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§1. Introduction

Recently, Y. Nomura [12] has studied the enumeration problem of liftings
of a given map to a fibration and its application to the enumeration problem of
immersions of certain manifolds. In this note, using his results we enumerate
the non-zero cross sections of certain vector bundles, and then study the embedd-
ing problem of the real projective spaces in the euclidean spaces.

Let & be an orientable n-plane bundle over a CW-complex X of dimension
less than n+2, and let w,(&) be the second Stiefel-Whitney class of £. Consider
the homomorphisms

6L: H-Y(X; Z)—H"*Y(X; Z,),
b ri: H(X; Z,)— H"**(X; Z,),
of the cohomology groups, defined by

Oia)=Sq?p,a+p,a-wy (%),

ri(b)=Sq>b+b-wy(%),

where p, is the mod 2 reduction. Then we prove the following theorem in §§ 2-4,
using Nomura’s theorem [12, § 2] and the Postnikov factorization of the universal
orientable (n— 1)-sphere bundle BSO(n—1)—BSO(n).

THEOREM A. Let n>6 and let £ be an orientable n-plane bundle over

a CW-complex X of dimension less than n+2 with a non-zero cross section.
Then, the set cross (£) of (free) homotopy classes of non-zero cross sections of
£ is given by

Ker @7 x Coker 937, if r'y~' is epimorphic,
cross(&) =

Ker @7 x Coker @3~ ! x Coker '} ™!, if ©@3~' is monomorphic,
where @4, I'} are the homomorphisms of (1.1).

This is a generalization of a part of the theorem of 1. M. James [8, Th. 5.1]
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for the case dim X <n.
Applying the above theorem, we prove the following theorem in §§ 5-7, using
the results of A. Haefliger [6].

THEOREM B. Let n be an even integer and let n>10, n#2". Then, there
exists only one isotopy class of embeddings of the real n-dimensional projective
space RP* in the real (2n—2)-space R2""2,

§ 2. Nomura’s theorem

Let h: A—D be a principal fibration with fiber F, and let p: E-2Aand q: T
E be the principal fibrations with the classifying maps #: A—»B and p: E~C,
respectively. For a given CW-complex X and a map u: X—D, we assume that
there are liftings v and w in the following commutative diagram:

T

(2.1 = s

and also we assume that w has a lifting to T.
In this section, we consider the set [X, T; u] of homotopy classes of liftings
X — T of u, under the following stability condition (i)-(iii) for the sequence {h, p, 4}
of fibrations:
(i) the spaces B and C are homotopy associative H-spaces,
(n) there exists a map d: Fx D— B such that

Om=~d(idp x h)+97‘t2 and di,~0,
(iii) there exists a map c: QB x D—C such that
py:c(idm,-x hp)+pn, and ci, =0,

where m: Fx A—A and pu: QBx E—E are the actions of fibers in the principal
fibrations h: A—»D and p: E— A, respectively, n, and i, denote the projection
and the injection to the second factors, and + denotes the multiplication of an
H-space.

The maps d and ¢ define the maps d': QF xD—QB and ¢’: Q2Bx D-QC
by d'(4, x)(1)=d(A(t), x) and ¢'(v, y)(t) c(v(t), y). These maps induce the maps
between homotopy sets;
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0,: [X, F]—I[X, B], o, [X, QF]—[X, QB],
r,: [x,QB]—I[X,Cl, I, [X, Q2B]—[X, QC],

2.2)

by setting

O a)=du(a, u),  Oy(a)=d(a’, u),

I b)=cy(b,u),  I'i(b’)=ci(b', u),
where uc[X, D] is a given map, and d,: [X, F]x[X, D]-[X, B] is the in-
duced map of d and so on. Then it is easy to see that the maps of (2.2) are homo-

morphisms of groups, by the existence of a lifting of u and the above stability
condition (i)-(iii). Further, we define

(2.3) ¢: Ker@,— Coker I,

as follows: For a fixed lifting v: X—A of u, the correspondence [X, F]20—
my(a, v)e[X, A; u] is, as is well-known, a bijection. We see easily that o€
Ker @, if and only if m,(c, v) has a lifting to E. Let w,: X—E be a lifting of
my(o, v) and define

¢(0) =pu(w,) modImT,,

It is easily shown that ¢ is well-defined.
The following theorem is proved by Y. Nomura [12, Cor. 2.5-6].

THEOREM. Under the above assumptions and notations, we obtain, as
a set,
Ker ¢ x (Ker I',/Im @) if I, is an epimorphism,

[X,T;ul]l=
Kerp x(KerI',/Im @.)x CokerI',  if @), is a monomorphism.

§3. The Postnikov factorization of the universal orientable S"~!-bundle

Let n>6. The Postnikov factorization for the fourth stage of the universal
orientable S*~!-bundle BSO(n — 1) BSO(n), induced by the inclusion SO(n—1)
c SO(n), is given as follows:

E;

a, 1”:
E,—2K(Z,, n+2)

q
G.1) 2 b
BSO(n—1) =" E,~*3K(Z,, n+1)
4 P,

BSO(n)22+K(Z, n)
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where y,€ H"(BSO(n); Z) represents the Euler class, p,: E,—BSO(n) is the princi-
pal fibration with the classifying map y,, and 0 and p are the second and the third
k-invariants, and p,: E;,—E, and p,: E;—E, are the principal fibrations with
the classifying maps 6 and p, respectively. Furthermore g;: BSO(n—1)—E,
is an (n+2)-equivalence, i.e., §34: m(BSO(n—1))->n,(E,) is isomorphic for i<n+2
and epimorphic for i=n4-2.

Let m;: K(Z, n—1)x E,~E, be the action of fiber in p,: E,—BSO(n) and
consider the map v,=m(idxq,): K(Z, n—1)x BSO(n—1)-E,. Then, by
the results of E. Thomas [14, p. 21], the second k-invariant 8 H**(E,; Z,)
is characterized by the equality

3.2) vi0=5q%pye; X 1+ pyty X p*w,,

where v¥: H"YE,; Z,)-»H"*'(K(Z, n—1)xBSO(n—1); Z,) and ¢ H"!
(K(Z, n—1); Z) is the fundamental class and w, is the second universal Stiefel-
Whitney class.

Now, consider the homomorphism

mt—n}: H(E,; Z;)— H"(K(Z, n—1) X Ey; Z,),

where n, is the projection to the second factor. Since (id x g,)*n%(0)=1 x g%(8)
=0, we havze (id x q,)*(m% —n%)(0)=(id x q,)*m*(6) —v*(()) On the other hand,
(id x q,)*: ZH"“ (K(z,n—1); Z,)QHE,; ZZ)A‘ZH"“ (K(Z,n—1); Z,)
®H‘(BSO(n— 1); Z,) is monomorphic, because gt: H'(E,; Z,)-»H(BSO(n—1);
Z,) is so for r<2. Therefore, (3.2) shows that

(3.3) (mY—n3)(0)=Sq%pye; X 1 +paey X piw,.

Similarly, let m,: K(Z,, n)x E,—E, be the action of fiber in p,: E,—E,,
and consider the map v,=m,(id xq,): K(Z,, n)x BSO(n—1)—>E,. Then the
third k-invariant pe H"*2(E,; Z,) is characterized by

v3p=Sq2c, x 1+¢, X p*w,,

where ¢, € H'(K(Z,, n); Z,) is the fundamental class (cf. [15, Th. 3.5]). There-
fore we have

(34 (m3—n3)(p)=8q2e3 X 1+¢3 % p3ptw,,

by the same argument as above.

§4. Proof of Theorem A

Continuing the previous section, we choose the maps
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d: (K(Z, n—1)x BSO(n), BSO(n))—(K(Z,, n+1),%),
c: (K(Z,, n) x BSO(n), BSO(n))— (K(Z,, n+2),*)

such that they represent the elements d =Sq2p,c, x 14+ p,ey Xw, and c¢=Sq?,
x 14¢;, x w,, respectively. Then from the equalities (3.3) and (3.4), it is easy
to see that the sequence {p,, p,, ps} of principal fibrations in the diagram (3.1)
satisfies the stability condition (i)-(iii) in § 2. Therefore, for a given map ¢: X—
BSO(n) which has a lifting X —E,, we can define the homomorphisms

OL: H-Y(X; Z)—H"*YX;2,) for i=n,n—1,
T'y:H(X; Z,)— H'*¥(X; Z,) Jor i=n,n—1,

corresponding to @,, O, I', and I';, of (2.2) and these are the homomorphisms
of (1.1) by definition.
We now prove Theorem A in §1.

Let ¢ be an orientable n-plane bundle over a CW-complex X of dimension
less than n+2 and suppose that £ has a non-zero cross section. Then the set
cross (&) of homotopy classes of non-zero cross sections of £ is

cross(&)=[X, BSO(n—1); £]

by [9, Lemma 2.2], where £: X — BSO(n) denotes the classifying map of £, Since
dim X <n+2 and ¢q;: BSO(n—1)—E, is an (n+2)-equivalence, we obtain

[X' BSO(n_l)’ f]=[X, E3; C]

by [9, Th.3.2]. Now we can apply the theorem in §2. Since dimX <n+2,
we have H"%(X; Z;)=0 and so Kerl'}=H"(X; Z,) and Ker(p: Ker@}—
Coker ') =Ker @%. This completes the proof.

ExaMmpPLE. Let £ be a (2n—1)-plane bundle over the real 2n-dimensional
complex projective space CP" with a non-zero cross section. Then the set cross (£)
is equal to Z, the set of integers. Infact, @"~2: H2*=3(CP"; Z)—>H?"~!(CP";
Z,) is obviously monomorphic and Coker ®""2=0. Also Ker(@3"~!: H2""2
(CP"; Z)-»H?"(CP"; Z,)) is equal to Z and Coker(I'3""2: H2"~2(CP"; Z,)—
H?*"(CP*; Z,))is Z, or 0.

§5. Enumeration of embeddings

Let M be an n-dimensional differentiable closed manifold, M* be its reduced
symmetric product obtained from M x M — 4 (4 is the diagonal of M) by identify-
ing (x, y) with (y, x) and let  be the real line bundle over M* associated with the
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double covering M x M—A—-M*. Then the set [M c R2"~2] of isotopy classes
of embeddings of M into R2"~2 for n>8 is equal to the set of homotopy classes
of cross sections of the associated S27~3-bundle (M xM—4)x ,,S2""3>M*
and so equal to cross ((2n—2)n), by the theorem of A. Haefliger [6, §1].

Since M* is an open 2n-manifold, there is a proper Morse function on M*
with no critical points of index 2n by [13, Lemma 1.1] and so M* has the
homotopy type of a CW-complex of dimension less than 2n by [11, Th.3.5].
Therefore we obtain the following proposition from Theorem A.

ProproSITION. Let n>8 and let M be an n-dimensional differentiable
closed manifold which is embedded in R?""2. Then the set [Mc R?""2] of
isotopy classes of embeddings of M into R?"~2 is given by

Ker ©27-2 x Coker @23, if T is epimorphic,
[McR?"2]=
Ker ©®27~2 x Coker @2"=3 x Coker I', if @23 s monomorphic,
where the homomorphisms
@i H-Y(M*; Z)— H'*'\(M*; Z,)  for i=2n-2,2n-3,
I: H3=3(M*; Z,)— H?" Y(M*; Z,),
are defined by
Oi(a)=Sq?p,a+(n—1)p,a-v?,
I'(b)=Sq%*b+(n—1)b-v?,

and ve H'(M*; Z,) is the first Stiefel-Whitney class of the double covering
MxM—A4->M*.

CoROLLARY. In addition to the conditions of the above proposition, we
assume that H (M; Z,)=0. Then we have

[Mc R2=2]=H2""3(M*; Z) x Coker @273,
Proor. Since H,(M; Z,)=0, we have H,(M x M, 4; Z,)=0 by the exact
sequence of the pair (M xM, 4) and so H2"'(MxM—4;Z,)=H,(MxM,

A4; Z,)=0 by the Poincaré duality. Therefore, the Thom-Gysin exact sequence
of the double covering M x M —4—-M*:

e H2= (M x M= 4; Zy)»H2"{(M*; Z,)» H2"(M*; Z,) (=0)

shows that H2*~1(M*; Z,)=0 and we have the desired result by the above pro-
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position.

§6. Remarks on the cohomology of (RP")*

Let G,,,,, be the Grassmann manifold of 2-planes in R"*!. By [2, Th.11],
the mod 2 cohomology of G, , is given by

H*(Gn+1,2; 22)=22[x’ y]/(am an+ l)’

where degx=1, degy=2 and a,=3,("7)x""2!y! (r=n, n+1).

S. Feder [4], [5] and D. Handiel [7] investigated the mod2 cohomology
of the reduced symmetric product (RP")* of the n-dimensional real projective space
RP" and they showed that
(6.1) H*((RP™*; Z,) has {1, v} as basis of H*(G,4,,2; Z;)-module, where
ve HY((RP")*; Z,) is the first Stiefel-W hitney class of the double covering RP"
X RP*— A—(RP")* and there are the relations

v2=vx, Sqly=xy, and x2"*'"1=0 for n=2r+s5, 0<s<2".

We study H*((RP™)*; Z) for even n. According to [7, (3.4)], there exists
a fibration

Vat1,2—5Z,4,,,— BG,

such that V,, ; , is the Stiefel manifold of 2-frames in R"*!, SZ, ., , isa 2n—1)-
dimensional closed manifold having the homotopy type of (RP")* and BG is the
classifying space of a group G of order 8 (as a matter of fact, G is the dihedral
group D,). Let p be an odd prime. The E,-term of the mod p cohomology
spectral sequence of the above fibration is given by

E3t=HBG; H'(V,+1,25 Z,)),

which is the cohomology with local coefficients {H*(V,.,,,; Z,)}. Since H*
(Vasr,2: Z,)=H*(S?""1; Z,) for even n by [1, (10.5)], we have

H¥BG; H°(V,41,25 Z,)) Jor t=0
Eyt={ H(BG; H* (Vo413 Z,))  for t=2n—1
0 SJor t+0, 2n—1.

Since the action of 7,(BG) on H%(V,,, ,; Z,) is trivial and H(BG; Z,)=0 for
i>0 by [3, Chap. 12, Cor. 2.7], we have

Z, s=0
Es°=H%BG; Z,)=
0 s+0.
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These imply that H*(RP™*; Z,)=0 for 0<s<2n—1 and so

(6.2) the orders of elements of H¥((RP")*; Z) for 0<s<2n—1 are powers of 2.
Using the above facts, we determine the groups H2"~3((RP")*; Z) and

poH2"=4((RP*)*; Z). Let n=2"+s, 0<s<2r and s be even. By (6.1) and the

Poincaré duality for the manifold SZ,, , ,,

(6.3) the mod2 cohomology groups H'((RP")*; Z,) for 2n—4<t<2n—1 are .

given as follows:

t H'((RP™)*; Z,) basis
2n—-1} Z, vx27t "2y
2n-2| Z,+ Z, vx2t I3 ys x2HI=2 g8
2n-3| Z,+Z,+ Z, px2TI4ys x27TI-3 s gy 2nt =281
2n—4| Z,+ Z,+ Z,+ Z, | ox2T TS5y, x27IT4ys px2Tt I3 ysm 1 20t -2 s

Consider the exact seugence associated with 0—+Z22Z£2,7, 0:
oo HEN=4((RP7)*; Z)23 H24((RPP)*; Z,) 2 23 (RPP)*; Z) 2%
H?"3((RP™)*; Z)L,H2"3((RP")*; Z,)LLH2"=2((RP")*; Z) >,

where f§, is the Bockstein homomorphism. By simple calculations, we have the
following relations for the elements of H2"~3((RP")*; Z,) by (6.1):

Sq‘(vxz” 1—4ys)=vx2r+ l—3ys’ Sql(xz:w l_3y,)=x2r+ a_zys,
vx2t l—Zys—l =Sql(vx2r+ l—3yr—l) =pzﬂz(vx2r+ |_3ys_l).

These imply that p,H2"~3((RP")*; Z) is Z, generated by vx2""'~2ys=1, Hence
we have

6.9 H2m=3((RP")*; Z)=Z, generated by B,(vx2™" '3 ys-1)

by (6.2) and the above exact sequence.

This shows that p,: H2"=3((RP")*; Z)—»H?"~3((RP")*; Z,) is a monomorp-
hism. Furthermore p,H2"~4((RP")*; Z)=Ker B, =Ker(Sq': H2"~4((RP")*; Z,)
—H?2"=3((RP")*; Z,)), because Sq'!=p,B8,. On the other hand, we have the
relations:

Sq'(vx?""'=5y%) =0, Sg'(x>"*'=4y7) =0,

Sql(vxzM '-3y3-1)=vx2" "2y"‘, Sql(xzr* '-zys—l) =0,
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Therefore, by (6.3), we have
(6.5) p,H?*"*((RP")*; Z)=Z,+Z,+Z, generated by {vx?""'~5ys, x2""'~4ys
B

§ 7. Proof of Theorem B

We now prove Theorem B in § 1.

The existence of embeddings of RP" in R2"2 js shown in [7, Th. 4.1] and
[10, Th.7.2.2]. To prove that any two embeddings of RP" in R27~2 are isotopic,
we apply the proposition in § 5 for M =RP", where the homomorphisms

@t: H-'(RP"Y*; Z)— H'*Y((RP™*; Z,)  for i=2n—2,2n-3,
I': H>=3((RP")*; Z;)— H2""Y(RP")*; Z,)
are defined by @i(a)=Sq2%p,a+p,av? and I'(b)=Sq2b+bv2:. We see that
@272 is a monomorphism by (6.4) and the following relations:

O2=2(B, (vx2" =3 ys=1)) = Sq2(vx 2"t =2 ys=1) 4 px 27t -2 ysm 12
=px2""'"2ps£0 (by (6.3)).

Also, the equation I'(vx2"*'~2ps=1)=px2"*'~2ps and (6.3) imply that I' is an
epimorphism. Consider the homomorphism @': p,H2"~4((RP")*; Z)—»H?2""2
((RP™*; Z,) defined by @'(a)=Sq%a+av3. Then we have the relations

O’ (x2 ' -2ps=1) = x 274 1=2 8
@;(x2r+ l_4ys) =vx2rf l—3y3+(,2)x2r+ l..zys.

These and (6.3), (6.5) show that @' is an epimorphism, and so is @273 =0"p,.
This completes the proof of Theorem B.
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