} H^{2 n-3}\left(M^{*} ; Z[v]\right)$ is a split epimorphism. Hence and from [14, Proposition 5.5] and [15, Lemmas 2.8-9], it follows that

$$
\begin{align*}
f_{2} H^{2 n-3}(& \left.M^{*} ; Z[v]\right) \tag{2.10}\\
= & \sum_{1 \leq j \leq 5} i * H_{j} \\
& +\sum_{1 \leqq i \leq a} Z_{2}<\rho\left(u \otimes\left(\left(S q^{1}+w_{1}(M)\right) z_{i}\right)^{2}+U\left(1 \otimes z_{i}\right)\right)>
\end{align*}
$$

Here $G_{i}(i=1,3,7)$ and $H_{j}(j=1, \cdots, 5)$ are the same as those in [14, Propositions 5.4-5]. By the definitions of G_{i} and H_{j} [14] and by [15, Lemma 3.3], we see easily that there are isomorphisms

$$
\begin{aligned}
G_{1}+G_{3} & \cong \\
\cong & \left(1-t^{*}\right)\left(H^{n-1}(M ; Z) \otimes H^{n-1}(M ; Z)\right), \\
G_{7} & \xrightarrow{\cong} H^{n-2}\left(M ; Z_{2}\right),
\end{aligned}
$$

[^0]and equalities
$$
i^{*} H_{j}=H_{j}^{\prime} \quad . \quad \text { for } 1 \leqq j \leqq 5
$$

Hence and from the fact that $H^{n-1}\left(M ; Z\left[w_{1}(M)\right]\right)$ is isomorphic to $H_{1}(M ; Z)$ by Poincaré duality, the theorem follows.

§ 3. Proof of Theorem \mathbf{A}.

The following proposition plays an important role for proving Theorem A .

Proposition 3.1 (e.g., [13, Proposition 10.1]). Let n be odd and $n>6$. Then for an n-manifold M, there is a bijection

$$
\left[M \subset R^{2 n-1}\right]=H^{2 n-2}\left(M^{*} ; Z[v]\right) \times H^{2 n-1}\left(M^{*} ; Z_{2}\right) / S q^{2} \tilde{\rho}_{2} H^{2 n-3}\left(M^{*} ; Z[v]\right)
$$

Because for an n-manifold M satisfying the condition (2.3), the group $H^{2 n-2}\left(M^{*}\right.$; $Z[v]$) is given in Theorem 2.4(1), it is sufficient to study Coker $S q^{2} \tilde{\rho}_{2}$. We now recall the following fact.

Lemma 3.2 (Thomas [11, Proposition 2.9]). There is an isomorphism

$$
\rho_{\sigma}(\otimes M): H^{n-1}\left(M ; Z_{2}\right) \stackrel{\cong}{\cong} H^{2 n-1}\left(M^{*} ; Z_{2}\right)
$$

defined by

$$
\rho_{\sigma}(\otimes M)(x)=\rho_{\sigma}(x \otimes M) \quad \text { for } x \in H^{n-1}\left(M ; Z_{2}\right)
$$

By the argument similar to that used in proving [15, Lemma 7.2], we have the following lemma.

Lemma 3.3. Let n be odd and $n>6$ and assume that M is an unorientable n-manifold satisfying (2.3) above. Then $\operatorname{Im} \operatorname{Sq}^{2} \tilde{\rho}_{2}$ is a Z_{2}-vector space generated by the elements listed below:
(1) $\rho_{\sigma}\left(S q^{2} \rho_{2} x \otimes M\right)$
for $x \in H^{n-3}(M ; Z)$,
(2) $\rho_{\sigma}\left(S q^{2} \rho_{2} x \otimes \rho_{2} y\right) \quad$ for $x \in H^{n-2}(M ; Z), y \in H^{n-1}(M ; Z)$,
(3) $\rho \sigma\left(\rho_{2} x_{i} \otimes S q^{2} \rho_{2} y_{j}+(r(j) / r(i)) S q^{2} \rho_{2} y_{i} \otimes \rho_{2} x_{j}\right) \quad$ for $\alpha<i<j \leqq \beta$,
(4) $\rho \sigma\left(S q^{2} \rho_{2} y_{k}^{\prime} \otimes M+S q^{2} S q^{1} \rho_{2} y_{k}^{\prime} \otimes M^{\prime}\right) \quad$ for $\alpha^{\prime}<k \leqq \beta^{\prime}$,
(5) $\rho \sigma\left(S q^{2} \rho_{2} y_{i} \otimes \rho_{2} x_{i}\right) \quad$ for $\alpha<i \leqq \beta$,
(6) $\rho \sigma\left(w_{1}(M) S q^{1} z_{i} \otimes M\right)$
for $1 \leqq i \leqq a$,
where $\sigma=1+t^{*}$.
First notice that the Z_{2}-bese of $H^{i}\left(M ; Z_{2}\right)$ and the action of $S q^{1}$ on it are
completely determined by the integral cohomology structure (2.2). In particular

$$
S=\left\{\rho_{2} x_{i}^{\prime \prime}, \rho_{2} y_{j}^{\prime} \mid 1 \leqq i \leqq \beta^{\prime \prime}, \alpha^{\prime}<j \leqq \beta^{\prime}\right\}
$$

is a Z_{2}-base of $H^{n-3}\left(M ; Z_{2}\right)$. Thus if z_{i} can be expressed explicitly as a linear combination of the elements in S and if the action of $w_{1}(M)$ on $H^{n-2}\left(M ; Z_{2}\right)$ is given, then $w_{1}(M) S q^{1} z_{i}(1 \leqq i \leqq a)$ in Lemma $3.3(6)$ can be expressed explicitly as a linear combination of the elements of the base of $H^{n-1}\left(M ; Z_{2}\right)$. Here, by (2.1) and (2.3), we have

$$
\begin{aligned}
& \text { Ker } \ddot{\beta}_{2}=\operatorname{Ker}\left(S q^{1}+w_{1}(M)\right) \quad \text { in } H^{n-3}\left(M ; Z_{2}\right), \\
& a=\beta^{\prime \prime}+\beta^{\prime}-\alpha^{\prime}-\operatorname{dim} Z_{2} \operatorname{Ker}\left(S q^{1}+w_{1}(M)\right)
\end{aligned}
$$

If the action of $w_{1}(M)$ on $H^{n-3}\left(M ; Z_{2}\right)$ is given, then we can choose the elements $z_{i}(1 \leqq i \leqq a)$, each of which is expressed explicitly as a linear combination of elements in S above, so as to satisfy (2.3). Therefore if the actions of $w_{1}(M)$ on $H^{i}\left(M ; Z_{2}\right)$ for $i=n-2, n-3$ are given explicitly, then $w_{1}(M) S q^{1} z_{i}(1 \leqq i \leqq a)$ can be determined completely. Hence and by the argument similar to that used in proving [15, Corollary 7.3], we have the following

Corollary 3.4. Let n be odd and $n \geqq 7$ and let M be an unorientable n-manifold whose integral cohomology groups $H^{i}(M ; Z)$ for $n-3 \leqq i \leqq n$ are given as in (2.2). Moreover assume that $H_{2}(M ; Z)$ satisfies the condition (1.1) above. Then the following information is sufficient to determine Im $S q^{2} \widetilde{\rho}_{2}$:
(i) the actions of $S q^{2}$ on $H^{i}\left(M ; Z_{2}\right) \quad$ for $i=n-3, n-2$,
(ii) the actions of $w_{1}(M)$ on $H^{i}\left(M ; Z_{2}\right)$ for $i=n-3, n-2$.

Remark. The actions of $S q^{2}$ on $H^{i}\left(M ; Z_{2}\right)$ for $i=n-3, n-2$ are given, e.g., by [1, pp. 273-4] as follows :

$$
\begin{array}{ll}
S q^{2} x=\left(w_{2}(M)+w_{1}(M)^{2}\right) x & \text { for } x \in H^{n-2}\left(M ; z_{2}\right) \\
S q^{2} x=\left(w_{2}(M)+w_{1}(M)^{2}+w_{1}(M) S q^{1}\right) x & \text { for } x \in H^{n-3}\left(M ; Z_{2}\right)
\end{array}
$$

Hence we can replace the information (i) in Corollary 3.4 by
(i) the actions of $w_{2}(M)$ on $H^{i}\left(M ; Z_{2}\right)$ for $i=n-3, n-2$.

Theorem A follows from Proposition 3.1, Theorem 2.4 (1) and Corollary 3.4.

§ 4. Proof of Theorem B

The Dold manifold $P(m, n)$ of type (m, n), introduced by Dold [3], is the quotient space obtained from $S^{n} \times C P^{n}$ by identifying (x, z) with $(-x, \bar{z}), S^{n z}$ and $C P^{n}$ being the usual m-sphere and the complex projective space of complex dimension

YASUI, T.

n. In [3], $P(m, n)$ is given a cell-decomposition with k-cell (C_{i}, D_{j}) for each pair (i, j) $, i, j \geqq 0$, for which $i+2 j=k \leqq m+2 n$, and the boundary operator satisfies

$$
\partial\left(C_{i}, D_{j}\right)= \begin{cases}\left(1+(-1)^{i+j}\right)\left(C_{i-1}, D_{j}\right) & \text { for } i>0, \tag{4.1}\\ 0 & \text { for } i=0 .\end{cases}
$$

Let $C^{i} D^{j}$ denote the cochain which assigns 1 to (C_{i}, D_{j}) and 0 to all the other $(i+2 j)$-cells or its integral cohomology class if it is a cocycle, and let $c^{i} d^{j}$ denote the mod 2 cohomology class defined by the cochain $C^{i} D^{j}$. Then it has been shown in [3] that

$$
\begin{align*}
& H^{*}\left(P(m, n) ; Z_{2}\right)=Z_{2}[c] /\left(c^{m+1}\right) \otimes Z_{2}[d] /\left(d^{n+1}\right) \\
& S q^{1} d=c d, \tag{4.2}\\
& \sum_{i \geqq 0} w_{i}(P(m, n))=(1+c)^{m}(1+c+d)^{n+1}
\end{align*}
$$

where

$$
c=c^{1} d^{3}, \quad d=c^{0} d^{1}
$$

In particular we have

$$
\begin{gather*}
S q^{1} d^{j}=j c d^{j+1}, S q^{2} d^{j}=j d^{j+1}+\binom{j}{2} c^{2} d^{j} \tag{4.3}\\
w_{1}(P(m, n))=(m+n+1) c
\end{gather*}
$$

In the rest of this section, assume that $m+2 n>6, m \equiv 1$ (2) and $n \equiv 1$ (2).
The last two are equivalent to the condition

$$
w_{1}(P(m, n))=c \neq 0, \quad \operatorname{dim} P(m, n)=m+2 n \equiv 1(2)
$$

Under this assumption, the cohomology groups of $P(m, n)$ can easily be calculated by using (4.1-3) and the Bockstein exact sequence.

Lemma 4.4. Let $n \equiv 1$ (2) and $m \equiv 1$ (2). Then

$$
\begin{aligned}
& H^{m+2 n-1}(P(m, n) ; Z)=0, \\
& H^{m+2 n-1}(P(m, n) ; Z[c])= \begin{cases}Z_{2} & \text { if } m \geqq 3, \\
Z & \text { if } m=1,\end{cases} \\
& H^{m+2 n-1}\left(P(m, n) ; Z_{2}\right)=Z_{2}<c^{m-1} d^{n}>, \\
& H^{m+2 n-2}(P(m, n) ; Z) \ni \beta_{2}\left(c^{m-3} d^{n}\right) \quad \text { if } m \geqq 3, \\
& H^{m+2 n-2}(P(m, n) ; Z[c])=Z_{2}, \\
& H^{m+2 n-2}\left(P(m, n) ; Z_{2}\right)=Z_{2}+Z_{2} \quad \text { if } m \geqq 3 .
\end{aligned}
$$

From Theorem 2.4 and Lemma 4.4, it follows that

$$
\# H^{2 m+4 n-2}(P(m, n) * ; Z[v])= \begin{cases}8 & \text { if } n \text { is odd and } m \geqq 3, \tag{4.5}\\ \infty & \text { if } n \text { is odd and } m=1,\end{cases}
$$

and that

$$
\begin{aligned}
& \quad \rho \sigma\left(c^{m-3} d^{n} \otimes c^{m} d^{n}+c^{m-2} d^{n} \otimes c^{m-1} d^{n}\right) \\
& \quad \in \mathcal{\rho}_{2} H^{2 m+4 n-3}\left(P(m, n)^{*} ; Z[v]\right) \quad \text { if } m \geqq 3 .
\end{aligned}
$$

Using (4.2-3), we have

$$
S q^{2} \rho \sigma\left(c^{m-3} d^{n} \otimes c^{m} d^{n}+c^{m-2} d^{n} \otimes c^{m-1} d^{n}\right)=\rho_{\sigma}\left(c^{m-1} d^{n} \otimes c^{m} d^{n}\right)
$$

Hence and from Lemma 3.3, it follows that

$$
S q^{2} \widetilde{\rho}_{2} H^{2 m+4 n-3}\left(P(m, n)^{*} ; Z[v]\right)=H^{2 m+4 n-1}\left(P(m, n)^{*} ; Z_{2}\right) \quad \text { if } m \geqq 3
$$

which, together with (4.5), establishes Theorem B.

§ 5. Proof of Theorem \mathbf{C}

R. D. Rigdon [9, 11, 24 Theorem] has proved that an unorientable n-manifold $M(n>4)$ is embedded in Euclidean ($2 n-1$)-space if and only if its ($n-1$)-th mod 2 normal Stiefel-Whitney class $\bar{w}_{n-1}(M)$ vanishes. On the other hand, it is known (e.g. [5, Theorem (1.1)] and [8]) that an orientable n-manifold M ($n>4$) is always embedded in Euclidean ($2 n-1$)-space and $\bar{w}_{n-1}(M)=0$ for an orientable n-manifold M. Thus we have the following

Theorem 5.1. For $n>4$, an n-manifold M is embedded in Euclidean ($2 n-1$)-space if and only if its ($n-1$)-th mod 2 normal Stiefel-Whitney class vanishes.

Therefore to prove Theorem C , it is sufficient to calculate $\bar{w}_{m+2 n-1}(P(m, n))$. By (4.2), we have a relation

$$
\begin{aligned}
\sum_{i \geq 0} \bar{w}_{i}(P(m, n))= & (1+c)^{-m}(1+c+d)^{-1-n} \\
& =\left(\sum_{i \geq 0}\binom{m-1+i}{i} c^{i}\right)\left(\sum_{j \geq 0}\binom{n+j}{j}(c+d)^{j}\right),
\end{aligned}
$$

and in particular

$$
\begin{equation*}
\bar{w}_{m+2 n-1}(P(m, n))=\sum_{0 \leqq i \leq m-1}\binom{2 n+i}{n+i}\binom{n+i}{i}\binom{2 m-2-i}{m-1-i} c^{m-1} d^{n} \tag{5.2}
\end{equation*}
$$

If $n=0$, then a simple calculation yields

$$
\begin{align*}
\bar{w}_{m-1}(P(m, 0)) & =\sum_{0 \leq i \leq m-1}\binom{2 m-2-i}{m-1-i} c^{m-1} \tag{5.3}\\
& =\binom{2 m-1}{m-1} c^{m-1}= \begin{cases}c^{m-1} & \text { if } m=2^{r} \\
0 & \text { if } m \neq 2^{r}\end{cases}
\end{align*}
$$

YASUI, T.

Otherwise let

$$
n=2^{r}+s \quad\left(0 \leqq s<2^{r}, 0 \leqq r\right)
$$

We can put

$$
i=2^{r+1} j+k \quad\left(0 \leqq j, 0 \leqq k<2^{r+1}\right)
$$

If $k+s<2^{r}$, then $k+2 s<k+s+2^{r}<2^{r+1}$ and so

$$
\binom{2 n+i}{n+i}=\binom{2^{r+1}(j+1)+2 s+k}{2^{r+1} j+2^{r}+s+k} \equiv\binom{j+1}{j}\binom{2 s+k}{2^{r}+k+s} \equiv 0(2)
$$

and if $k+s \geqq 2^{r}$, then $0 \leqq k+s-2^{r}<k<2^{r+1}$ and so

$$
\binom{n+i}{i}=\binom{2^{r+1}(j+1)+s+k-2^{r}}{2^{r+1} j+k} \equiv\binom{j+1}{j}\binom{s+k-2^{r}}{k} \equiv 0(2)
$$

The above two relations, together with (5.2), imply

$$
\begin{equation*}
\bar{w}_{m+2 n-1}(P(m, n))=0 \quad \text { for } n>0 . \tag{5.4}
\end{equation*}
$$

Therefore Theorem 5.1 and (5.3-4) imply Theorem C.

References

[1] D. R. Bausum, Embeddings and immersions of manifolds in Euclidean space, Trans. Amer. Math. Soc., 213 (1975), 263-303.
[2] R. Greenblatt, The twisted Bockstein coboundary, Proc. Camb. Phil. Soc., 61 (1965), 295-297.
[3] A. Dold, Erzeugende der Thomschen Algebra \mathfrak{R}. Math. Z., 65 (1956), 25-35.
[4] A. Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv., 37 (1962), 155-176.
[5] A. Haefliger and M. W. Hirsch, On the existence and classification of differentiable embeddings, Topology 2 (1963), 129-135.
[6] L. L. Larmore, The cohomology of $\left(\Lambda^{2} X, \Delta X\right)$, Canad. J. Math., 25 (1973), 908-921.
[7] L. L. Larmore and R. D. Rigdon, Enumerating immersions and embeddings of projective spaces, Pacific J. Math., 64 (1976), 471-492.
[8] W. S. Massey and F. P. Peterson, On the dual Stiefel-Whitney classes on a manifold, Bol. Mat. Soc. Mexicana 8 (1963), 1-13.
[9] R. D. Rigdon, Immersions and embeddings of manifolds in Euclidean space, Thesis, Univ. California at Berkeley, 1970.
[10] H. Samelson, A note on the Bockstein operator, Proc. Amer. Math. Soc., 15 (1964), 450-453.
[11] E. Thomas, Embedding manifolds in Euclidean space, Osaka J. Math., 13 (1976), 163-186.
[12] J. J. Ucci, Immersions and embeddings of Dold manifolds, Topology 4 (1965),

Notes on enumerating embeddings of unorientable n-manifolds

283-293.
[13] T. Yasui, The enumeration of liftings in fibrations and the embedding problem I , Hiroshima Math. J., 6 (1976), 227-255.
[14] T. Yasui, On the map defined by regarding embeddings as immersions, Hiroshima Math. J., 13 (1983), 457-476.
[15] T. Yasui, Enumerating embeddings of n-manifolds in Euclidean (2n-1)-space, preprint.

[^0]: *) This relation is different from that of Rigdon [9], but his relation can be modified in such a way as was stated in (2.6)

