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§ 0. Introduction

A given embedding / of a topological space X in the real m-space Rm
induces the continuous map F of the space XxX—A (A is the diagonal of
XxX) into the unit (m—l)-sphere Sm_1 in Rm, which is defined as follows:

F(x, y) =t/},Xl~r,L for any distinct points x, y of X.
11/00-/(7)11

Then it is clear that F is equivariant with respect to the symmetry which
interchanges the factors in XxX—A and the antipodal map of Sm~l. Also,
an isotopy f,(t c [0, 1]) of two embeddings /0, fx of X in Rm induces the equi
variant homotopy Ft.

A. Haefliger [3] investigated the embeddings of compact differentiable
manifolds in Euclidean spaces using the above equivariant maps and proved

Theorem (Haefliger). Let M be an n-dimensional compact differentiable
manifold. Consider the correspondence which associates with an isotopy class
of a differentiable embedding f: M *Rm the equivariant homotopy class of
the map F defined as above. Then this correspondence is surjective if 2n£>
3(n +1) and bijective if 2m> 3(re+1).

Let the reduced symmetric product space M* be the quotient space ob
tained from MxM-A by identifying (x, y)—(y, x). Then the projection
MxM— A >M* is a double covering, and there exists a sphere bundle
Sw_1 >(MxM —A)xz2Sm~1 >M* associated with this covering. Since
there is a one-to-one correspondence between the equivariant homotopy clas
ses of equivariant maps MxM—A >S"'~1 and the homotopy classes of cross
sections of the above sphere bundle S"1"1 >(MxM-A) x z.S""1 >M*, the
study of this sphere bundle and so the cohomology of M* play an important
part in studying embeddings of M in Rm. In fact, D. Handel [4] and S.
Feder [2] studied the cohomology of (RP")* and applied it to the existence
and the classification of embeddings of the real projective spaces RPn in
Euclidean spaces.

In this paper, we try to determine the cohomology of (CP")* and to
study the double covering CP" x CP"-A >(CP")* and to apply it to the em-
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bedding problem of the complex projective spaces CP".
This paper is organized as follows: In §1, we construct the double

covering Z„+12 >SZM+1>2 in (1.3-4) which is homotopy equivalent to the
double covering CP" x CP"— A >(CP")* of above. We prepare some results
concerning the cohomology of real and complex projective bundles in §2. In
§3, we determine the cohomology of Zn+Xt2 in Theorem 3.1 using the results
of §2. In §4, we determine the cohomology of SZn+Xt2 and so the reduced
symmetric product space (CP")* in Theorems 4.9, 4.10, 4.15. In §5, we cons
ider the isotopy classification of embeddings of CP" in Rm (m=4n, 4re —1,
4re—2) and so we have the main theorem:

Theorem 5.5. Let re^4.
(1) There exists a unique isotopy class of embeddings of CP" in R4".
(2) There exist just two isotopy classes of embeddings of CP" in R4"'1.
(3) There exist just two isotopy classes of embeddings of CP" in R4tt~2

for n^2r.

The author wishes to express his gratitude to Professors M. Sugawara
and T. Kobayashi for their encouragement and valuable discussions.

§1. Construction of the double covering Z„+Xi2 >SZa+x>2

Let U(2) be the unitary group on the complex 2-space C2 and T2= S1x
S1 be the maximal torus of U(2) and let

Sx = {ei0\<S<,d<2n},

G=UlrXnT03)\r^s\ ,=1,2,3,4}.
Then we have a sequence of inclusions

(1.1) S1 C T2 C G C U(2),

where S1 is embedded in T2 by the diagonal map.
It is clear that G/T2=Z2 and we have the following

Lemma 1.2. The quotient spaces U(2)/T2 and U(2)/G are diffeomorphic
to S2 and RP2 respectively, andnatural projection U(2)/T2 >U(2)/G corres
ponds to the double covering S2 >RP2.

Set Wn,2=U(n)/U(n-2). Then Wn>2 is the complex Stiefel manifold of
orthonormal 2-frames in C", and U(2) acts freely on W„>2 as follows: If a—

(Sal) is an element of ^(2) and ("i> "2) eWn%2, then
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a(ux, u2) = (axux + oc2u2, a3ux + a^u2).

We consider the following quotient manifolds:

X„,2=W„,2/S\ Z„t2=Wtt,2/T2

SZ„,2= Wn,2/G, G„,2(C)= W„,2/U(2).
(1.3)

Here X„f2 is called the complex projective Stiefel manifold [7] and GH,2(C)
is the complex Grassmann manifold of complex 2-spaces in C".

The sequence (1.1) induces the following commutative diagram of fibra
tions :

(1.4) WnA
I I
Wn/i •wttA

U(2)

•Wtt,2

X„i2 "l >Z„t2—^->SZ„,2—^->G„t2(C),

where n2: Z„j2 >SZ„t2 is a double covering.
Let /: Z„+1>2 >CP" x CP"-A be a map defined by

f(it(ux, U2)) = ([«l], [«2]),

where [u,](j = l, 2) is the element of CP" determined by m c S2n+1. Then /
is well-defined and is an equivariant map, which induces the map /: SZ„+Xi2

>(CP")* and so we obtain the map of double coverings

Zn+Xi2—U CP"xCP"-A

(1.5)

SZM +i,2 »\*(CP")

Proposition 1.6. In (1.5), the mapf is a homotopy equivalence and f is
a weak homotopy equivalence.

Proof. Let (ux, u2) be a pair of linearly independent unit vectors in

Cn+l. Then (ux, "2~ <"2> -1-^-V J is a pair of orthonormal vectors in
\ ll«2— <"2, "l>"l|| /

C"+1 which is obtained from (ux, u2) by the Gram-Schmidt process, where
<u2, ui> stands for the inner product of u2 and ux. We define a map g:
CP"xCP"-A >Z„+1>2 by

zr n r i\ — J,. "2~ <u2, ux>ux \

Then g is a well-defined map such that gf is the identity map. Let /,:
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CP"x CP"-A >CP" x CP"- A be the homotopy defined by

/.oii fe])=([uar,;2-;<^ "i^ii,i).
\ \-\\u2—t<u2, UX>UX\\J/

Then /, is a well-defined homotopy between the identity map and fg. Hence
/ is a homotopy equivalence.

By the exact sequences of homotopy groups of fibrations and the five
lemma, / induces isomorphisms of all homotopy groups of SZn+Xi2 and (CP")*
and so / is a weak homotopy equivalence. Q. E. D.

Let V„t2 be the real Stiefel manifold of orthonormal 2-frames in the real
re-space R". The orthogonal group 0(2) acts on Vn<2 as follows: If a=

W a) is an element of 0(2) and (vu v2) €V„t2, then

a(vx, v2)= (axvx+a2v2, a3vx-\-a4v2).

Let

^-Ko1 ^>(2, ?)|*=*1. *=!• «.**}.
O(l)xO(l)={(-0)|,= ±1,t-=1)2}, fl={(10)i(-l _0)}>

and consider the quotient manifolds

X'tt,2 = Vn,2/D, Z'„i2 = Vn.2/0(l)xO(l), SZ'n,2 = Vn,2/G',

and the double coverings X'„i2 >Z'„,2, Z'„,2 >SZ'„,2. Considering the 2-
frame in R" as that in C", we have a map h: V„i2 >Wn,2. The map h in
duces the equivariant map Z'Ht2 >Zttt2 and so the map of double coverings.
Also, let g: X'ttt2 >Z'„t2 be the equivariant map defined by

g(n(vx,v2)) =n ^-Tr-9-rr-j

where (vx, v2) c V,h2 and n': V„,2 >X'n,2, n"\ V„i2 >z;,,2 are the projec
tions. Then we obtain the following commutative diagram of double cover
ings:

(1.7)

Zi g v 7/ h 7
»+l,2 >z,«+l,2 >i&»+

^»+l,2 •SZM+1>2 •—>SZ„ +Xf2.

Remark. D. Handel [4] treated the spaces Z'„t2 and SZ'„t2 and applied
them to embedding problem for real projective spaces. Our notations are
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due to D. Handel.

§ 2. Projective bundles

In this section, we prepare some results concerning the cohomology of
projective bundles, which will be applied in §§3-4.

For a complex (or real) re-plane bundle $=(E($), p(g), B($)), there deter
mines the associated sphere bundle S(£) = (S(£), pQ($), B(£)) with S2""1 (or
S""1) as the fiber. Let P(£) be the quotient space of S($) where two unit
vectors in the same fiber in S(£) are identified by the standard free action of
S1 (or Z2) on S2"-1 (or S"'1), and let q(£): P(f) >B($) be the factorization
of p0($): S(£) >B($) through P($) by the natural projection q'(£): S($) >
P(£). The bundle P($) = (P(£), q($), B($)) with CP"-1 (or RP"~l) as the fib
er is the projective bundle associated with $.

Let Af be the complex (or real) line bundle associated with the Sl-bundle
(or double covering) (S($), q'(S), W))- Then, for the inclusion i: CP"~l >
P($) (or i-.RP"-1 •/>(£)) in any fiber of P(£), i*Xs is the canonical line
bundle of CP"~l (or RP"~l).

Under the above situations, we have

Theorem 2.1. Let $ be a complex n-plane bundle and let a* e H2(P($); Z)
be the first Chern class of Xf, the dual of Af. Then 1, af,-••,a^~l form a
base of H*(B($); Z)-module H*(P($); Z). Moreover q($)*: H*(B($); Z) >
H*(P($); Z) is a monomorphism. The ring structure of H*(P($); Z) is given
by

» = 1

where c,(£) is the i-th Chern class of £. If H!(B(£); Z) = 0 for i>2n, then
there is the following relation:

(2.2) a"s+k= - S* £ c;•(£k,•+*-,•(f)a^,' M feO,
i=lj = 0

where c,(£) is the j-th dual Chern class of $.

Similarly, we have

Theorem 2.3. Let $ be a real n-plane bundle and let as c Hl(P($); Z2) be
the first Stiefel-Whitney class of Af and let wf($) (resp. «>,•(£)) be the i-th
Stiefel-Whitney class (resp. dual Stiefel-Whitney class) of $. Then 1, as,..,
of"1 form a base of H*(B($); Z2)-module H*(P($); Z2). Moreover q($)*:
H*(B(£); Z2) >H*(P($); Z2) is a monomorphism. The ring structure of
H*(P($); Z2) is given by
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a?= ZwiCflar'.
1=1

If H'(B(£); Z2)= 0 for i > re, then there is the following relation:

(2.4) a?+*="ff Sfl-Xftwi+i-XOar' for k^O-
*=i y=o

Proof of Theorems 2.1, 2.3. The first half of each theorem is well-
known (e.g. [5]), and the straightforward induction provides the proofs of
(2.2) and (2.4) (see [4]). Q. E. D.

§3. Cohomology of Zn+X2

It is easily seen that Xtt+Xf2 of (1.3) is the total space of the tangent
sphere bundle of CP" and Z„+1>2 of (1.3) is the total space of the complex pro
jective bundle associated with the tangent bundle of CP". Also, it is well-
known that the i-th Chern class Ci(CP") and the i-th dual Chern class ci(CP")

of the tangent bundle of CP" are equal to (n "t" XV and (-l)'/ret *V, res
pectively, where z is the generator of H2(CP"; Z). Therefore the cohomolo
gy H*(Zn+Xt2; Z) is determined by Theorem 2.1 as follows:

Theorem 3.1. As H*(CPn; Z)-module, H*(Zn+Xt2; Z) has {1, a,.., a"'1}
as basis, where a (#0) e H2(Zn+x>2; Z) is the first Chern class of the dual of
the complex line bundle associated with the Sl-bunoUe nx: Xn+X>2 >Zn+x>2.
The ring structure is given by

a"+k=-% ^yiKnV)(i+^-i)zi+kan~i for h>0i
where z is the generator of H2(CP"; Z).

Similarly, Z£+li2 is the total space of the real projective bundle associ
ated with the tangent bundle of RP". Therefore, by Theorem 2.3 we have

Proposition 3.2 [4, Proposition 3.1]. In H*(Z»+lt2; Z2), the following
relation holds:

v'"+k=nZ £ w&RP^Wi+u-^RP^v'"-1 for k^O,
»=i y=o

where v' (=^=0) is the first Stiefel-Whitney class of the double covering X'„+li2
*Z'„+Xi2 and wj(RP") and wj(RPn) are the j-th Stiefel-Whitney class and the

j-th dual Stiefel-Whitney class of RP", respectively.

Corollary 3.3 [4, Corollary 3.2]. If k=max|i l^t'W) mod 2,
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0<,i<,n\, then v'"+k-l*=0, v'"+ll =0.

Lemma 3.4 [4, Lemma 3.3]. Let u' denote the first Stiefel-Whitney class

of the double covering Z'„+Xt2 *SZ/„+Xt2, and k=ma.xli\(nfl^o mod 2,
0<^rel. Then u'"+k-l^0.

Proof. By the diagram (1.7), it is evident.

Corollary 3.5. If re]>4, then u/4#0.

Q. E. D.

§4. Cohomology of (CPn)*

By the mapping cylinder considerations, the diagram (1.4) gives rise to
the commutative diagram of fibrations:

Wr„ +Xt2=Wn+Xf2 Wn+X<2 lFn+l.2

(4.1) -^»+i.2—^-*Z„+Xi2 "2 >SZ„+i>2—^->G„+Xi2(C)

p\ Pi

BU(l)-±->BT2-

pi

BG

pi

BU(2).

The cohomology structures of SZn+Xi2 and BG are unknown. On the
other hand, the cohomology of ZM+i>2 has been determined in §3 and the coho
mology of X„+i>2 was determined by C.A. Ruiz [7], and the others are well-
known :

(4.2) H*(Wn+x,2\ Z)=A(w„, wH+i) where deg w,=2i-l (i = n,n + l).

(4.3) H*(BU(2);Z) = Zlcx, c2]

where cf(i = 1, 2) is the universal i-th Chern class.

(4.4) H*(BT2;Z) = Z\_xx,x2~\ where deg *, = 2 (« = 1, 2),

and there are the relations

(4.5) i*i*cx = xx + x2, i*i*c2 = xxx2.

For Gn+x,2(C), it is known that

H*(G„+x,2(C);Z) = S(yx, y2)®S(y3,..., y„+x)/S+(yx,..., y„+x)

where deg yi=2(i = l,..., n+ l) and S(yx,..., yk) is the ring of symmetric
polynomials of A; variables yx,--•, yk with integral coefficients and S+(yx,-..,yk)
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is the ideal generated by the elements of positive degree [1, Proposition
31.1].

Let Gi(i= l,--, re —1) be the i-th elementary symmetric function with
respect to re —1 variables yz,--,yn+\ and let cx = yx + y2, c2 = yxy2. Then the
ideal S+(yx,-;ytt+x) is generated by the elements o~x + cx, G2 + ffxcx + c2, a{+
<rf_ic1-r-(Tf-2c2(j>2), where <7f=0 for ;;>re. By a straightforward induction,
we obtain

(4.6) <tr= Z(-l)r-'(r ; lVi"2,"C2 f0r r>^

and

(4.7) H*(Gn+x,2(C); Z) = Z[_cx, c2y((Tu, <r„+1).

From now on, we shall study the cohomology of SZ„+Xi2 and BG. Con
sider the following commutative diagram of fibrations:

(4.8)

RP'

-*Ztt+Xi2

->SZw+i,

2_ c2>U(2) >U(2)/T2 = S

—> U(2) >U(2)/G= RP2.

This diagram induces the following two commutative diagrams such that
each row is a fibration and each column is a double covering:

L>Gn+x>2(C)

•*Gn+Xi2(C), RP

2 1312.>BT

«j

BG

BU(2)

>BU(2).

Therefore SZ„+X,2 and BG are the total spaces of the real projective bundles
over G„+i,2(C) and BU(2), respectively.

Since H*(G„+X,2(C); Z) and H*(BU(2); Z) have no torsion, we adopt the
same symbol for each element of H*(G„+Xt2(C); Z) and H*(BU(2); Z) and its
image in H*(G„+X,2(C); Z2) and H*(BU(2); Z2) by the mod 2 reduction, in the
rest of this paper.

Theorem 4.9. Let re^>4 and let v e H\SZn+x%2; Z2) be the first Stiefel-
Whitney class of the double covering Z„+Xi2-^-^SZn+Xi2. Then, as H*(Gn+x,2
(C); Z2)-module, H*(SZn+x<2; Z2) has {1, v, v2} as basis and nf: H*(G»+X,2(C);
Z2) >H*(SZn+x,2; Z2) is a monomorphism. Moreover the ring structure of
H*(SZtt+Xp2; Z2) is given by

v3= cxv

where cx c H*(G„+X,2(C); Z2) is the mod 2 reduction of the element of (4.7).

Proof. The first half follows from Theorem 2.3. Hence it is sufficient
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to show that v3 = cxv. By (1.7), we have 7i*v = u', the first Stiefel-Whitney
class of the double covering Z'„+lt2 >SZ'n+Xi2. Since u/3^=0 for re^4, by Co
rollary 3.5, we have v3^0. On the other hand, H3(SZ„+li2; Z2) = Z2 and its
generator is cxv by the first half of this theorem. Therefore we have v3=
civ- Q. E. D.

Let d2: H*( ; Z2) *H*+l( ; Z) be the Bockstein homomorphism associa
ted with the exact sequence 0 »Z-^->Z—^->Z2 >0.

Since p2d2 = Sql and Sqlv= v2^0 in H*(SZ„+l,2; Z2), we have d2v^0.
Put d2v = u c #2(SZ„+1,2; Z). Then we have

Theorem 4.10. Let re^4. Then H*(Gn+x,2(C)-, Z)-module H*(SZ„+X>2;Z)
has {1, u} as generators and n*: H*(G„+Xi2(C); Z) >H*(SZ„+Xt2; Z) is a
monomorphism. Moreover there are thefollowing relations:

2u = 0, p2u = v2, u2= cxu.

Proof. The first two relations follow from the fact that d2v = u.
In the integral cohomology spectral sequence of the fibration RP2 >

SZw+12-^-»G„+i,2(C), £2-term is given as follows:

E^ = HS(G„+U2(C); H'(RP2; Z)) =

(Hs(Gn+x,2(C);Z) for; = 0

Hs(Gn+l,2(C);Z2) for* = 2

^0 otherwise.

Therefore, each differential is trivial and so we have E2=E„. Hence we
obtain the following exact sequence:

0 >Ef° >HS(SZ„+Xt2; Z) >Etr2-2 >0.

This gives rise to the exact sequence

(4.11) 0 >H*(G„+li2(C); Z) >HS(SZ„+Xi2; Z) >Hs-2(Gn+l.2(C); Z2) >0.

(4.11) induces that i72sl(SZw+1>2; Z)= 0 for all s and H2s(SZtt+l>2; Z) has no
/>-torsion for odd prime p. Since #2sl(SZ„+1>2; Z)=0, the Bockstein coho
mology exact sequence associated with the exact sequence of coefficients
0 >Z-^->Z—^->Z2 >0 induces the exact sequence

0 >H2*-l(SZ„+xX, Z2)-^->tf2*(SZB+l>2; Z)-^

H2*(SZ,HX>2; Z)-I^H2s(SZ„,li2; Z2) >0.

This exact sequence implies that the torsion part of H2s(SZ„+x,2; Z) is
isomorphic to H2s-l(SZn+li2; Z2) by d2. Since H2s'2(Gn+li2(C); Z2) is isomor
phic to H2s-x(SZn+Xt2; Z2) by the cup product with v, H2s~2(G„+x,2(C); Z2)
is isomorphic to the torsion part of H2s(SZn+U2; Z), which is given by
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uH2s~2(Gn+Xt2(C); Z). Therefore the exact sequence (411) is split. Thus
#*(G„+i>2(C);Z)-module H*(SZ„+Xi2; Z) has {1, u} as generators and n*:
H*(Gtt+Xf2(C); Z) >H*(SZtt+Xi2; Z) is a monomorphism.

Since p2u2=v4 in H*(SZH+Xy, Z2) and «V = u/4=M) by (1.7) and Corollary
3.5, we have re2=M) in H4(SZtt+Xt2; Z). On the other hand, the torsion part of
H4(SZn+Xf2; Z) is Z2 and its generator is ciu. Therefore we have the last
relation u2= cxu. Q. E. D.

The integral and the mod 2 cohomology of BG are given by the same
way as Theorems 4.9-10 and we omit the details.

Theorem 4.12. Let re^4 and let v c H\BG; Z2) be the first Stiefel-Whit
ney class of the double covering BT2—^BG and let u=d2v. Then H*(BU(2);
Z2)-module H*(BG; Z2) has {1, v, v2} as basis and H*(BU(2); Z)-module
H*(BG;Z) has {1, u} as generators, and i*:H(BU(2); Z2) >H*(BG;Z2)
and i*: H*(BU(2); Z) >H*(BG; Z) are both monomorphic. Moreover the
following relations hold:

v3 = cxv, u2 = cxu, p*v= v, p*u= u.

Remark. If we notice that the transgression of the fibration W„+Xt2 >
G„+X,2(C) *BU(2) is given by twi=c,(i=n, re + 1), the universal j-th dual
Chern class of the complex 2-plane bundle, and that i* is a monomorphism
because i*i* is so, we see easily

H*(SZ„+Xt2; Z) = H*(BG; Z)/(i*c„, i*c„+x) for re^l,

H*(SZtt+Xi2; Z2) = H*(BG; Z2)/(i*c„, i*cn+x) for re^l.

Lemma 4.13. Let re^>4. Then the homomorphism n%: H*(SZ„+Xt2; Z2) >
H*(Z„+X>2; Z2) is given by

n2cx=a, 7t*>c2=az + z2, n*v= 0,

where a, z in H*(Z„+Xt2; Z2) are the images of a, z in H*(Z„+X>2; Z) respective
ly, by the mod 2 reduction.

Proof. It is easily seen that k%v=0. Since W„+x,2 is 6-connected for
rcl>4, p*i(i = l, 2, 3, 4) is isomorphic in degree smaller than 7. Therefore
there exists a unique element a' in H2(BT2; Z2) such that p%a'=a. Since
0=7^0 =7?^*°' &nd p*x is isomorphic in degree 2, we have 1^=0. On the
other hand, the generator of H2(BU(1); Z2) is i*xxx = i*xx2. Therefore the
kernel of i\ of degree 2 is generated hy xx+ x2. Hence we have a'=xi +
x2=i*Cl by (4.5) and so we have n%cx=a.

By Theorem 3.1, n*c2 has the form n*>c2=exa2+e2az+£3z2, where e,=0
or l(i=l, 2, 3). Then we have
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iz%Sq2c2 = n*(cxc2)=exaz + e2a2z + e3az2.

However we have

Sq2n*2c2 = Sq2(exa2 + e2az + e3z2) = e2a2z + e2az2.

Comparing the coefficients of the corresponding terms of n%Sq2c2 and
Sq2n%c2, we obtain ei=0 and e2=e3, since re]>4. Assume that e2=e3=0.
Then 0=7r*c2=p%i*,c2=p%(xxx2). This contradicts the fact thatp*. is isomo
rphic in degree 4. Therefore we have n*2c2=az+z2. Q. E. D.

Proposition 4.14. Let n^4 and set n=2r+s, 0<,s<^,2r-l. The follow
ing relations hold in H*(SZn+Xi2; Z2):

C2"+,-l =0, C2xr +1-2Cs2V2^0.

Proof. By Lemma 4.6, we have ar= T>(r ~ l\[~2iC2 for r>l in H*
«so\ l /

(Gtt+Xi2(C);Z2). If r^re, then <rr=0. Therefore we obtainc2/*1"1^. To
prove the second relation, it is sufficient to show that cfr+,-2c|^f0 and so
^(cf+1-2c|)=V0 in H*(Zn+xy, Z2). By Theorem 3.1, we have

tflOf+,_2<i) ="SW, bi <r H*(CP"; Z2).
j=o

On the other hand, by Theorem 3.1 and Lemma 4.13, we have

7rl(c2r+,-2cl)=a2,+,-2(a-|-z)^=E(j)a2r+,+i-'-2zs+'

= Z[t) S 2 cACP^c^r.t.^CP^z'+'a"-*,
/=o\f/ *=1 /=0

where cj(CP"), cj(CP") are the y-th Chern and dual Chern classes of CP".
Comparing the coefficients of a"~l, we have

bu-x=t(SX^2^CPtt)^-t-i-ACP")zs^

=t(^)c2r.t.X(CP")z^

(2r+l+5—t —1\2r_._i )=0 or #0 according as
t<,s-l ov t=s, and so we obtain bn_x = z"-1^0 in H*(CP"; Z2). Q. E. D.

Using the above proposition, we have
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Theorem 4.15. Let re]>4. Then SZ„+X>2 is an unorientable (4n-2)-dimen-
sional manifold which is weakly homotopy equivalent to the reduced symmetric
product of CP",and H4tt~2(SZ„+Xt2; Z)=Z2 with the generator cfr+1_2c|« for
n = 2r + s,0<,s<,2r-l.

§5. Classification of embeddings of CP" in Euclidean spaces

A. Haefliger investigated the embeddings in the stable range [&2 and
proved the following theorem.

Theorem 5.1 (Haefliger). Let M be an n-dimensional compact differen
tiable manifold. The correspondence which associates with a given differen
tiable embedding f: M >Rm the equivariant map F: MxM—A >Sm~l

defined by F(x, y)=J„ N ^/.M induces the correspondence which associates
ll/0O-/(r)ll

with a given isotopy class of f the equivariant homotopy class of F. This cor
respondence is surjective if 2rei^3(re + l) and bijective if 2rei>3(re + l).

We now know that there exists a one-to-one correspondence between the
equivariant homotopy classes of equivariant maps MxM—A >Sm~l and
the homotopy classes of cross sections of the sphere bundle S"1"1 >(Mx
M— A) x z2Sm~l >M* associated with the double covering MxM—A >M*.

Let a be the real line bundle over (CP")* associated with the double
covering CP" x CP"- A >(CP")*. Then the sphere bundle

m-lS"1"1 >(CP" x CPn-A) x z,Sm~x *(CP")*

is the sphere bundle associated with ml, the Whitney sum of m copies of X.
Therefore we have

Proposition 5.2. (1) Let 2m^>3(2re +1). 7/ mX has a non-zero cross sec
tion, then there exists an embedding of CP" in Rm.

(2) Let 2/re>3(2re + l). Then there exists a one-to-one correspondence
between the isotopy classes of embeddings of CP" in Rm and the homotopy clas
ses of cross sections of the sphere bundle associated with mX over (CPn)*.

By Propositions 1.6 and 5.2, the obstructions for mX to have a non
zero cross section are the elements of #'+l(SZ„+i,2; 7r,(Sw_1)) and its pri
mary obstruction for even m is the Euler class x(mX) of mX, and the obstruc
tions for two given cross sections to be homotopic are the elements of
#,'(SZ„+1.2;7rf(S'«-1)).

Lemma 5.3. Let -qbea real line bundle. Then the Euler class x(2^) is
given by

X(2j) = d2WX(TJ),
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where wx(-rj) is the first Stiefel-Whitney class of tj.

Proof. Let £ be the canonical line bundle over RP°°. By the univer
sality of £, it is sufficient to show that x(2$)=d2wx($). Consider the
Bockstein cohomology exact sequence of RP°°

0 >H\RP~; Z2)-^H2(RP~', Z)^1+H2(RP~; Z)-^->H2(RP°°; Z2) >0,

where H^RP"; Z2)=Z2 with the generator wx($) and H2(RP~; Z)=Z2 with
the generator d2wx(£). Since o2x(2$)=w2(2$)=wx($)2^0, it follows that
%(2f)#0 in H2(RP~; Z) and so we have x(2$)= d2wx($). Q. E. D.

Remark. The above lemma is generalized as follows: Let i)x and C* be
a real line bundle and a real re-plane bundle over the same space with
wiG?l)=tt>i(Cw). Then we have

zO?10C")=^2«;M(C").

By the above considerations, we have the following theorem, which is
already known ([6], [8], [9]):

Theorem 5.4. (1) CP" is embeddable in R4"~2 for re>4, re^=2r.
(2) CP2T is embeddable in R2r*2~r but not embeddable in R2r+*~2 for r^>2.

Proof. The obstructions for the existence of a non-zero cross section

of (4re-l)A are in #,+1(SZw+1>2; 7r,(S4"-2)) which is 0, since SZ„+i,2 is a
(4re—2)-dimensional manifold. Hence CP" is embeddable in R4"'1 by Pro
position 5.2, (1). The obstructions for the existence of a non-zero cross sec
tion of (4re —2)a are in Hi+l(SZ„,li2; n^S4"'3)) and non-trivial obstruction is
the Euler class x((4n-2)X) in H4"-2(SZ„,X,2; Z). By Lemma 5.3, we have
x(2X)= u=d2v and using Proposition 4.14, we have

(= 0 for re^=2r
x((<in-2)X) =x(2X)2u"l = u2"-1 = uc2x"-2\

l#0 for re = 2'.

Therefore by Proposition 5.2 (1), it follows that CP" is embeddable or not
embeddable in R4"~2 according as re^=2r or re = 2r. Q. E. D.

Our main theorem is the following

Theorem 5.5. Let re^>4.

(1) There exists a unique isotopy class of embeddings of CP" in R4".
(2) There exist just two isotopy classes of embeddings of CP" in R4n~l.
(3) There exist just two isotopy classes of embeddings of CP" in Rin~2

for n^2r.

Proof. The obstructions for two non-zero cross sections of 4nX being
homotopic are the elements of #''(SZM+l>2; 7r,(S4"-1)) which is ;0 for all i.
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This implies (1). The obstructions for two non-zero cross sections of
(4re —1)X being homotopic are in Hi(SZ„+lt2; 7ti(S4"~2)) and

(0 for i^=4re-2
Hi(SZn+1,2;ni(S4"-2)) =\

lZ2 for t=4re-2,

by Theorem 4.15. Therefore we have (2). By Theorems 4.9-10, 4.15,

[0 for i^=4re-2
^*(SZ„+1,2;^(54K-3)) =

lZ2 for j = 4re-2,

and so we have (3). Q. E. D.

Remark 1. W.-T. Wu Q10] proved that any two embeddings of an re-
dimensional differentiable manifold in R2n+l are isotopic.

Remark 2. T. Watabe Q9J proved that any two immersions of CP" in
R4"-1 are regularly homotopic for even re.
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