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§ 1. Introduction

Recently, Y. Nomura [12] has studied the enumeration problem of liftings
of a given map to a fibration and its application to the enumeration problem of
immersions of certain manifolds. In this note, using his results we enumerate
the non-zero cross sections of certain vector bundles, and then study the embedd
ing problem of the real projective spaces in the euclidean spaces.

Let ^ be an orientable n-plane bundle over a CW-complex X of dimension
less than n+2, and let w2(£) be the second Stiefel-Whitney class of <!;. Consider
the homomorphisms

©{: //<->(*; Z)—>H"-\X;Z2),
(1.1)

T<: H'(X;Z2)—>Hi+2(X; Z2),

of the cohomology groups, defined by

e\(a)=Sq2p2a + p2a'W2(!;),

F>,(b)=Sq2b + b-w2(0,

where p2 is the mod 2 reduction. Then weprove the following theorem in §§2-4,
using Nomura's theorem [12, §2] and the Postnikovfactorization of the universal
orientable (n- l)-sphere bundle BSO(n- l)->BSO(n).

Theorem A. Let ni>6 and let £ be an orientable n-plane bundle over
a CW-complex X of dimension less than n+ 2 with a non-zero cross section.
Then, the set cross (£) of (free) homotopy classes of non-zero cross sections of
£ is given by

{ Ker &1 xCoker ©"fl, if TJT' is epimorphic,
cross(£) = I

[ Ker ©I xCoker 0\-x xCoker r\~l, if ©\~1 is monomorphic,

where <9£, F'j. are the homomorphisms o/(l.l).

This is a generalization of a part of the theorem of I. M. James [8, Th. 5.1]
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for the case dimX<n.

Applying the above theorem, weprove the following theorem in §§5-7, using
the results of A. Haefliger [6].

Theorem B. Let n be an even integer and let n^lO, n=5fc2r. Then, there
exists only one isotopy class of embeddings of the real n-dimensional projective
space RP" in the real (2n—2)-space R2"~2.

§ 2. Nomura's theorem

Let h: A-*D be a principal fibration with fiber F, and let p: E-+A and q: T-*
E be the principal fibrations with the classifying maps 6: A-+B and p: £->C,
respectively. For a given CW-complex X and a map u: X-*D, we assume that
there are liftings v and w in the following commutative diagram:

(2.1)

and also we assume that w has a lifting to T.
In this section, we consider the set [X, T; u] of homotopy classes of liftings

X-+Tof u,underthefollowing stability condition (i)-(iii) for thesequence {h, p, q}
of fibrations:

(i) the spaces B and C are homotopy associative H-spaces,
(ii) there exists a map d: FxD->B such that

6m~ d(idF xh) + 6n2 and di2~ 0,

(Hi) there exists a map c: QBxD-*C such that

pp~c(idnBxhp)+-pn2 and cj2c^0,

where m: FxA^A and p: QBxE^E are the actions of fibers in the principal
fibrations h: A-*D and p: E-+A, respectively, n2 and i2 denote the projection
and the injection to the second factors, and + denotes the multiplication of an
H-space.

The maps d and c define the maps d': QFxD-+QB and c : Q2BxD->QC
by d'(X, x)(t)=d(k(t), x) and c'(v, y)(t)=c(v(t), y). These maps induce the maps
between homotopy sets:



(2.2)

by setting
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0U: IX, F] —>LX, B], ©'„: [X, QF] •[*, QB],

Fu: IX, QB]—>IX, C], ru: IX, Q2B] •[*, QC],

&u(a)=d*(a, u), 0'u(a>)=d'«(a', u),

Fu(b)=Cif(b, u), r'u(b')=c'*(b', u),

where ug[X, D~\ is a given map, and d*: [X, F] x \X, D]-+\_X, B~\ is the in
duced map of d and so on. Then it is easy to see that the maps of (2.2) are homo
morphisms of groups, by the existence of a lifting of u and the above stability
condition (i)-(n0- Further, we define

(2.3) <p: Ker ©u—• Coker Fu

as follows: For a fixed lifting v: X^A of u, the correspondence \X, F]3a->
m*(o, y)e[X, A; u] is, as is well-known, a bijection. We see easily that o-e
Ker<9„ if and only if m*(o, v) has a lifting to E. Let wa: X-+E be a lifting of
m*(cr, v) and define

<p(e)=p*(wa) modImfH.

It is easily shown that <p is well-defined.
The following theorem is proved by Y. Nomura [12, Cor. 2.5-6].

Theorem. Under the above assumptions and notations, we obtain, as
a set,

f Ker <p x (Ker ru/Im &'u) if F'u is an epimorphism,
[X, T;u] =

( Kery> x (Kerfu/Im &'u) x CokerF'u if 0'u is a monomorphism.

§3. The Postnikov factorization of the universal orientable S"~ '-bundle

Let n^6. The Postnikov factorization for the fourth stage of the universal

orientable Sn_1-bundle BSO(n-\)-^BSO(n), induced by the inclusion SO(n-1)
cSO(n), is given as follows:

(3.1)
BSO(n-l)^~±—^Ex-*-*K(Z2,n+\)

K(Z2tn+2)
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where x,,e#n(#S0(n); Z) represents the Euler class, px: Ex^BSO(n) is the princi
pal fibration with the classifying map x„, and 9 and p are the second and the third
fc-invariants, and p2: E2-*EX and p3: E3-*E2 are the principal fibrations with
the classifying maps 6 and p, respectively. Furthermore q3: BSO(n —1)-»E3
is an (n + 2)-equivalence, i.e., q3+: 7ii(BSO(n —l))->7r,(£3) is isomorphic for i < n+2
and epimorphic for i = n + 2.

Let mx'. K(Z, n—\)xEx-+Ex be the action of fiber in pt: Ex^BSO(n) and
consider the map vx=mx(idxqx): K(Z, n-\)xBSO(n-l)-*Ex. Then, by
the results of E. Thomas [14, p. 21], the second fc-invariant 6^Hn+l(Ex; Z2)
is characterized by the equality

(3.2) v*x0=Sq2p2cxxl+p2exxp*w2,

where vf: Hn+l(Ex; Z2)-*H"+l(K(Z, n-\)xBSO(n-l); Z2) and eleH"~i
(K(Z, n—1); Z) is the fundamental class and w2 is the second universal Stiefel-
Whitney class.

Now, consider the homomorphism

m\-n*2\ H'(EX; Z2)—>//'(/C(Z, n-l)x£i; Z2),

where n2 is the projection to the second factor. Since (idxqx)*n^(6) = i x q*(&)
=0, we have (idxqx)*(m\-n\)(0)=(idxqx)*m*x(6) = v*x(B). On the other hand,

(idxqj*: iH^'-WZin- 1); Z2)®Hl(Ex; Z2)^tHn+l-l(K(Z,n- 1); Z2)
®Hl(BSO(n- \);Z2) is monomorphic, because q\\ Hr(Ex;Z2)^Hr(BSO(n-\);
Z2) is so for r<L2. Therefore, (3.2) shows that

(3.3) (m*l-nt)(d) = Sq2p2cl x\+p2cxx p*xw2.

Similarly, let m2: K(Z2, n)xE2->E2 be the action of fiber in p2: E2-+Ex,
and consider the map v2=m2(idxq2): K(Z2, n)xBSO(n —\)^E2. Then the
third fc-invariant peH"+2(E2; Z2) is characterized by

v*p=Sq2e2 xl + c2x p*w2,

where c2^H"(K(Z2, n); Z2) is the fundamental class (cf. [15, Th. 3.5]). There
fore we have

(3.4) (ml-n%)(p) = Sq2t2x i+ c2xp\p\w2,

by the same argument as above.

§ 4. Proof of Theorem A

Continuing the previous section, we choose the maps
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d: (K(Z, n-\)xBSO(n), BSO(n)) >(K(Z2, n + l),*),

c: (K(Z2, n)xBSO(n), BSO(n))—>(K(Z2, n + 2),*)

such that they represent the elements d=Sq2p2cx x 1+p2cx x w2 and c=Sq2c2
xl + t2xw2, respectively. Then from the equalities (3.3) and (3.4), it is easy
to see that the sequence {px, p2, p3} of principal fibrations in the diagram (3.1)
satisfies the stability condition (iH»0 in § 2. Therefore, for a given map £: X-+
BSO(n) which has a lifting X-+E3, we can define the homomorphisms

©\: W-\X; Z)—>Hi+i(X; Z2) for i=n, n-1,

F^.W(X; Z2) >Hi+2(X; Z2) for i=n, n-1,

corresponding to ©u, 0'u, Fu and r'u of (2.2) and these are the homomorphisms
of (1.1) by definition.

We now prove Theorem A in § 1.

Let £, be an orientable n-plane bundle over a CW-complex X of dimension
less than n + 2 and suppose that ^ has a non-zero cross section. Then the set
cross (£) of homotopy classes of non-zero cross sections of £ is

cross(£) = IX, BSO(n-\); £]

by [9, Lemma 2.2], where <!;: X-+BSO(n) denotes the classifying map of £. Since
dimA'<n + 2 and q3: BSO(n —1)->£3 is an (n + 2)-equivalence, we obtain

lX,BSO(n-\)A] = iX,E3;^]

by [9, Th.3.2]. Now we can apply the theorem in §2. Since dim X< n+ 2,
we have H"+2(X; Z2)=0 and so Ker/^ =//«(#; Z2) and Kerfa: Ker<9j!->
CokerFjj)=Ker 0%. This completes the proof.

Example. Let ^ be a (2n-l)-plane bundle over the real 2n-dimensional
complex projective space CP" with a non-zero cross section. Then the set cross (£)
is equal to Z, the set of integers. In fact, ©2"~2: H2"-*(CPn; Z)^H2"~l(CP";
Z2) is obviously monomorphic and Coker 0fn-2=O. Also Ker(0|B_1: H2n~2
(CP";Z)^H2"(CP";Z2)) is equal to Z and Coker(rf«-2: H2"~2(CP"; Z2)->
H2"(CP";Z2)) is Z2 or 0.

§ 5. Enumeration of embeddings

Let M be an n-dimensional differentiable closed manifold, M* be its reduced
symmetric product obtained from M x M —A (A is the diagonal of M) by identify
ing (x, y) with (y, x) and let n be the real line bundle over M* associated with the
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double covering MxM—A-+M*. Then the set [McK2"~2] of isotopy classes
of embeddings of M into R2n~2 for n;>8 is equal to the set of homotopy classes
of cross sections of the associated S2n-3-bundle (MxM—A)xZ2S2"~3-*M*
and so equal to cross ((2n —2)n), by the theorem of A. Haefliger [6, § 1].

Since M* is an open 2n-manifold, there is a proper Morse function on M*
with no critical points of index 2n by [13, Lemma 1.1] and so M* has the
homotopy type of a CW-complex of dimension less than 2n by [11, Th.3.5].
Therefore we obtain the following proposition from Theorem A.

Proposition. Let n^8 and let M be an n-dimensional differentiable
closed manifold which is embedded in R2n~2. Then the set [McK2n~2] of
isotopy classes of embeddings of M into R2"'2 is given by

!Ker 02n-2 x Coker 02"~3, if F is epimorphic,

Ker 02""2 x Coker 02"-3 x CokerT, if ©2"~3 is monomorphic,

where the homomorphisms

©l: H'-HM*; Z)—>Ht+l(M*; Z2) for i=2n-2, 2n-3,

F: H2"~3(M*; Z2) >H2"-\M*; Z2),

are defined by

©i(a)=Sq2p2a+(n-\)p2av2,

F(b)=Sq2b + (n-\)b-v2,

and v&Hx(M*;Z2) is the first Stiefel-Whitney class of the double covering
MxM-A^M*.

Corollary. In addition to the conditions of the above proposition, we
assume that HX(M; Z2)=0. Then we have

[M<zR2"-2]=H2"-3(M*;Z)xCokcr02"-3.

Proof. Since HX(M; Z2)=0, we have Hx(MxM, A; Z2)=0 by the exact
sequence of the pair (MxM, id) and so H2"~1(MxM—A; Z2)=Hx(MxM,
A; Z2)=0 by the Poincare duality. Therefore, the Thom-Gysin exact sequence
of the double covering MxM—A->M*:

•~^>H2"-x(MxM-A;Z2)^H2"-x(M*; Z2)^H2"(M*; Z2) (=0)

shows that H2"~l(M*; Z2)=0 and we have the desired result by the above pro-
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position.

§ 6. Remarks on the cohomology of (RPn)*

Let G„+Xt2 be the Grassmann manifold of 2-planes in Rn+t. By [2, Th. 11],
the mod 2 cohomology of Gn+1>2 is given by

H*(Gn+Xf2; Z2)=Z2[x, y]l(an, an+x),

where degx = l, deg.y=2 and ar= J](rji)xr~2iyi (r=n, n + l).
i

S. Feder [4], [5] and D. Handel [7] investigated the mod 2 cohomology
of the reduced symmetric product (RP")* of the n-dimensional real projective space
RP" and they showed that
(6.1) H*((RP")*;Z2) has {1, v} as basis of H*(Gn+Xt2; Z2)-module, where
v^Hi((RP")*; Z2) is the first Stiefel-Whitney class of the double covering RP"
x RP"—A-*(RP")* and there are the relations

v2=vx, Sq*y=xy, and x2"+l-1=0 for n=2r+s, 0£s<2r.

We study H*((RP")*; Z) for even n. According to [7, (3.4)], there exists
a fibration

Jfl+1,2 *SZn+i,2—*BG,

such that Vn+lt2 is the Stiefel manifold of 2-frames in R"+l, SZn+Xt2 is a (2n—1)-
dimensional closed manifold having the homotopy type of (RP")* and BG is the
classifying space of a group G of order 8 (as a matter of fact, G is the dihedral
group D4). Let p be an odd prime. The £2-term of the mod p cohomology
spectral sequence of the above fibration is given by

Ey=H>(BG;H'(Vn+u2;Zp)),

which is the cohomology with local coefficients {Ht(Vn+Xi2; Zp)}. Since H*
(Vn+Xt2; Zp)=H*(S2"-1; Zp) for even n by [1, (10.5)], we have

E!>'

{H*(BG;H<>(Va+Xt2;Zp)) for /=0

H*(BG; H2"-*(Vn+U2; Zp)) for t=2n-l

0 for t±0, 2fi-l.

Since the action of nx(BG) on H°(Vn+xy, Zp) is trivial and Hl(BG; Zp)=0 for
j>0 by [3, Chap. 12, Cor. 2.7], we have

( Zp s=0
Ei-o=H°(BG;Zp) =\

0 5*0.
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These imply that HS((RP")*; Zp)=0 for 0<s<2n-l and so
(6.2) the orders of elements of HS((RP")*; Z) for 0<s<2n —1 are powers of 2.

Using the above facts, we determine the groups H2"~3((RP")*; Z) and
p2H2"-\(RP")*; Z). Let n=2r+s, 0<s<2r and s be even. By (6.1) and the
Poincare duality for the manifold SZ„+Xt2,
(6.3) the mod2 cohomology groups H*((RP")*; Z2) for 2n-4<.t<.2n-l are
given as follows:

t H'((RP")*; Z2) basis

2n-l z2 vx2'*l-2y>

2n-2 Z2 + Z2 vx2r*l-3y*,x2r+l-2y*

2n-3 Z2 + z2 + z2 t>x2r+,-V, x2r+1-3y°, vx2r*l-2y*-x

2n-4 z2+z2+z2+z2 vxi'+'sy, A:2r+1-V. »jc2r+I-V1. x2r+l-2y*~l

Consider the exact seuqence associated with 0-*Z-^»Z-^-»Z2->0:

...-+H2"~4((RP")*; Z)-^H2"-*((RP")*; Z2)-^H2"~3((RP")*; Z)±X

IP"-3((RP")*; Z)-^H2"~3((RP")*; Z2)^H2"~2((RP")*; Z)-»->,

where /?2 is the Bockstein homomorphism. By simple calculations, we have the
following relations for the elements of H2"-3((RP")*; Z2) by (6.1):

Sql(vx2r+'"V) = vx2" l-3y>, Sql(x2r*l~3y)=x2r* l~2ys,

2r+1-2ys-l=Sql(vx2r*l-3y°-l)=p2P2(vx2r+l-3y*-1).vx

These imply that p2H2"-3((RP")*;Z) is Z2generated by vx2'*l~2y*-1. Hence
we have

(6.4) H2"~3((RP")*; Z)=Z2 generated by fi2(vx 2»"+»-3„s-lys-l)

by (6.2) and the above exact sequence.
This shows that p2: H2"-3((RP")*; Z)-^H2n-3((RP")*;Z2) is a monomorp

hism. Furthermore p2H2"-\(RP")*; Z) =Kerp2=Ker(Sqi: H2"-*((RP")*; Z2)
-+H2"-3((RP")*;Z2)), because Sq1=p2p2. On the other hand, we have the
relations:

Sql(vx2r+1-sys)=0, l/V2',+ 1-4SqHx y°)=0,

Sq1(vx2r*l-3y'-1) = vx2r*l-2y°-1,Sq1(x2r+l-2y*-l)=0.
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Therefore, by (6.3), we have
(6.5) p2H2"-*((RP")*; Z)=Z2 + Z2+Z2 generated by {vx2r"-5ys, x2r+l~*ys,
x2r+l-2y°-1}.

§ 7. Proof of Theorem B

We now prove Theorem B in § 1.
The existence of embeddings of RP" in R2"~2 is shown in [7, Th. 4.1] and

[10, Th. 7.2.2]. To prove that any two embeddings of RP" in R2"~2 are isotopic,
we apply the proposition in § 5 for M=RP", where the homomorphisms

©l: H'-^RP")*; Z) >Hi+i((RP")*; Z2) for i=2n-2,2n-3,
F: H2"~3((RP")*; Z2)—>H2"~1((RP")*; Z2)

are defined by ©i(a)=Sq2p2a+p2av2 and F(b)=Sq2b + bv2. We see that
©2n-2 is a monomorphism by (6.4) and the following relations:

©2"-2(P2(vx2r+l-3ys-l)) = Sq2(vx2r+l-2y*-l) + vx2r+1-2y°-lv2

= vx2r+1-2y°±0 (by (6.3)).

Also, the equation F(vx2r+1~2ys~1)=vx2r*l~2ys and (6.3) imply that T is an
epimorphism. Consider the homomorphism ©'': p2H2"~*((RP")*; Z)-*H2n~2
((RP")*; Z2) defined by ©'(a)=Sq2a + av2. Then we have the relations

&'(x2r+l-2ys-l) = x2r+1-2y°,

0'(A:2r+'"V) = vx2r*'-3y*+(°2)x2r+ *"V-

These and (6.3), (6.5) show that ©' is an epimorphism, and so is ©2"~3=0'p2.
This completes the proof of Theorem B.
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