Note on the Enumeration of Embeddings of Real Projective Spaces

Tsutomu Yasui
(Received May 23, 1973)

§ 1. Introduction

Recently, Y. Nomura [12] has studied the enumeration problem of liftings of a given map to a fibration and its application to the enumeration problem of immersions of certain manifolds. In this note, using his results we enumerate the non-zero cross sections of certain vector bundles, and then study the embedding problem of the real projective spaces in the euclidean spaces.

Let ξ be an orientable n-plane bundle over a $C W$-complex X of dimension less than $n+2$, and let $w_{2}(\xi)$ be the second Stiefel-Whitney class of ξ. Consider the homomorphisms

$$
\begin{align*}
& \Theta_{\xi}^{i}: H^{i-1}(X ; Z) \longrightarrow H^{i+1}\left(X ; Z_{2}\right), \\
& \Gamma_{\xi}^{i}: H^{i}\left(X ; Z_{2}\right) \longrightarrow H^{i+2}\left(X ; Z_{2}\right), \tag{1.1}
\end{align*}
$$

of the cohomology groups, defined by

$$
\begin{aligned}
& \Theta_{\xi}^{i}(a)=S q^{2} \rho_{2} a+\rho_{2} a \cdot w_{2}(\xi), \\
& \Gamma_{\xi}^{i}(b)=S q^{2} b+b \cdot w_{2}(\xi),
\end{aligned}
$$

where ρ_{2} is the mod 2 reduction. Then we prove the following theorem in $\S \S 2-4$, using Nomura's theorem [12, §2] and the Postnikov factorization of the universal orientable $(n-1)$-sphere bundle $B S O(n-1) \rightarrow B S O(n)$.

Theorem A. Let $n \geq 6$ and let ξ be an orientable n-plane bundle over a CW-complex X of dimension less than $n+2$ with a non-zero cross section. Then, the set cross (ξ) of (free) homotopy classes of non-zero cross sections of ξ is given by
$\operatorname{cross}(\xi)= \begin{cases}\operatorname{Ker} \Theta_{\xi}^{n} \times \operatorname{Coker} \Theta_{\xi}^{n-1}, & \text { if } \Gamma_{\xi}^{n-1} \text { is epimorphic, } \\ \operatorname{Ker} \Theta_{\xi}^{n} \times \operatorname{Coker} \Theta_{\xi}^{n-1} \times \operatorname{Coker} \Gamma_{\xi}^{n-1}, & \text { if } \Theta_{\xi}^{n-1} \text { is monomorphic, }\end{cases}$ where $\Theta_{\xi}^{i}, \Gamma_{\xi}^{\frac{l}{\xi}}$ are the homomorphisms of (1.1).

This is a generalization of a part of the theorem of I. M. James [8, Th. 5.1]
for the case $\operatorname{dim} X \leq n$.
Applying the above theorem, we prove the following theorem in $\S \S 5-7$, using the results of A. Haefliger [6].

Theorem B. Let n be an even integer and let $n \geq 10, n \neq 2^{r}$. Then, there exists only one isotopy class of embeddings of the real n-dimensional projective space $R P^{n}$ in the real ($2 n-2$)-space $R^{2 n-2}$.

§ 2. Nomura's theorem

Let $h: A \rightarrow D$ be a principal fibration with fiber F, and let $p: E \rightarrow A$ and $q: T \rightarrow$ E be the principal fibrations with the classifying maps $\theta: A \rightarrow B$ and $\rho: E \rightarrow C$, respectively. For a given $C W$-complex X and a map $u: X \rightarrow D$, we assume that there are liftings v and w in the following commutative diagram:

and also we assume that w has a lifting to T.
In this section, we consider the set $[X, T ; u]$ of homotopy classes of liftings $X \rightarrow T$ of u, under the following stability condition (i)-(iii) for the sequence $\{h, p, q\}$ of fibrations:
(i) the spaces B and C are homotopy associative H-spaces,
(ii) there exists a map $d: F \times D \rightarrow B$ such that

$$
\theta m \simeq d\left(i d_{F} \times h\right)+\theta \pi_{2} \quad \text { and } \quad d i_{2} \simeq 0,
$$

(iii) there exists a map $c: \Omega B \times D \rightarrow C$ such that

$$
\rho \mu \simeq c\left(i d_{\Omega B} \times h p\right)+\rho \pi_{2} \quad \text { and } \quad c i_{2} \simeq 0,
$$

where $m: F \times A \rightarrow A$ and $\mu: \Omega B \times E \rightarrow E$ are the actions of fibers in the principal fibrations $h: A \rightarrow D$ and $p: E \rightarrow A$, respectively, π_{2} and i_{2} denote the projection and the injection to the second factors, and + denotes the multiplication of an H-space.

The maps d and c define the maps $d^{\prime}: \Omega F \times D \rightarrow \Omega B$ and $c^{\prime}: \Omega^{2} B \times D \rightarrow \Omega C$ by $d^{\prime}(\lambda, x)(t)=d(\lambda(t), x)$ and $c^{\prime}(v, y)(t)=c(v(t), y)$. These maps induce the maps between homotopy sets;

$$
\begin{array}{ll}
\Theta_{u}:[X, F] \longrightarrow[X, B], & \Theta_{u}^{\prime}:[X, \Omega F] \longrightarrow[X, \Omega B] \\
\Gamma_{u}:[X, \Omega B] \longrightarrow[X, C], & \Gamma_{u}^{\prime}:\left[X, \Omega^{2} B\right] \longrightarrow[X, \Omega C], \tag{2.2}
\end{array}
$$

by setting

$$
\begin{array}{ll}
\Theta_{u}(a)=d_{*}(a, u), & \Theta_{u}^{\prime}\left(a^{\prime}\right)=d_{*}^{\prime}\left(a^{\prime}, u\right), \\
\Gamma_{u}(b)=c_{*}(b, u), & \Gamma_{u}^{\prime}\left(b^{\prime}\right)=c_{*}^{\prime}\left(b^{\prime}, u\right),
\end{array}
$$

where $u \in[X, D]$ is a given map, and $d_{*}:[X, F] \times[X, D] \rightarrow[X, B]$ is the induced map of d and so on. Then it is easy to see that the maps of (2.2) are homomorphisms of groups, by the existence of a lifting of u and the above stability condition (i)-(iii). Further, we define

$$
\begin{equation*}
\varphi: \operatorname{Ker} \Theta_{u} \longrightarrow \operatorname{Coker} \Gamma_{u} \tag{2.3}
\end{equation*}
$$

as follows: For a fixed lifting $v: X \rightarrow A$ of u, the correspondence $[X, F] \ni \sigma \rightarrow$ $m_{*}(\sigma, v) \in[X, A ; u]$ is, as is well-known, a bijection. We see easily that $\sigma \in$ $\operatorname{Ker} \Theta_{u}$ if and only if $m_{*}(\sigma, v)$ has a lifting to E. Let $w_{\sigma}: X \rightarrow E$ be a lifting of $m_{*}(\sigma, v)$ and define

$$
\varphi(\sigma)=\rho_{*}\left(w_{\sigma}\right) \bmod \operatorname{Im} \Gamma_{u} .
$$

It is easily shown that φ is well-defined.
The following theorem is proved by Y. Nomura [12, Cor. 2.5-6].
Theorem. Under the above assumptions and notations, we obtain, as a set,
$[X, T ; u]= \begin{cases}\operatorname{Ker} \varphi \times\left(\operatorname{Ker} \Gamma_{u} / \operatorname{Im} \Theta_{u}^{\prime}\right) & \text { if } \Gamma_{u}^{\prime} \text { is an epimorphism }, \\ \operatorname{Ker} \varphi \times\left(\operatorname{Ker} \Gamma_{u} / \operatorname{Im} \Theta_{u}^{\prime}\right) \times \operatorname{Coker} \Gamma_{u}^{\prime} & \text { if } \Theta_{u}^{\prime} \text { is a monomorphism } .\end{cases}$

§ 3. The Postnikov factorization of the universal orientable $S^{\boldsymbol{n - 1}}$-bundle

Let $n \geq 6$. The Postnikov factorization for the fourth stage of the universal orientable S^{n-1}-bundle $B S O(n-1) \xrightarrow{p} B S O(n)$, induced by the inclusion $S O(n-1)$ $\subset S O(n)$, is given as follows:

where $\chi_{n} \in H^{n}(B S O(n) ; Z)$ represents the Euler class, $p_{1}: E_{1} \rightarrow B S O(n)$ is the principal fibration with the classifying map χ_{n}, and θ and ρ are the second and the third k-invariants, and $p_{2}: E_{2} \rightarrow E_{1}$ and $p_{3}: E_{3} \rightarrow E_{2}$ are the principal fibrations with the classifying maps θ and ρ, respectively. Furthermore $q_{3}: B S O(n-1) \rightarrow E_{3}$ is an $(n+2)$-equivalence, i.e., $q_{3 *}: \pi_{i}(B S O(n-1)) \rightarrow \pi_{i}\left(E_{3}\right)$ is isomorphic for $i<n+2$ and epimorphic for $i=n+2$.

Let $m_{1}: K(Z, n-1) \times E_{1} \rightarrow E_{1}$ be the action of fiber in $p_{1}: E_{1} \rightarrow B S O(n)$ and consider the map $v_{1}=m_{1}\left(i d \times q_{1}\right): K(Z, n-1) \times B S O(n-1) \rightarrow E_{1}$. Then, by the results of E. Thomas [14, p. 21], the second k-invariant $\theta \in H^{n+1}\left(E_{1} ; Z_{2}\right)$ is characterized by the equality

$$
\begin{equation*}
v_{1}^{*} \theta=S q^{2} \rho_{2^{l_{1}}} \times 1+\rho_{2^{l_{1}}} \times p^{*} w_{2} \tag{3.2}
\end{equation*}
$$

where $v_{1}^{*}: H^{n+1}\left(E_{1} ; Z_{2}\right) \rightarrow H^{n+1}\left(K(Z, n-1) \times B S O(n-1) ; Z_{2}\right)$ and $c_{1} \in H^{n-1}$ ($K(Z, n-1) ; Z$) is the fundamental class and w_{2} is the second universal StiefelWhitney class.

Now, consider the homomorphism

$$
m_{1}^{*}-\pi_{2}^{*}: H^{r}\left(E_{1} ; Z_{2}\right) \longrightarrow H^{r}\left(K(Z, n-1) \times E_{1} ; Z_{2}\right)
$$

where π_{2} is the projection to the second factor. Since $\left(i d \times q_{1}\right)^{*} \pi_{2}^{*}(\theta)=1 \times q_{1}^{*}(\theta)$ $=0$, we have $\left(i d \times q_{1}\right)^{*}\left(m_{1}^{*}-\pi_{2}^{*}\right)(\theta)=\left(i d \times q_{1}\right)^{*} m_{1}^{*}(\theta)=v_{1}^{*}(\theta)$. On the other hand, $\left(i d \times q_{1}\right)^{*}: \sum_{i=0}^{2} H^{n+1-i}\left(K(Z, n-1) ; Z_{2}\right) \otimes H^{i}\left(E_{1} ; Z_{2}\right) \rightarrow \sum_{i=0}^{2} H^{n+1-i}\left(K(Z, n-1) ; Z_{2}\right)$ $\otimes H^{i}\left(B S O(n-1) ; Z_{2}\right)$ is monomorphic, because $q_{1}^{*}: \operatorname{Hr}^{r}\left(E_{1} ; Z_{2}\right) \rightarrow H^{r}(B S O(n-1)$; Z_{2}) is so for $r \leq 2$. Therefore, (3.2) shows that

$$
\begin{equation*}
\left(m_{1}^{*}-\pi_{2}^{*}\right)(\theta)=S q^{2} \rho_{2} \iota_{1} \times 1+\rho_{2 \ell_{1}} \times p_{1}^{*} w_{2} . \tag{3.3}
\end{equation*}
$$

Similarly, let $m_{2}: K\left(Z_{2}, n\right) \times E_{2} \rightarrow E_{2}$ be the action of fiber in $p_{2}: E_{2} \rightarrow E_{1}$, and consider the map $\nu_{2}=m_{2}\left(i d \times q_{2}\right): K\left(Z_{2}, n\right) \times B S O(n-1) \rightarrow E_{2}$. Then the third k-invariant $\rho \in H^{n+2}\left(E_{2} ; Z_{2}\right)$ is characterized by

$$
v_{2}^{*} \rho=S q^{2} \iota_{2} \times 1+c_{2} \times p^{*} w_{2},
$$

where $\iota_{2} \in H^{n}\left(K\left(Z_{2}, n\right) ; Z_{2}\right)$ is the fundamental class (cf. [15, Th. 3.5]). Therefore we have

$$
\begin{equation*}
\left(m_{2}^{*}-\pi_{2}^{*}\right)(\rho)=S q^{2} \iota_{2} \times 1+\iota_{2} \times p_{2}^{*} p_{1}^{*} w_{2}, \tag{3.4}
\end{equation*}
$$

by the same argument as above.

§ 4. Proof of Theorem A

Continuing the previous section, we choose the maps

$$
\begin{aligned}
& d:(K(Z, n-1) \times B S O(n), B S O(n)) \longrightarrow\left(K\left(Z_{2}, n+1\right), *\right), \\
& c:\left(K\left(Z_{2}, n\right) \times B S O(n), B S O(n)\right) \longrightarrow\left(K\left(Z_{2}, n+2\right), *\right)
\end{aligned}
$$

such that they represent the elements $d=S q^{2} \rho_{2 t_{1}} \times 1+\rho_{2 t_{1}} \times w_{2}$ and $c=S q^{2} c_{2}$ $\times 1+\iota_{2} \times w_{2}$, respectively. Then from the equalities (3.3) and (3.4), it is easy to see that the sequence $\left\{p_{1}, p_{2}, p_{3}\right\}$ of principal fibrations in the diagram (3.1) satisfies the stability condition (i)-(iii) in § 2. Therefore, for a given map $\xi: X \rightarrow$ $B S O(n)$ which has a lifting $X \rightarrow E_{3}$, we can define the homomorphisms

$$
\begin{array}{ll}
\Theta_{\xi}^{i}: H^{i-1}(X ; Z) \longrightarrow H^{i+1}\left(X ; Z_{2}\right) & \text { for } i=n, n-1, \\
\Gamma_{\xi}^{i}: H^{i}\left(X ; Z_{2}\right) \longrightarrow H^{i+2}\left(X ; Z_{2}\right) & \text { for } i=n, n-1,
\end{array}
$$

corresponding to $\Theta_{u}, \Theta_{u}^{\prime}, \Gamma_{u}$ and Γ_{u}^{\prime} of (2.2) and these are the homomorphisms of (1.1) by definition.

We now prove Theorem A in $\S 1$.
Let ξ be an orientable n-plane bundle over a $C W$-complex X of dimension less than $n+2$ and suppose that ξ has a non-zero cross section. Then the set cross (ξ) of homotopy classes of non-zero cross sections of ξ is

$$
\operatorname{cross}(\xi)=[X, B S O(n-1) ; \xi]
$$

by [9, Lemma 2.2], where $\xi: X \rightarrow B S O(n)$ denotes the classifying map of ξ. Since $\operatorname{dim} X<n+2$ and $q_{3}: B S O(n-1) \rightarrow E_{3}$ is an $(n+2)$-equivalence, we obtain

$$
[X, B S O(n-1) ; \xi]=\left[X, E_{3} ; \xi\right]
$$

by [9, Th.3.2]. Now we can apply the theorem in §2. Since $\operatorname{dim} X<n+2$, we have $H^{n+2}\left(X ; Z_{2}\right)=0$ and so $\operatorname{Ker} \Gamma_{\xi}^{\eta}=H^{n}\left(X ; Z_{2}\right)$ and $\operatorname{Ker}\left(\varphi: \operatorname{Ker} \Theta_{\xi}^{n} \rightarrow\right.$ Coker $\left.\Gamma_{\xi}^{n}\right)=\operatorname{Ker} \Theta{ }_{\xi}^{n}$. This completes the proof.

Example. Let ξ be a ($2 n-1$)-plane bundle over the real $2 n$-dimensional complex projective space $C P^{n}$ with a non-zero cross section. Then the set cross (ξ) is equal to Z, the set of integers. In fact, $\Theta_{\xi}^{2 n-2}: H^{2 n-3}\left(C P^{n} ; Z\right) \rightarrow H^{2 n-1}\left(C P^{n}\right.$; Z_{2}) is obviously monomorphic and $\operatorname{Coker} \Theta_{\xi}^{2 n-2}=0$. Also $\operatorname{Ker}\left(\Theta_{\xi}^{2 n-1}: H^{2 n-2}\right.$ $\left.\left(C P^{n} ; Z\right) \rightarrow H^{2 n}\left(C P^{n} ; Z_{2}\right)\right)$ is equal to Z and $\operatorname{Coker}\left(\Gamma_{\xi}^{2 n-2}: H^{2 n-2}\left(C P^{n} ; Z_{2}\right) \rightarrow\right.$ $\left.H^{2 n}\left(C P^{n} ; Z_{2}\right)\right)$ is Z_{2} or 0 .

§ 5. Enumeration of embeddings

Let M be an n-dimensional differentiable closed manifold, M^{*} be its reduced symmetric product obtained from $M \times M-\Delta(\Delta$ is the diagonal of $M)$ by identifying (x, y) with (y, x) and let η be the real line bundle over M^{*} associated with the
double covering $M \times M-\Delta \rightarrow M^{*}$. Then the set [$M \subset R^{2 n-2}$] of isotopy classes of embeddings of M into $R^{2 n-2}$ for $n \geq 8$ is equal to the set of homotopy classes of cross sections of the associated $S^{2 n-3}$-bundle ($M \times M-\Delta$) $\times{ }_{Z_{2}} S^{2 n-3} \rightarrow M^{*}$ and so equal to cross $((2 n-2) \eta)$, by the theorem of A. Haefliger $[6, \S 1]$.

Since M^{*} is an open $2 n$-manifold, there is a proper Morse function on M^{*} with no critical points of index $2 n$ by [13, Lemma 1.1] and so M^{*} has the homotopy type of a $C W$-complex of dimension less than $2 n$ by [11, Th.3.5]. Therefore we obtain the following proposition from Theorem A.

Proposition. Let $n \geq 8$ and let M be an n-dimensional differentiable closed manifold which is embedded in $R^{2 n-2}$. Then the set $\left[M \subset R^{2 n-2}\right]$ of isotopy classes of embeddings of M into $R^{2 n-2}$ is given by
$\left[M \subset R^{2 n-2}\right]= \begin{cases}\operatorname{Ker} \Theta^{2 n-2} \times \operatorname{Coker} \Theta^{2 n-3}, & \text { if } \Gamma \text { is epimorphic, } \\ \operatorname{Ker} \Theta^{2 n-2} \times \operatorname{Coker} \Theta^{2 n-3} \times \operatorname{Coker} \Gamma, & \text { if } \Theta^{2 n-3} \text { is monomorphic, }\end{cases}$ where the homomorphisms

$$
\begin{aligned}
& \Theta^{i}: H^{i-1}\left(M^{*} ; Z\right) \longrightarrow H^{i+1}\left(M^{*} ; Z_{2}\right) \quad \text { for } i=2 n-2,2 n-3, \\
& \Gamma: H^{2 n-3}\left(M^{*} ; Z_{2}\right) \longrightarrow H^{2 n-1}\left(M^{*} ; Z_{2}\right),
\end{aligned}
$$

are defined by

$$
\begin{aligned}
\Theta^{i}(a) & =S q^{2} \rho_{2} a+(n-1) \rho_{2} a \cdot v^{2}, \\
\Gamma(b) & =S q^{2} b+(n-1) b \cdot v^{2},
\end{aligned}
$$

and $v \in H^{1}\left(M^{*} ; Z_{2}\right)$ is the first Stiefel-Whitney class of the double covering $M \times M-\Delta \rightarrow M^{*}$.

Corollary. In addition to the conditions of the above proposition, we assume that $H_{1}\left(M ; Z_{2}\right)=0$. Then we have

$$
\left[M \subset R^{2 n-2}\right]=H^{2 n-3}\left(M^{*} ; Z\right) \times \operatorname{Coker} \Theta^{2 n-3} .
$$

Proof. Since $H_{1}\left(M ; Z_{2}\right)=0$, we have $H_{1}\left(M \times M, \Delta ; Z_{2}\right)=0$ by the exact sequence of the pair $(M \times M, \Delta)$ and so $H^{2 n-1}\left(M \times M-\Delta ; Z_{2}\right)=H_{1}(M \times M$, $\left.\Delta ; Z_{2}\right)=0$ by the Poincaré duality. Therefore, the Thom-Gysin exact sequence of the double covering $M \times M-\Delta \rightarrow M^{*}$:

$$
\cdots \rightarrow H^{2 n-1}\left(M \times M-\Delta ; Z_{2}\right) \rightarrow H^{2 n-1}\left(M^{*} ; Z_{2}\right) \rightarrow H^{2 n}\left(M^{*} ; Z_{2}\right) \quad(=0)
$$

shows that $H^{2 n-1}\left(M^{*} ; Z_{2}\right)=0$ and we have the desired result by the above pro-
position.

§6. Remarks on the cohomology of ($\left.R P^{n}\right)^{*}$

Let $G_{n+1,2}$ be the Grassmann manifold of 2-planes in R^{n+1}. By [2, Th. 11], the mod 2 cohomology of $G_{n+1,2}$ is given by

$$
H^{*}\left(G_{n+1,2} ; Z_{2}\right)=Z_{2}[x, y] /\left(a_{n}, a_{n+1}\right)
$$

where $\operatorname{deg} x=1, \operatorname{deg} y=2$ and $a_{r}=\sum_{i}\left(r_{i}^{-i}\right) x^{r-2 i} y^{i}(r=n, n+1)$.
S. Feder [4], [5] and D. Handel [7] investigated the mod 2 cohomology of the reduced symmetric product ($\left.R P^{n}\right)^{*}$ of the n-dimensional real projective space $R P^{n}$ and they showed that
(6.1) $H^{*}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$ has $\{1, v\}$ as basis of $H^{*}\left(G_{n+1,2} ; Z_{2}\right)$-module, where $v \in H^{1}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$ is the first Stiefel-Whitney class of the double covering $R P^{n}$ $\times R P^{n}-\Delta \rightarrow\left(R P^{n}\right)^{*}$ and there are the relations

$$
v^{2}=v x, S q^{1} y=x y, \text { and } x^{2 r+1-1}=0 \quad \text { for } n=2^{r}+s, 0 \leq s<2^{r}
$$

We study $H^{*}\left(\left(R P^{n}\right)^{*} ; Z\right)$ for even n. According to [7, (3.4)], there exists a fibration

$$
V_{n+1,2} \longrightarrow S Z_{n+1,2} \longrightarrow B G,
$$

such that $V_{n+1,2}$ is the Stiefel manifold of 2-frames in $R^{n+1}, S Z_{n+1,2}$ is a (2n-1)dimensional closed manifold having the homotopy type of $\left(R^{n}\right)^{*}$ and $B G$ is the classifying space of a group G of order 8 (as a matter of fact, G is the dihedral group D_{4}). Let p be an odd prime. The E_{2}-term of the $\bmod p$ cohomology spectral sequence of the above fibration is given by

$$
E_{2^{s, t}}^{s, H^{s}\left(B G ; \underline{H}^{t}\left(V_{n+1,2} ; Z_{p}\right)\right), ~}
$$

which is the cohomology with local coefficients $\left\{H^{t}\left(V_{n+1,2} ; Z_{p}\right)\right\}$. Since H^{*} $\left(V_{n+1,2} ; Z_{p}\right)=H^{*}\left(S^{2 n-1} ; Z_{p}\right)$ for even n by $[1,(10.5)]$, we have

$$
E_{2}^{s, t}= \begin{cases}H^{s}\left(B G ; \underline{H}^{0}\left(V_{n+1,2} ; Z_{p}\right)\right) & \text { for } t=0 \\ H^{s}\left(B G ; \underline{H}^{2 n-1}\left(V_{n+1,2} ; Z_{p}\right)\right) & \text { for } t=2 n-1 \\ 0 & \text { for } t \neq 0,2 n-1\end{cases}
$$

Since the action of $\pi_{1}(B G)$ on $H^{0}\left(V_{n+1,2} ; Z_{p}\right)$ is trivial and $H^{i}\left(B G ; Z_{p}\right)=0$ for $i>0$ by [3, Chap. 12, Cor. 2.7], we have

$$
E_{2}^{s, 0}=H^{s}\left(B G ; Z_{p}\right)= \begin{cases}Z_{p} & s=0 \\ 0 & s \neq 0\end{cases}
$$

These imply that $H^{s}\left(\left(R P^{n}\right)^{*} ; Z_{p}\right)=0$ for $0<s<2 n-1$ and so
(6.2) the orders of elements of $H^{s}\left(\left(R P^{n}\right)^{*} ; Z\right)$ for $0<s<2 n-1$ are powers of 2.

Using the above facts, we determine the groups $H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right)$ and $\rho_{2} H^{2 n-4}\left(\left(R P^{n}\right)^{*} ; Z\right)$. Let $n=2^{r}+s, 0<s<2^{r}$ and s be even. By (6.1) and the Poincaré duality for the manifold $S Z_{n+1,2}$,
(6.3) the mod 2 cohomology groups $H^{t}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$ for $2 n-4 \leq t \leq 2 n-1$ are given as follows:

t	$H^{t}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$	basis
$2 n-1$	Z_{2}	$v x^{2^{r+1-2}} y^{s}$
$2 n-2$	$Z_{2}+Z_{2}$	$v x^{2 r+1-3} y^{s}, x^{2 r+1-2} y^{s}$
$\frac{2 n-3}{2 n-4}$	$Z_{2}+Z_{2}+Z_{2}$	$Z_{2}+Z_{2}+Z_{2}+Z_{2}$
$v x^{2 r+1-4} y^{s}, x^{2 r+1-3} y^{s}, v x^{2 r+1-2} y^{s-1}, x^{2 r+1-4} y^{s}, v x^{2 r+1-3} y^{s-1}, x^{2 r+1-2} y^{s-1}$		

Consider the exact seuqence associated with $0 \rightarrow Z \xrightarrow{\times 2} Z \xrightarrow{\rho_{2}} Z_{2} \rightarrow 0$:

$$
\begin{aligned}
\cdots \rightarrow & H^{2 n-4}\left(\left(R P^{n}\right)^{*} ; Z\right) \xrightarrow{\rho_{2}} H^{2 n-4}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)^{\beta_{2}} H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right) \xrightarrow{\times 2} \\
& H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right) \xrightarrow{\rho_{2}} H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)^{\beta_{2}} H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z\right) \rightarrow \cdots,
\end{aligned}
$$

where β_{2} is the Bockstein homomorphism. By simple calculations, we have the following relations for the elements of $H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$ by (6.1):

$$
\begin{aligned}
& S q^{1}\left(v x^{2 r+1-4} y^{s}\right)=v x^{2^{r+1-3}} y^{s}, \quad S q^{1}\left(x^{2^{r+1}-3} y^{s}\right)=x^{2^{r+1-2}} y^{s}, \\
& v x^{r+1-2} y^{s-1}=S q^{1}\left(v x^{2 r+1-3} y^{s-1}\right)=\rho_{2} \beta_{2}\left(v x^{2 r+1-3} y^{s-1}\right) .
\end{aligned}
$$

These imply that $\rho_{2} H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right)$ is Z_{2} generated by $v x^{2 r+1-2} y^{s-1}$. Hence we have

$$
\begin{equation*}
H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right)=Z_{2} \text { generated by } \beta_{2}\left(v x^{2 r+1-3} y^{s-1}\right) \tag{6.4}
\end{equation*}
$$

by (6.2) and the above exact sequence.
This shows that $\rho_{2}: H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right) \rightarrow H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$ is a monomorphism. Furthermore $\rho_{2} H^{2 n-4}\left(\left(R P^{n}\right)^{*} ; Z\right)=\operatorname{Ker} \beta_{2}=\operatorname{Ker}\left(S^{1}: H^{2 n-4}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)\right.$ $\left.\rightarrow H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)\right)$, because $S q^{1}=\rho_{2} \beta_{2}$. On the other hand, we have the relations:

$$
\begin{array}{ll}
S q^{1}\left(v x^{2 r+1-5} y^{s}\right)=0, & S q^{1}\left(x^{2 r+1-4} y^{s}\right)=0, \\
S q^{1}\left(v x^{2 r+1-3} y^{s-1}\right)=v x^{2 r+1-2} y^{s-1}, S q^{1}\left(x^{2^{r+1}-2} y^{s-1}\right)=0 .
\end{array}
$$

Therefore, by (6.3), we have
(6.5) $\rho_{2} H^{2 n-4}\left(\left(R P^{n}\right)^{*} ; Z\right)=Z_{2}+Z_{2}+Z_{2}$ generated by $\left\{v x^{2 r+1-5} y^{s}, x^{2 r+1-4} y^{s}\right.$, $\left.x^{2 r+1-2} y^{s-1}\right\}$.

§ 7. Proof of Theorem B

We now prove Theorem B in $\$ 1$.
The existence of embeddings of $R P^{n}$ in $R^{2 n-2}$ is shown in [7, Th. 4.1] and [10, Th. 7.2.2]. To prove that any two embeddings of $R P^{n}$ in $R^{2 n-2}$ are isotopic, we apply the proposition in $\S 5$ for $M=R P^{n}$, where the homomorphisms

$$
\begin{aligned}
& \Theta^{i}: H^{i-1}\left(\left(R P^{n}\right)^{*} ; Z\right) \longrightarrow H^{i+1}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) \quad \text { for } i=2 n-2,2 n-3, \\
& \Gamma: H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) \longrightarrow H^{2 n-1}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)
\end{aligned}
$$

are defined by $\Theta^{i}(a)=S q^{2} \rho_{2} a+\rho_{2} a v^{2}$ and $\Gamma(b)=S q^{2} b+b v^{2}$. We see that $\Theta^{2 n-2}$ is a monomorphism by (6.4) and the following relations:

$$
\begin{aligned}
\Theta^{2 n-2}\left(\beta_{2}\left(v x^{2 r+1-3} y^{s-1}\right)\right) & =S q^{2}\left(v x^{2 r+1-2} y^{s-1}\right)+v x^{2 r+1-2} y^{s-1} v^{2} \\
& =v x^{2 r+1-2} y^{s} \neq 0(b y(6.3)) .
\end{aligned}
$$

Also, the equation $\Gamma\left(v x^{2 r+1-2} y^{s-1}\right)=v x^{2^{r+1}-2} y^{s}$ and (6.3) imply that Γ is an epimorphism. Consider the homomorphism $\Theta^{\prime}: \rho_{2} H^{2 n-4}\left(\left(R P^{n}\right)^{*} ; Z\right) \rightarrow H^{2 n-2}$ $\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$ defined by $\Theta^{\prime}(a)=S q^{2} a+a v^{2}$. Then we have the relations

$$
\begin{aligned}
& \Theta^{\prime}\left(x^{2^{r+1-2}} y^{s-1}\right)=x^{2^{r+1}-2} y^{s} \\
& \Theta^{\prime}\left(x^{2^{r+1-4}} y^{s}\right)=v x^{2^{r+1}-3} y^{s}+\left(\frac{s}{2}\right) x^{2^{r+1}-2} y^{s} .
\end{aligned}
$$

These and (6.3), (6.5) show that Θ^{\prime} is an epimorphism, and so is $\Theta^{2 n-3}=\Theta^{\prime} \rho_{2}$. This completes the proof of Theorem B.

References

[1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogenes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
[2] La cohomologie mod 2 de certaine espaces homogēnes, Comment. Math. Helv. 27 (1953), 165-197.
[3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, 1956.
[4] S. Feder, The reduced symmetric product of a projective space and the embedding problem, Bol. Soc. Mat. Mexicana 12 (1967), 76-80.
[5] The reduced symmetric product of projective spaces and the generalized Whitney theorem, Illinois J. Math. 16 (1972), 323-329.
[6] A. Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962), 155-176.
[7] D. Handel, An embedding theorem for real projective spaces, Topology 7 (1968), 125-130.
[8] I. M. James, A relation between Postnikov classes, Quart. J. Maty. 17 (1966), 269-280.
[9] —— and E. Thomas, Note on the classification of cross-sections, Topology 4 (1966),

351-359.
[10] M. Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349.
[11] J. Milnor, Morse Theory, Princeton Univ. Press, 1963.
[12] Y. Nomura, The enumeration of immersions, Sci. Reports, College of General Education, Osaka Univ. 20 (1971), 1-21.
[13] A. Phillips, Submersions of open manifolds, Topology 6 (1967), 171-206.
[14] E. Thomas, Seminar on Fiber Spaces, Lecture Notes in Math. 13, Springer-Verlag, 1966.
[15] T. Yoshida, On the vector bundles $m \xi_{n}$ over real projective spaces, J. Sci. Hiroshima Univ. Ser. A-1, 32 (1968), 5-16.

Department of Mathematics, Faculty of Science, Hiroshima University

