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Abstract

Denote by [Af c Rm~] the set of isotopy classes of- embeddings of an w-manifold

M in Euclidean w-space. In topology, the computation of this set is an interesting

subject. The set [Af c /22w_1] has been studied when n is even or M is orientabie [15].
Hence, in this article, we shall study the set [Af c /22n_1] for an M-manifold M for
which n is odd and M is unorientable. Further we compute \_P(m, ri) c /?2»»+4»-i-|

for the Dold manifold of type (tn, ri) of dimension m + 2w, both m and n being

odd.

§ 1. Introduction

Throughout this note, "w-manifold" and "embedding" will mean closed connected
differentiable manifold of dimension n and differentiable embedding, respectively.

Denote [Af c •ft"1] the set of isotopy classes of embeddingsof a manifold M in Euclidean

fw-space Rm. The set [A/ c R2n~l~\ for an M-manifold M has been investigated when
n is even or M is orientabie [15]. In this note the set [Afc/?2""1] is studied for

an M-manifold M for which n is odd and M is unorientable, under the following

condition :

Condition (1.1). H2(M; Z) is isomorphic to a direct sum of some copies

of the group of order 2, Z2.

Theorem A. Let n be odd and n > 6 and assume that an unorientable

n-manifold M satisfies Condition (1.1) above. Then there is a bijection

[Af c R2"-l3 = (.l-t*XH"-KM; Z) <g) Hn~\M; Z)] x Hn~\M ; Zfi
xH^M ; Z) x H2n~\M* ; Z2')/Sq2pzH2n-KM* ; Z[y]),

where the map t '. M x M-+ M x M is defined by interchanging factors, the

space A/* = (A/ x Af —JA/)/Z2 (JAf *'s Me diagonal in Af x Af) is Me reduced
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symmetric product of M, v is the first Stiefel-Whitney class of the double

covering M x M —AM—> M*, and Z[#] for x e HX(X ; Z2) is a sheaf of
coefficients over X, locally isomorhic to Z, twisted by x. The following infor

mation is sufficient to determine H2n~\M* ; Z2)/Sq2p2H2n~3(M* ; Z[v~]) :

( i ) the integral cohomology groups H\M ; Z) for nS^i^n,

(ii) the actions of Sq2 on H\M ; Z2) for i = n—3, n—2,
(iii) the actions of w^M) on H\M; Z£) for i = m—3, n—2.

Remark. If n is odd and n > 4, then any M-manifold can be embedded in

Euclidean (2»—l)-space, cf. [8]. Moreover the group//2w-1(A/* ; Z2) is isomor
phic to H»-\M ; Z2) by [11. § 2].

The Dold manifold P(m,ri) of type (m,ri) of dimension m + 2n, both m and n
being odd, satisfies the condition (1.1) above (see §4).

Theorem B. Assume that both m and n are odd and that m + 2m > 6. Then

8 iftn^Z,
# [P(mtn) c /?«+<«-!] =

koo if m = 1,

where #S denotes the cardinality of the set S.

Remark. For all the other Dold manifolds P(m,ri) with m + 2m > 5, it has been
proved that

#[P(»i,M) c/e2ff,+4n-1]

= 16 if n = 3(4), ci/Mer m = 2 or m = 0(4) and m>0,
= 8 i/m = 0(2), n~ 1(4), m>0or i/«i = 2(4), » = 3(4), mi ^ 4,

= 4 if m^2, m= 0(2), n > 0 or if m = 3(4), » = 0,

= 2 ifm = ltns 0(2), n>0 or if m^ 3(4), m =jt 2r, m= 0,
= 00 if m = 0.

In fact [^(m.M) c ^w+^-i^ for m,n>0 with w = 0(2) or » = 0(2) has been
proved in [15, Proposition 5] and that for m = 0 or n = 0 has been given, e.g., in
[4, Theorem (2.4)], [1, p.299], [8, Theorem 0.1] and [13, Theorem C], because
P(m,0) and P(0,») are the real and the complex projective spaces, respectively.

As for the existence of embeddings of P(m,ri) in Euclidean (2w+4M-l)-space,
we have the following

Theorem C. Assume that m + 2m > 4. Then the Dold manifold P(m, ri) of
type (m,ri) is embedded in Euclidean (2m+4n-Y)-space if and only if (m,n) &
(2r, 0) for r^Z.
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This note is essentially a sequel to the paper entitled "Enumerating embeddings of

M-manifolds in Euclidean (2m —l)-space" [15]. Thus we shall use the same definitions

and notations as those of [15].

The remainder of this note is organized as follows : In § 2, the cohomology groups

H2n~2(M* ; Z[y]) and pzH2n~\M* ; Z[y]) are calculated for an odd dimensional

manifold M satisfying the condition (1.1) above. The proofs of Theorems A, B and
C are given in §§3—5, respectively.

§ 2. Cohomology of M*

We begin this section by explaining notations.

Zr<a> denotes the cyclic group of order r, Zr, generated by a (r ^ oo).

zrM for x e HX(X ; Z2) denotes the sheaf of coefficients over X, locally iso
morphic to Zr, twisted by x (r<oo)t arid

pr : H\X ; Z,M) —> H\X ; Zr[x]) (s ^ 00, s = 0(r)),

)9r : W~\X ; ZrlxJ) >H*(X ; Z[*]> (r < »>

denote the reduction mod r and the Bockstein operator, respectively, twisted by x.
Then pr and $r for x = 0 are the ordinary ones pr and /3r. Moreover the following
relations are well-known (e.g.[2] and [10]) ;

(2.1) -pzh =Sqx + x, ptf2 = Sq\ •

Let Af be an unorientable M-manifold and assume that

Hn(M ; Z) = Z2<^2Af'> (Sq^M' = M is the generator of Hn(M ; Z2)),

,0 0, H^(M; Z) = s Zr(mj)<xmii> (direct sum) for m^n-1,

*m.« = Prlm.iWm.i OW S Hm~\M \ Zr(W|0)) /or «(Ml) < I ^ ?-(»l) ,

where the order r(w, 1) is infinite for 1 ^ 1 ^ a(w), a power of 2 for a(m) < i
^ j8(»0 and a power of odd prime for fi(m) < i < r(m), and if a(m) < i < j
^ y(m) then either (r(m, i), r(m, j)) = 1 or r(m, i) \ r(m, j) holds.

For brevity,

(2.2)' denote a(m), fi(m), ^(m), r(m,i), xm>i and jy„,if in (2.2), respectively,
by

a, /3, 7% r(i), xi and j>,- when m = m—1,

a', ft', f> ^(0. *,' and .y,' when mi = n—2,

a", £", 7", r"(i), x'/ and jrj' when m = n—3.

If an M-manifold A/ satisfies the condition (1.1) above, then so does Hn~2(M ;
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Z[w\(My\) by Poincare duality, and it is expressed in the form

(2.3) Hn'\M ; Z[u/!(A/)]) = £ Z2<j52z,-> (*f ^ Hn~\M ; Zz)).

Theorem 2.4. Let n be odd and n > 4. If M is an unorientable n-manifold

satisfying the condition (2.3), then

(1) there exists a short exact sequence

0—>[Hn~2(M ; Z2) + ^//"-^A* ; Z) (g)//"-»(Af ; Z))]

>H2n'2(M* ;Z[y]) >Hl(M;Z) ^0,

and

(2) p2H2«-\M* ; Z[t/])

- z #;+ s z2<K«®((V + «'i(^))2«)2 + ^a®z«))>.

where a = 1 - t*, * 6ei*M# defined by interchanging factors, and

H\ = Wto* ® Af) Ix e //""3(Af ; Z)},

//; = {^(^x(g)^) Ix e H»~2(M ;Z), y<= H»~\M ; Z)},

//I = 2 Z2<pa(p2xi (g) p^yy + (r(j)/r(i))p2yi <g) p2*y) >.

H\= L Z2<pa(p2y'k®M + Sqxp2y'k<g>Af') >,

H'5 = S Z2<pa(p2yi® p2xt) >.

(Here the description of the elements in H*(M* ; Z2) is rfwe to[11, §2].)

Proof. The Z^action on Af x Af, defined via the map t, determines two quotient

spaces

A2M = (M x M)/Z2, AM = (AM)/Z2.

Hence A2M —AM= Af* holds and there is an exact sequence (e, g., [15, Lemma

1.3])

(2.5) >H2n~\A2M, AM ; Z[y]) >H2n~\M* ; Z[t/])

JL>H2n~\PM ;Z[v]) >H2n~2(A2M, AM ;Z[y])

l~+H2n'2(M* ;ZlvJ)^—>H2»-2(PM ;Z[y]) —•
where PAf is the tangent projective bundle over Af and j*v =v, j being an embedding
PAf c Af* (see [14, § 1]).

By [9, 9.2 Proposition and its proof], there are isomorphisms
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(2.6) 6 : Hn-\M ; Z[it>i(Af)]) + Hn(M ; Z2) ^->H2n~\PM ; Z[y]),

d' : Hn~2(M ; Z[wi(Af)]) + Hn~\M ; Z2)-^H2n~3(PM ; Z[v]),
0'(*) = ]52(*>M~3*) /or x e //"-J(Af; Z2),

fo*'O0 = ( 2 *>"-'-WAOWjy)** /^^^//"^(AfjZ^^Af)]).
0gi^2

For any z e Hn~3(M ; Z2), we see easily

?2J*&P(u2 ® 22) = ?2fcJ*P(u2 ® &),
= (Sqi +v)( 2 v«-«-i5^2) by (2.1) and [11, §2],

Ogi'^3

= (y«-i + t>»-2u>,(AO + v»-3w2(M))(wi(M) + Sq*)z by[13,(2.5)],

= PiO'h(z) by (2.6) and (2.1).

Since /62 is a monomorphism on H2n~3(PM; Z[v]) by (2.6) and (2.3), we have

(2.7) ; *hP(i# <g) 2,-2) = 0'j52(z,.) for l^i^a.

On the other hand, we have

(2.8) 3<?'(x) = fy(v»-2Ax) for x e Hn~\M ; Z2)

by (2.6) and [14, Lemma 1.5]. Therefore it follows from (2.7—8), together with

[14, Lemma 3.2(4) and Proposition 5.4], that

(2.9) O-Gi + G3 + G7—>H2tt~2(M* ; Z[v])

0-1/*
>Hn~\M ; Z[wy (Af)]) >0

is an exact sequence and that/* :H2n~3(M* \Z[vJ)—>j*H2n~3(M* ; Z[yJ) is a
split epimorphism. Hence and from [14, Proposition 5.5] and [15, Lemmas 2.8—9],

it follows that

(2.10) p2H2»-3(M* ; Z[»])

= S i*Hj
i^r'^5

+ S Z2</o(M (x)((tyi + ^(Af))*/)2 + 1/(1 (x)*,))> ,
lg«^a

Here G,- (i = 1,3,7) and Hj (j = 1, •••,5) are the same as those in [14, Propositions
5.4—5]. By the definitions of G,- and Hj [14] and by [15, Lemma 3.3], we see easily

that there are isomorphisms

Gj + G3 ^> (1 - t*)(//""1(Af ; Z) <S,Hn~\M ; Z)),

G7-^>//«-2(Af;Z2),

* ) This relation is different from that of Rigdon [ 9 ], but his relation can be modified in such
a way as was stated in (2.6)
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and equalities

i*Hj = Hj for 1 ^ / ^ 5.

Hence and from the fact that Hn~l(M ; Z[«/i(Af)]) is isomorphic to HX(M ; Z) by
Poincare duality, the theorem follows.

§ 3. Proof of Theorem A.

The following proposition plays an important role for proving Theorerh A.

Proposition 3.1 (e.g., [13, Proposition 10.1]). Let n be odd and n > 6.

Then for an n-manifold M, there is a bijection

[Af C f?2"-1] = H2n~2(M* ; Z[«]) x.H2n~KM* ; Z2)/Sq2p2H2"-3(M*; ; Z[y]).

Because for an M-manifold Af satisfying the condition (2.3), the groupH2n~2(M* ;
Z[y]) is given in Theorem 2.4(1), it is sufficient to study Coker Sqip2. We now

recall the following fact.

Lemma 3.2 (Thomas [11, Proposition 2.9]). There is an isomorphism

pa( (x) Af) : Hn~l(M ; Z2) -~^+H2n-\M* ; Z2),

defined by

pa( (g) Af)(x) = pa(x <g> Af) for x <= Hn~\M ; Z2).

By the argument similar to that used in proving [15, Lemma 7.2], we have the

following lemma.

Lemma 3.3. Let n be odd and m > 6 and assume that M is an unorientable

n-manifold satisfying (2.3) above. Then Im Sq2p2 is a Z2-vector space generated

by the elements listed below :

(1) po(Sq2p2x (g) Af) for x e Hn~3(M ; Z),
(2) po(Sqtp2x ® P2y) for x e H»~2(M ; Z), y <= H»~\M ; Z),

(3) -po(p2Xi(x)Sq2p2yj + (r(j)/r(i))Sq2p2yi(g)p2Xj) for a<i<jgp,

(4) pa(Sq2p2y'k (x) Af + Sq*Sqip2y'k <g) Af') for a' < k ^ ?,
(5) pff(Sq2p2yi <g) ^x,) /or a < i ^ j8,

(6) pa(wl(M)Sq\zi (g)Af) for l^i^a,

where a = 1 + t*.

First notice that the Z2-bese of //«(Af ; Z2) and the action of S^i on it are
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completely determined by the integral cohomology structure (2.2). In particular

S= {Pzx'i , p2y'j |l^i <$', a'<j^ 0'}

is a Z2-base of Hn~3(M ; Z2). Thus if z,- can be expressed explicitly as a linear
combination of the elements in S and if the action of Wi(Af) on Hn~2(M ; Z2) is

given, then wi(M)Sq1zi (1 ^ i ^ a) in Lemma 3.3(6) can be expressed explicitly as
a linear combination of the elements of the base of Hn~l(M ; Z2). Here, by (2.1)
and (2.3), we have

Ker '$2 = Ker (Sq1 + wx(M)) in Hn~3 (M ; Z2),

a = /9" + p - a' - dim z2 Ker(Sql + wY(M)).

If the action of wx(M) on Hn~3(M ; Z2) is given, then we can choose the elements
Zi (l^i ^a), each of which is expressed explicitly as a linear combinationof elements

in S above, so as to satisfy (2.3). Therefore if the actions of W\(M) on H'(M; Z2)

for i = m—2, m—3 are given explicitly, then Wi(M)SqlZi (1 ^ i g a) can be deter

mined completely. Hence and by the argument similar to that used in proving [15,
Corollary 7.3], we have the following

Corollary 3.4. Let n be odd and m ^ 7 and let M be an unorientable

n-manifold whose integral cohomology groups H'(M ; Z) for n —Z^i^n are
given as in (2.2). Moreover assume that H2(M; Z) satisfies the condition
(1.1) above. Then the following information is sufficient to determine Im

Sq'pi :

(i) the actions of Sq2 on H*(M ; Z2) for i = n—3, w-2,
(ii) the actions of W\(M) on Hl(M ; Z2) for i = m—3, m—2.

Remark. The actions of Sq2 on H'(M; Z2) for i = m-3, m-2 are given,
e.g., by [1, pp. 273-4] as follows :

Sq2x = (w2(M) + wx(M)2)x for x e Hn~2(M ; Z2),
Sq2x = (w2(M) + Wi(M)2 + wi(M)Sql)x for x e Hn~\M ; Z2).

Hence we can replace the information (i) in Corollary 3.4 by

(i)' the actions of w2(M) on H'(M ; Z2) for i = n—Z, n—2.

Theorem A follows from Proposition 3.1, Theorem 2.4(1) and Corollary 3.4.

§ 4. Proof of Theorem B

The Dold manifold P(m,ri) of type (m,ri), introduced by Dold [3], is the
quotient space obtained from Sm x CPn by identifying (x,z) with (-x,z), Snt and
CPn being the usual Mi-sphere and the complex projective space of complex dimension
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m. In [3], P(m, ri) is given a cell-decomposition with &-cell (Cit Dj) for each pair
O'.i), ^ J ^ 0. f°r which i + 2/ = k ^ mi + 2m, and the boundary operator satisfies

f(l + (-l)'+')(Ci-i. Dj) for i > 0,
(4.1) d(Cit Dj)=\ m

[0 for t = 0.

Let C'ZV denote the cochain which assigns 1 to (Cit Dj) and 0 to all the other

(i + 2/)-cells or its integral cohomology class if it is a cocycle, and let c'd' denote
the mod 2 cohomology class defined by the cochain CD*. Then it has been shown in
[3] that

H*(P(m,n) ; Z2) = Z2{c\/(cm^) ®Z2[rf]/(</"+1),

(4.2) Sqxd = cd,
ti+iL Wi(P(m,n)) = (1 + cya + c + rf)

where

In particular we have

(4.3) V^' =jcd*+1, SqW =j#+1 +(£)c2tf>,
wi(P(m, n)) = (m + n + l)c.

In the rest of this section, assume that m + 2m > 6, mi = 1 (2) and n = 1 (2).

The last two are equivalent to the condition

m>i(P(mi, n)) = c =£ 0, dim P(m, n) = m + 2m = 1 (2).

Under this assumption, the cohomology groups of P(m,ri) can easily be calculated by
using (4.1 —3) and the Bockstein exact sequence.

Lemma 4.4. Let n = 1(2) and m = 1(2). Then

Hm+2n-\P(m,ri) ;Z) =0,

(Z2 if m>Z,
Hm +2»-\P(m,ri) ; ZlcJ) = {

{Z ifm = l,

Hm+2n-\P(m,n) ; Z2) = Z2<cm-ldn> ,

Hm+2l*-2(P(m,n) ; Z) 3 p2(cm~3dn) if m^Z,

Hm+2"-2(P(m,n) ; Z[c]) = Z2,

H'"+2n-2(P(m, n) ; Z2) =Z2+Z2 if m^Z.

From Theorem 2.4 and Lemma 4.4, it follows that

8 if m is odd and m ^ 3,
(4.5) #H2m^»-2(P(m,n)* ; Z[v]) = ._,_,_,

if n is odd and m = 1,
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and that

pa(cm~3dn (x) cmdn + cm~2dn (x) cm~xdn)
<= p2H2m+in-3(P(m, m)* ; Z[v]) if m ^ 3.

Using (4.2—3), we have

Sq2pa(cm-3dn (x) cmdn + cm~2dn (x) cm~]dn) = pa(cm~1dn <g) cmrf").

Hence and from Lemma 3.3, it follows that

Sq2p2H2m+4n-3(P(m,n)* ; Z[v]) = H2m+4"-l(P(m,n)* ; Z2) if mi ^ 3,

which, together with (4.5), establishes Theorem B.

§ 5. Proof of Theorem C

R. D. Rigdon [9, 11,24 Theorem] has proved that an unorientable M-manifold
Af (m > 4) is embedded in Euclidean (2M-l)-space if and only if its (m—l)-th mod

2 normal Stiefel-Whitney class w„-\(M) vanishes. On the other hand, it is known
(e.g. [5, Theorem (1.1)] and [ 8]) that an orientabie M-manifold M (m > 4) is
always embedded in Euclidean (2m —l)-space and w„-\(M) = 0 for an orientabie

M-manifold Af. Thus we have the following

Theorem 5.1. For n > 4, an n-manifold M is embedded in Euclidean

(2n-l)-space if and only if its (n-l)-th mod 2 normal Stiefel-Whitney class

vanishes.

Therefore to prove Theorem C, it is sufficient to calculate wm+2„-i(P(m,n)).
By (4.2), we have a relation

S Wi(P(m,n)) = (1 + c)~m(l + c + d)~l~n

and in particular

(5.2) ■.♦*-,(*«...»-^..(^jx-r'x^ifii)*-^

If m=0, then a simple calculation yields

'2mi-2-*V.«-i(5.3) «>m-iOP(Mi,0))= S (2Z-l-i)c

=(2»"-' ={
"-1 ifm = 2r,

0 if m^ 2r.
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Otherwise let

n = 2r + s (0^s<2r, O^r).

We can put

i = 2r+1j + k (O^j, 0^£<2r+1).

If k + s < 2r, then £ + 2s<£ + s + 2r< 2r+1 and so

(2n+i\ _ (2r +\j+l)+2s+k x= fj+n{2s+k \
Vn+i) \ 2r+lj+2r+s+k) ~ \ 3 )\2r+k+s) ~ U;'

and if k + s ^ 2r, then 0 ^ k + s - 2r < k < 2r+1 and so

The above two relations, together with (5.2), imply

(5.4) wm+2n-i(P(m,n)) = 0 for m > 0.

Therefore Theorem 5.1 and (5.3—4) imply Theorem C.
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