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Introduction

The present paper is continued from the first part [27] with the same title.
In Part I, we studied the enumeration problem for liftings in fibrations which
are the compositions of two twisted principal fibrations, the enumeration problem
for cross sections of (n - l)-sphere bundles over CW-complexes of dimension less
than n+ U and the enumeration problem for embeddings of n-dimensional closed
differentiable manifolds in the real (2/i-l)-space R2n~l. As an application, we
determined the cardinality of the set of isotopy classes of embeddings of the n-
dimensional real projective spaces RPn in R2n~l.

The organization of the present paper, which is divided into two chapters,
is analogous to that of Part I. In Chapter IV, we study the enumeration problem
for liftings in fibrations which are the compositions H_JuT—2-> £—£-•£ of three
twisted principal fibrations, and with some assumption we obtain in Theorem D
of § 16 the formula for determining the set [X, tf]D of homotopy classes of lift
ings of a map u: X-*D. This is a generalization of a theorem of Y. Nomura
[23, Theorem 2.4] and on the other hand, an extension of Theorem A in §2 of
Part I, and further a version of a theorem of J. F. McClendon [13, Theorem 5.1],
where the stability conditions are woven. Chapter V is as follows. In the begin
ning, we construct the fourth stage Postnikov factorization of the universal Sn~]-
bundle p: BO(n-l)-*BO(n), which is continued from §7. This factorization
isa composition of three twisted principal fibrations which satisfies theassumption
of Theorem D. Next, applying Theorem D, we enumerate non-zero cross sec
tions of w-plane bundles over CW-complexes of dimension less than n+ 2 in
Theorem E of § 18. This is an extension of Theorem B of §9. Lastly, as an ap
plication of Theorem E to the enumeration problem of embeddings, we have the
following theorem in § 19.

Theorem F. Let n>:5 and let «#2r+24 (r^s>0). Then the n-dimen
sional complex projective space CPn is embedded in the real (4n —3)-space R*tt~3
and there are countably many distinct isotopy classes of embeddings of CPn
in R4"-3.
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Chapter IV. The enumeration of liftings in certain fibrations

§ 13. The situation and the preliminaries

Let £, C and A be //-groups with base point * and let 0(G): 7r(G)-*Homeo(G,
*) (G= B, C, A) be homomorphisms such that they satisfy the assumption (1.2).
Then there are fiber bundles

qG: L(G) = L^G){G) • K{G) = K(n(G), 1) (G = B, C, A),

with fiber G and with canonical cross sections sG, which are constructed in (1.1).
In this chapter, we consider the following situation:

(13.2) QcP = PP,

L(A) -^ K(A)
(13.1)

/ '1
_£_» L{C) -^* K{C)

JL->L(B)-«^K(B).

Here, p: £->£>, q: T-+E and h: H-*T are the twisted principal fibrations with
classifying maps Q: D->L(B), p: E-*L(C) and a: T^L(A), respectively, and
moreover it is assumed that there exist p: D-*K(C) and 5\ D-+K(A) satisfying

qAo = apq.

Let u: X->D bea given map of a CW-complex A'toD. Then, the purpose of
this chapter is the investigation of the set of homotopy classes of liftings of « to
//, that is, the set [X, H~\D of Z)-homotopy classes of Z)-maps of the £>-space
(X, u) to the Z)-space (//, pqh).

For the neatness of the description, we assume that the //-groups C and A
are topological groups in the rest of this chapter. Further, for the simplicity,

/iG:L(G)xK(C)L(G) >L(G), HG) L(G) (G = C, A)

denote the X(G)-maps^(C) and v^(C) of (1.3) induced from the multiplication and
the inverse of G, respectively.

Let Xy p denote the join of two paths Aand p with A(l)=/i(0) and let

mB: QK(B)L{B) x K(B) £ *E,
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(13.3) mc: QK{C) L(C) x K{C) T —• T,

"',.: QK{aAA) x K(A) H • //,

be the maps defined by mG{X, {x, p)) = (x, XV/0 for G= B, C, A, (cf. (1.7)).
By using the /((C)-maps

(13.4) p,: (QK(B)L(B)* «s) E,E) —> (L(C), K(Q)

of (2.3) and

(13.5) p\: (QllBiUB)x jc«b> & V —• flW^C). K(Q)

defined by p\(X, x)(/) = p,(A(f), x), the homomorphism

(13.6) Ap(p, [o]): IX, QlwUBftw —> [X, r2K(C)L(C)]K(C)

of (4.1) is defined by

Ap(p, M)(M) = L>i («.*)],

where u: X->£ is a lifting of a fixed mapi/: *"-•/). In the same way, the K(A)-
maps

(13.7)

are defined by

ax: (QKicMC) x K(C) T, T) —> (L(,4), X(/l)),

<r',: (G£(C)£(C) x K(C) T, T) —> (GKM)L(/1), XM))

a{(X, x) = }iA(amc(X, x), [ffmc(cA(0), x)]_I),

and, for a lifting w: X-^Tof y, the homomorphism

(13.8) Aq(o, [w]): [A\ ^(C)MC)]K(C) • [X, i2K(/0L(/l)]KM)

is defined by

^, [w])([/>]) = [a',(6, w)].

In §4, we show that nc: i2K(G)L(G)xK(G)L(G)->^(C)L(G) defined by nG(X,
x)(t) = nG(X(t), x) is a K(G)-homeomorphism for G= C, A and the map«c induces
a bijection

(13.9) fib.: [*, «K(c)^(G)]k(C)x[^ W)]K(G) -=U [X, ^(G)L(G)]K(G)

(G = C, X)
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for any JC(G)-space X. Let

(13.10) p': Q*DE —• Q%(cMQ* a': q*et—* tyuM*).

be the maps defined by

p'(X) (0 = p(A(0), <x'(/0 (t) = o(p(t)).

Then the following diagrams are commutative by (13.2):

Q*DE-BL> Q*K{C)L{C) Q%T-*U Qt{A)L(A)
03.11) prE| Lcr flfT| IqAr

D —e—> K(C), E -JU D -*-> K(A).

where rE: Q%E-+E, rT: Q%T-*T and r: Q$iG)L(G)->L(G) are the evaluation maps
as in Lemma 3.3. Consider the maps

m'B: Ql(B)L(B) * x<b> E >*$£ '"c: QhoUQ x X(C) T • G^T,

defined by m'G{X, x)(r) = mG(A(0, x) for G= B,C. Then, for any CW-complex
X, there are two bijections (see § 4)

mi,: [X, QliB)L{B)-\m) x [X, £]D -=U [X, Q*DE\D

for any u: X —> D,
(13.12)

m'c.: [X, ^(C)L(C)]K(C)x[X, T]£ -=-> [X, QjgT]£

for any u: X —• £.

Using (13.9-12) and Lemma 4.2. (2), we have the following

Lemma 13.13. The primary operations Ap(p, r\) of (13.6) for ne[X, £]0
and Aq(p, f) of (13.8)for £e[X, T]£ are determined uniquely by the relations

P*™'b*<3, n) = n'c>(Ap(p, n)(p), p*n)t

°Wc.{yA) = nA.{Aq{a,Z)(y),a*S).

%14. The twisted secondary operations

In this section, we shall define the operations $([w]): KerAp(py [y])->Coker
Aqip, [w]) for any lifting w: X->Tof u and v=qw.

The following three lemmas are easily verified and so we omit the proofs.

Lemma 14.1. Let <f>'(C): 7r(C)->Homeo(G*C, *) be the homomorphism
defined by <£'(Q(a)(A)(0 = tf>(C)(a)(A(0) and let L^(C)(fl*C)->K(C) be the fiber
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bundle constructed in (1.1). Then there exists a natural K(C)-homeomorphism
i^:QlC)L(C)-^L^C)(Q*C).

Lemma 14.2. There exist natural K(C)-homeomorphisms

QhcfwMC) * PK(C)Q*K(cMC) * JWW)(0*Q.

^k(C)^k(omQ « QK(C)Q%(C)L(C).

Lemma 14.3. Let q'\ Q%T->Q%E be the map which is defined by the relation
q'(X)(t) = q(X(t)). Then, q' is the twisted principal fibration induced from
PK(C)QK(C)UC) = ^hc)PK(cMC)-^^K(C)UC) with classifying mapp':Q%E-+

The next two lemmas play an important part in the definition of the twisted
secondary operation 4>([w]).

Lemma 14.4. Let w e [X, T]D and let $ e [X, Q%E]D. Ifp lies in the image
ofq'*\ [X, G£T]D->[X, i2££]D and ifq*w = rE.fi in [X, £]0. Then, there is an
element x£[X, &dT]d sucn tnat rr*X—w and a'*X—fii where r£: Q%E-*E and
rT: Q$T-*T are the maps of Lemma 3.3.

Proof. By the assumption, there is an element Xo »n [X, Q%T~\D such that
q*Xo=P- Since q*w= q+rT,Xo by the assumption, there is an element co in
[X, flK(C)L(C)]K(C) sucn tnat wc*(co, rT*Xo) = w by Lemma 15.2 below. Now,
let mc: QK(C)L(C)x K{C)Q%T-*Q%T b& the map defined by the equation mcC*>
p)(t) = mc(X, p(t)). Then the mapwc makes the following diagram commuta
tive:

®K{C)L(C) x K(C) T <—- QK(C)L(C) x ihc)QdT—*-* &d*

|"c [mc ["'
T* a Q*T ^ >QIE.

Therefore, the following commutative diagram holds:

[X, GK(C)£(C)]K(C) x [X, r]D«i^[X, GK(C)£(C)]K(C) x [X, Q$r\D^ [X, QmD
mc* mc* \q't

[X, 7]D* 02 \xt Q%T\B ^ • [X, Q*DE]D.

Set x=mc.(a>, Xo)« Then, the relations

rT.x = w, fax = q'*mc*((o, Xo) = «'*Xo = P

follow from the above diagram.
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Lemma 14.5. Let v: X-+E be a lifting ofu and let sE: E-+Q%E be the canoni
cal cross section of thefibration rE: £>?>£-•£ defined by sE(x) = cxfor any xeE.
//xe[X, &£T]D satisfies q'^x=[.sEv^ '" [*. Gd£]b, then x is contained in the
image of /*: [X, i2JT]D->[X, Q%T]D, where i: Q%T-*Q%T is the natural inclu
sion.

Proof. This is a simple application of the homotopy lifting property.

Using the preparation made above, we now construct the twisted secondary
operation

(14.6) <*>(!>]): Ker Afa [»]) —• Coker Afa [w]).

Here w: X->Tis a lifting of u: X->Z) and v=qw and Ap(p, [u]), Afa [w]) are the
homomorphisms of (13.6), (13.8).

Let zeKerApip, [vj). Since v has a lifting vv, the relation p*[y]=0 holds.
Hence the relation p'*m'B*{T, [y])=0 follows from Lemma 13.13. This relation
and Lemma 14.3 state that m'B,(x, [u]) lies in the image of q'*: [X, i2£T]D->
[X, Q%E]D. The equation r^m'^x, [y]) = [y] = ^#[w] follows immediately.
Therefore by Lemma 14.4, there is an element x in [X, Q%T~]D such that

1*X = m^T, M) 6 [X, Q%E-]D, rT.x = [w] e [X, T]D.

By (13.9), the element o*x in [X, Qk(a)U.AJ]K(A) is described uniquely in the form
<r*X=nA*(a, p) for some xe[X, QK(A)L(Ay]K(A) and 0 e [X, L(Ay]K(A). Since
P°=r*n^(a> )8)=r+(T;x=ff*rT.x=<r*[w], we have

<X = "!4*(a» o-*[w]) for some a e [X, QK(A)L(Ay]K{A).

By the use of the element a of this equation, we define #([w])t by

(14.7) 4>([w])t = a + ImAfa [w])e[X, QK{A)L{Ay\K{A)l\m Afa [w]).

Suppose that another element x' in [X, Q%T\D satisfies the relations

q*X' = mWt, W) 6 [X, Q*DE]D, rr*x' = M e [X, 7],,,

and suppose that

°*x' = n'A*(a', <r*[w]) for some a' e [X, fl^LC^)]^, •

We may choose x and x' such that rTx=rrx' = w as maps because rT: Q%T->T
is a fibration by Lemma3.3. Then x'Vx"1 makes sense and g*(x' Vr1)=[^]
in [X, i2g£]D. Therefore, x'Vx"1 e[X, flJT]D by Lemma 14.5 and this is con
sidered as an element in [X, QET\\E, where X is considered as an £-space with the
mapy:X->£. Hence (13.9) implies that x' Vx"l = Wc,(y, [w]) for [w]e[X,
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T]£ and some ye[X, G£(C)£(C)L(C)- Further, Lemma 13.13 states

<t'*m'c*{y, O]) = n'A*(Afa [w])y, ^[w]).

Also, it follows that

a'*mc*(y, [w]) = ffUx'Vx"1) = ^x'V^x"1

= n'Aa', (T*[w])V«Ua"', <r*[w]) = n^a'Va"1, <r+[w]).

Therefore, a'Va-1 =Afa [w~\)y by (13.9) and so a+ \mAfa [w]) =a' + Im Afa
[w]). This shows that the definition (14.7) of $([w]) is well-defined. Bya similar
calculation, we see easily that #([w]) is a homomorphism.

§15. The actions of groups [X, GK{C)L(G)']K(C)(G=C1 A)

The maps mc and mA in (13.3) determine the actions of groups

mc.:[X,r2K(C)L(C)]K(C)x[X, T]D—> [X, T\d for u: X >D,

(15.1) mA.:lX,QK(A)L(A)-]K{A)x\_X,H}D—> [X, //]D /or u: X >D,

»»„,: [X, flKM)L(,4)]K(/4) x [X, //]£ —» [X, //]£ /or 1;: X ^ £,

which are given by mc#([fl], [w]) = [mc(a, w)] and so on. For the element w

in [X, T~\D, Iu(w) denotes the isotropysubgroupof [X, Qk(qL(CY1k(C) at w under
the action mc*. Let £: X->// be a lifting of u and let v=qh(,. Then /„([C]) and
AXCC]) denote the isotropy subgroups of \X,QK{A)L(A)~\K{A) at [Qe[X, H]D
and [C] e [X, //]£ under the actions of mA, and m^j, respectively.

From Proposition 1.8, the following lemma holds (see §3).

Lemma 15.2. Let w: X-*Tbe a lifting of u: X-+D and let v —qw. Then,
the actions mc,, mA* and mAff are transitive on qZl([v~\), h^^w^.and /^([h*]),
where q*: [X, T]D-[X, £]D, h*: [X, //]D-[X, T\D and /i8: [X, //]£-*[X,

The following lemma is proved in Lemmas 3.4-5 and Proposition 4.3.

Lemma 15.3. Let £: X->// 6e a lifting of u: X->D and let w= h(, and v
= qw. Then the following equalities hold:

/u([w]) = Im Afa M), /„([£]) = Im Afa [w]),

where Ap(p, [u]), Aq{a, [w]) are the oneso/(13.6), (13.8).

The map o': Q%T-+Q%{A)L(A) definedby ct'(^)(0= o-(^(0) and the assumption
qAa=dpq of (13.2) give rise to the commutative diagram
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[X, Q*DnD -^_> [X, 7]n

[X, QK(A)L(A)-]K{A) -^ [X, QhA)L(A)]K(A) -*-. [X, L{A)]K{A),

where i: (2KM)L(/1)^^(/4)L(/1) is the natural inclusion. We say that an element
y in [X, Gk(/4)L(;4)]km) is ^-correlated to ij in [X, T]D if there exists an element
Xin [X, Q%T\D such that rT.x=n in [X, T]D and o-'*x='*y. Then, the methods
similar to Lemmas 3.4-5 lead to the following

Lemma 15.4. Let £e[X, ffjD am* h£ = n in [X, T]D. T/ien ye/u(0 »/
and o«/,v i/y is a-correlated to r\.

Lemma 15.5. Let £: X-+H be a lifting of u: X-*D and let w=h£ and
v=qw. Then we have

Im*([w]) = /H([G)//„([a),

where #([w]) is the operation o/(14.6).

Proof. Let ye[X, CiKiA)L(Ay]K(A) lie in the coset #([w])t. By the defini
tion (14.7) of 4>([w]), there is an element x in [X, Q%T]D such that

9'*X = mWt, [»]) e [X, ^£]D, rT.x = [w] e [X, T]D,

^iX = «^(y» ff*[w])e[X, fij^,,!^)]^,.

Since w has a lifting to H, it follows that a*[w]=0 and so n^.(y, o*[w]) = /#y.
This shows that y is a-correlated to [w]. Lemma 15.4 implies ye/„([£]). Con
versely, suppose that ye [X, QK(i<)£(/!)]K(yl) is contained in /„([£]). By Lemma
15.4, y is a-correlated to [vv] € [X, T]0, i.e., there is an element x in [X, Q%T~]D
such that ff#x = '*y and rT*x=[w] in [X, T]0. From the facts rE*q*x=q*rT.x
= [y] and (13.12), it follows that g'*x=mB*(T, M)e[X, fi££]D for some t in
[X, G£(B)JL(£)]k(B)- Thus we have 0=p'*mB.(T, [u]) by Lemma 14.3 and we
have 0=p'*m'fl.(T, [v]) = nc.(Afa [i>])t, p*[u]) by Lemma 13.13. As a conse
quence, Afa [d])t=0 follows from (13.9) and so yed>([w])T.

%16. The main theorem of Chapter IV

We say that the composition of fibrations H—*-• T—£->£—£-*£) in the diagram
(13.1) is stable if there exist two maps

d: (QK(B)UB) x K(B)D, D) —> (L(C), K(Q),

c: (GK(C)L(C) x K(C) D, D) — (L(,4), K(i4)),
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such that the diagram

(16.1) (a)

is X(C)-homotopy commutative and the diagram

(16.1) (b)

(flK(B)L(fl)x «(*)£, £) -ZU (L(C), K(Q)
I i*p

(QK{B)L(B) x KiB)D, D) -JU (L(C), K(Q)

(QK{C)L(Q x K(C) T, T) -±U (L(A), K(A))
I \*pq

(Q«C)L(C) x K{C) D, D) ^> (L(A), K(A))

473

is K(/l)-homotopy commutative, where pv and ox are the maps in (13.4) and (13.7),
(cf.§2).

Let

d': (G£(B)L(B)xK(fl)D, D) — (GK<C)L(C), K(Q),

c': (Q2K(CMO x wo 0> *>) — (fijcw)^). *M)).

be the maps defined by the relations (cf. (2.4))

d'(X, x) (0 = d{X(t), x), c'(/f, jO(/) = c(p(f), jO.

Then the diagrams below are K(G)-homotopy commutative (G= C, A):

(Q2K{BMW x x««> £. *) -^ (<WW, K(C))

I"* I
(^.(fl)L(B)x K(B) D, D) -il> (flK(C)L(C), K(C)),

(QfccMQ xK(C) T, T) J±+ {QK{aMA), K(A))
I 1*P9

(Q2K{C)L(Q x «o ^. *>) -^ (Q«mW *M)).

where p\ and a', are the maps defined in (13.5) and (13.7).
Now, for a given map w: X-»D,'we have four functions

(16.2)

0: [X, {2k(B)£(#)]k(B)

0':lX,Q2K{B)L{B)-]K{B)

T: [X, i2K(C)L(C)]K(C)

r:[X,fl2.(C)L(C)]K(C,

• [X,L(C)]K(C),

' [X, &K(C)^(0]k(C)>

[X,L(>l)]K(i4),

[X, Qk{A)L\A)]K{A),
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by setting

6>(M) = ld(a, «)], €>'(!>]) = \d\b, u)],

AM) = [c(x, «)], r(L>]) = [CO', «)],

(cf. (2.5)). Then, we have the following results by the consideration given in
§ 5: The functions 0' and T' are homomorphisms and moreover

0' = Alp, [y]) for any lifting v: X —• £ of u,
(16.3)

r = Afa [w]) for any lifting w: X >T of v,

where Afa, [u]) and Aq(o, [w]) are the ones of (13.6) and (13.8). Further, if u
has a lifting £: X->H, then 6> and T are homomorphisms and

(16.4) 0 = p+mri , [fl/iC]), r = o+mcJL , \hQ).

We, now, turn to the study of the twisted secondary operation

<*>([w]): Ker0' = KerAfa [u]) —» Cokerf' = CokerAfa [w])

of (14.6) on the assumption that the composition pqh is stable.

Lemma 16.5. Let w, w': X->Tbe liftings of v. X->£ such that both w and
w' admit liftings to H. Then *([w])=#([w']).

Proof. Using the diagram (16.1) (b) and the relations

^K(O^K(C)^(C) x K(C) Q%T = Q%(QK{C)L{C) x K(C) T),

"k(0"k(C)MO x k(o D = ®d(Qk(o AQ x k(o ^)»

we have a K(,4)-homotopy commutative diagram

(aticfincMQxKmatT, Q*DT) -5!i£iU (QjM)L(il)f X(^))
|.«rr |

(^(C)Qk(C)^C) x K(C) D, D) —<^> • (OJM,I£4), JCfc4)).

Since g': QgT-»(2S£ is the twisted principal fibration with classifying mapp':
Q%E-+Q%iA)L(C) by Lemma 14.3, there exists a map

mc: Qk(C)Qiuc)L(C)x k(C)®dT *• J2JT,

which is defined by rh^X, (x, p))=(x, AVp) (cf. (13.3)). In the same way as (13.7),
this map determines the map

Mi: (QKicyVhcMQx „Q G£T, <W • {QtiAyUA). K{A)).
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From the second relation in Lemma 14.2, the relation

QVi) = (<Oi

follows immediately, and moreover the following diagram is X(A)-homotopy
commutative by the commutativity (16.1):

(^K(C)^O XK[C) ^K(C)^(Q) XK(C) & '^—*• ®K(A)L\A) XK(M) L\A)

l""cXl l"'A
^(C)(^'(C)^(Q)x mo D • *^k(^)M^) >

where (c', c)(X, p, x)=(c'(A, x), c(p, x)) and n'nc: QKiC)(^KicMQ)x jc<o QkgMQ
->(2^(C)((2X(C)L(C)) is the product induced from the product nnc: QK(C)L(C)
x K(C) ^(C)MQh"K(C)MW'

Suppose that

tf>([w])T = a + Imr, *([w'])T = a' + lmr for teKerO'.

By the definition, there are two elements x, x'e[X, GdT]d such that

4'*X = 1*X' = ™b*(t, M), 'VX = [w], rr.x' = [w'],

<r'*X = »*•(«. ff*[w]) = f»a, <r'*x' = «*•(«'. *•!>']) = «»«'•

The map mc mentioned above induces the action mc*' [X, i2K(C)£2£(C)L(C)]K(C)
x[X, QtT~\D->[X, Q%T~]D and this action is transitive on q'*-*{mB.{T, [i>])),
where ^;: [X, GgT]|,-»[X, <2££]D (cf. Lemma 15.2 for the action mc.). There
fore we can choose an element Ae[X, (2K(C)fl$(C)L(C)]K(C) such that mc*(X,
X) = X'e[X ®VT]d- Hence we have

((<Oi)#(A, X) = *'*('M^ X)) V[a;(/fic,(*, x))]"' by the definition,

-ff'rf'Vtox)"' =^.(a'Va"1,*).

On the other hand,

(MiWA, X) = (OVi))*O.X) = (Q*c),(l xpVMA, X) = (fi*0(A, «).

Since nj,c: ^(C)L(C)xK(C)(2K(C)L(C)-*^(C)QIC(c)L(C) is a weak K(C)-homo-
topy equivalence by [10, Theorem 2.7], there exist two elements pe[X,
fl£(C)L(C)]K(C) and ve[X, GK(C)L(C)]K(C) such that X= n'nc*(p, v). Hence we
have

((OiWA, X) = (G*<0*(A, «) = (OrcMn'actp, v), u)

= n'A.(c'»(p, i»), c*(v, «)) = «^(r'(p), r(v)).
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Therefore a'Va"1 =T'(p) because riA+ is a bijection by (13.9), and we have Lemma
16.5 completely.

Next, we consider the another twisted secondary operation

(16.6) tf>:Ker0—•Cokerf for a fixed Ce[X, //]D,

where 0, T are the homomorphisms of (16.4). Let aeKer0. Then O=0(a)
=P*mB*(a> v)i v=q*h*C, by (16.4), i.e., mg*(a, t;)e[X, £]D lies in the image of
q+: [X, T]D->[X, £]D. Let vva 6 [X, T]D be the element such that q*wa=m^a,
v) and set

<l>{a) = <r*wa+Im r e [X, L(/1)]KM)/Im T = CokerT.

In the same way as [23, §2], we see that 0 is well-defined and moreover we have
the following

Lemma 16.7. [23, Lemma 2.3]. Let aeKerO. Then mB,(a, y)e[X, £]D
is contained in g*/i*[X, //]D if and only if <f>(a) = 0.

By Lemma 16.5, it is easily seen that if w runs through the elements of /i*[X,
H]Dfl [X, T]D then the twisted secondary operation <P(w) of (14.6) depends only
on q*w e [X, £]0. Therefore we set

(16.8) <pa = <p(w) for aeKer<£,

where q+w=mg>{a, v), v= q*h+(,.
The following theorem is the main theorem in this chapter.

Theorem D. Suppose that thecomposition offibrations //—*-_» r q >£ p »
D in thediagram (13.1) is stableby themaps c and d in (16.1). Let X be a CW-
complex and let u: X->D admit a lifting £: X->//. Then the set [X, //]0 of
homotopy classes of liftings of it to H is given by

[X,//]0= \j (Kerr/Im0')x Coker d>fl,
aeKer<j>

where T, 0', <f> and 4>tt are the ones o/(16.2), (16.6) and (16.8).

Proof. By Proposition 1.8, there is a bijection

*M . »)' LX GK(B)£(B)]k(B) -=- [X, £]D, (v = q+h+Q.

From Lemma 16.7, it follows that

(16.9) [X,//]0= \J h+iq*imB.(a,v).
aeKer <t>

Let wa be a lifting of /»v(fl, v) to 7 such that wa has a lifting to //. The cor-
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respondence which associates with an element t e [X, &k(o^(Q]k(C) the element
mc.(t, wa) induces a bijection

[X, QK{c)L(C)-]K(C)IIfa) = Coker©' -=U g5>0M«. v)),

by Lemmas 15.2-3 and (16.3). Since mc»(t, wa) has a lifting to H if and only if
t e KerT by (16.4), we have a bijection

Kerr/Im<9' -=U o^OMa, o)) n /»*[X, //]D.

For any t e Kerf, let C0,T be a lifting of mc.(r, wa) to //. Then, by Lemma 15.2,
the correspondence which associates with ye\_X, QK{A)L(Ay]KiA) the element
mA*(y, Ca,») induces a bijection

[X, flKM)L(/i)]KM)//M(Ca.r) ^> *i'(n»c.(t, w.)).

Therefore

aj'OM*. w.)) = ([*, fljtW)^)]WMW)/(UC,,)//B<W),

= Coker 0(mc.(t, wfl)) by Lemma 15.3 and Lemma 15.5,

= Coker0a by (16.8),

where [t/] -q*h*Ca,x = '»b*(«> y)- Th'sequation and (16.9-10) complete the proof
of the theorem.

ChapterV. The enumeration of cross sections of sphere bundles and
the enumeration of embeddings of complex projective spaces

§17. The fourth stage Postnikov factorization of p: BO(n -1) •BO(n)

The third stage Postnikov factorization of the universal S""1-bundle p:
BO{n-\)-*BO(n) is constructed in §7 (cf. also [22, §6]) and is given as follows:

BO(n-\) q* > T

I"

I"
^BO(n) -E* L^Z, n) • K(Z2, l) = K.

Here </>: 7i,(K(Z2, l))=Z2-»Aut(Z) is a non-trivial homomorphism, L^Z, n)
->K(Z2, \) = K is the fiber bundleconstructed in (1.1), p,: E-*BO(n) is the twisted
principal fibration with classifying map W, p2\ T->£is the principal fibration with
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classifying map p, and q2 is an (« + Inequivalence.

This section is continued from §7. Hence, we use A instead of XB0{]n-x)
and the other notations in § 7 will be used freely if no confusion can arise.

We can assume that q2: BO(n—l)-» Tis a fibration. Then its fiber F' satisfies

f 0 i < n
*i(F') =

I ni(S"-1) i>n + \.

Now, nn+l(F')= 7tn+l(S"-l)=Z2, and the generator of H*+l(F'; Z2)= Z2 is trans-
gressive in the fibration q2: BO(n-\)-*T. Let aeHn+2(T; Z2) denote the trans
gression image and let

p3:H—>T

be the principal fibration with classifying map a: T->K(Z2, n+ 2). Then q2:
BO{n-\)-+T admits a lifting q3: BO(n- !)->//. Moreover, q3 becomes an (n
+ 2)-equivalence.

To characterize the map a: T^>K(Z2, n+ 2), we prepare two lemmas.

Lemma 17.1. (cf. [28, Lemma 3.3]). Let n>5. For the homomorphisms

H\BO{n-\); Z2) <^- //*(£; Z2) -^L H*(T, Z2),

the following two conditions hold:
(a) Ker p\ => Ker q\ in dimension n+ 2.
(b) g? is surjective in dimension n+ 2.

Proof. By (7.4), there is an isomorphism

p*://«+2(£;Z2)nKergT-^

Hn+2{QKL4Z, n)xKBO(n-\); Z2) n Ker5* n Kerr,.

By Lemma 6.2, any element xe//n+2(fiKL0(Z, n)xKBO(n- 1); Z2) is described
uniquely in the form

x = n%b + X(eln2*w3+82n2*w2wl+e3K2*w\) + e4Sq2Xn2*wl+EsSq3X.

If x6 Kers*, then 6 = 0. Since xlSqi= SqiTl and t, is an H*(BO(n); Z2)-homo-
morphism by [19, § 3], there are relations

T,(A7i$w3) = w„w3, tiiXntiw^Vi)) = wnw2wlt

T,(A7i5wf) = wnw], Tl(Sq3X) = Sq3wn = w„w3,
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Tl{(Sq2X)(n2*wl)) = (Sq2w„)wi = w„w2Wi,

by the equality Tj(A)=w„ in § 7 and the formula of Wu. Hence we have

Hn+2{QKLfa n)xKBO{n-\); Z2) n Kers* n Kerr, = Z2+Z2,

generated by {?.n^w3 + SqzX, Xn\*w2wx +(Sq2X){n2*wx)}. Since A lies in the image
of the mod 2 reduction p2 of H*~l(QKLJiZ, n)xKBO(n-\); Z) by the definition
in §6, it follows thatO=p2/J2A, which is equalto SqlX+Xn%wx from [4] and [16],
(cf. (12.3)). Therefore we have a relation

(17.2) SqlX = Xn^wv

The relation (17.2) and (7.5) yield two relations

p*Sqlp = Sqlp*p = Sql(Xntw2 + Sq2X) = Xn^w3 + Sq3X,

p*(pp*Wl) = (Xn2<w2 + Sq2X)n2*wl = Xntw2wl+(Sq2X)(ntwl).

Therefore we have

//'•+2(£; Z2) n Kerg? = Z2 + Z2 generated by {Sqlp, pp*xwy).

This and the equation pfp = 0 imply the statement (a). The statement (b) follows
from the fact that p* is surjective and p= P\qx.

Let

m2:QK(Z2,n + \)xT—• T

be the action of the fiber QK(Z2, n+ \) of the principal fibration p2: T->£ and
let

v = m2(\xq2):QK{Z2, n+\)xBO(n-\) >T.

Then this map v gives rise to the commutative diagram of fibrations

QK(Z2, n+1) x BO(n-1) -*-> T

(17.3) j*2 |"2
BO(n-l) "l >£.

Let s': BO(n - \)-*QK{Z2, n+1) x BO(n -1) be the canonical cross section. Then
there is a relation

(17.4) vs' a q2.

By the method similar to [28, Corollary 3.4], we have the following
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Lemma 17.5. The following sequence is exact for n;>5:

0 * Hn+2(T, Z2) -£-> Hn+2(QK(Z2, n+ l)x BO(n-1); Z2)

-li->//«+3(£;Z2),

where x\ is the transgression associated with (17.3) (see [19, §3]).

Theorem 17.6. Let n^.6. The transgression image a: T-*K(Z2, n+ 2)
is characterized uniquely by the relation

v*a = c'xw2 + c'xw2i+Sqlc'xwl + Sq2c'x 1,

where t eHn(K(Z2, n); Z2) is the fundamental class of K(Z2, n).

Proof. The element a belongs to Kergf fl//"+2(T; Z2). By Lemma 17.5
and (17.4), v* gives an isomorphism

(17.7) v*: H"+2(T; Z2) n Kerq$ -^ Kers'* n Ken',.

By the definition of x\,x\(c'x\)=x(c') holds, where x is the transgression of
p2: T->£, and x(c')=p because q2 is the principal fibration with classifying map
p. Hence it follows

(17.8) T',(<'xl) = p.

Any element xeHn+2(QK(Z2, ;i+l)xBO(/i-1); Z2) is described in the form
x=l xa +e/xtv2 + e2r' x w\ +e3Sqlc'xw{ +e4Sq2c'x 1, where aeHn+2(BO(n
- 1); Z2) and e,=0 or 1 for i'=l, 2, 3, 4. If xeKers'*, then a = 0. Since p*
is a monomorphism in dimension n+ 3 on the assumption n>6 by (7.4), it follows
that xeKert', if and only if p*TiX=0. Now, x\ is an //*(£; Z2)-homomor-
phism and x\ satisfies the relation Sqix\=x\Sqi by [19, §3]. Therefore, using
the above facts and the relations (7.5), (17.2), (17.8) and the formula of Wu, we
have

pV,0' x w2) = (p*p)w2 = (Sq2X)w2 + Xw22,

p*x\{i' x w\) = {Sq2X)w\+Xw2w\,

p*x\{SqU'xwx) = p*((Sqlp)wl) = (Sql(Sq2X + Xw2))Wl

= (Sq3X)wi+Xw3wl,

p*x\(Sq2i'xl) = (Sq3X)w1 + (Sq2X)(w2 + w2) + X(w3wl + w2w2 + w2.).

These relations imply that Hn+2(QK(Z2, n+ l)x BO(n-1); Z2)n Kers'* n Kerr',
= Z2 generated by c'xw2 + i'xw{+Sqlc'xwi+Sq2c'x\. This result and
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(17.7) complete the proof of Theorem 17.6.
Summing up the above arguments, we have

Theorem 17.9. The fourth stage Postnikov factorization of the universal
Sn~x-bundle p: BO(n —\)-*BO(n)for n^6 is given as follows:

T-±->K(Z2,n + 2)

(17.10) ' \ \ |"2
E-E->K(Z2, n+l)

I"
BO(n) -BU L^Z, n),

where p3: H-*T is the principal fibration with classifying map a which is
characterized by the relation in Theorem 17.6, q3: BO(n—\)^H is an (n + 2)-
equivalence and the others give the third stage Postnikov factorization of p:
BO(n —\)^BO(n) constructed in Theorem 7.6.

We close this section by verifying the fact that the fourth stage Postnikov fac
torization (17.10) of p: BO(n-\)^BO{n) is stable in the sense of § 16.

Choose a map

(17.11) c: (K(Z2, n)xBO(n), BO(n))—• (K(Z2, n+ 2), *)

so as to represent

c = c'x (w2 + w2)+ Sq*t' x w, +Sq2c' x 1e Hn+2(K(Z2, n)xBO(n), BO(n)\ Z2)

and let

(17.12) d: (QkL^Z, n) x KBO(n), BO(n)) —> (K(Z2, n+ \),*)

be the map of (8.1) which represents the element

d = Xn2*w2 + Sq2XeH»+l(QKL<t>(Z, n)xKBO(n), BO(n); Z2).

In Proposition 8.5, we show that the map d satisfies the condition (16.1) (a). In
the same way, it is easily seen that the map c of (17.11) satisfies the condition
(16.1)(b) and so we have the following

Lemma 17.13. The composition of fibrations H Pi pi Pt BO(n)
of the fourth stage Postnikov factorization (17.10) is stable by the maps c and d
o/(17.11-12) in the sense (16.1).
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§ 18. The enumeration of cross sections of sphere bundles

Let n> 6 and let ^ be a real w-plane bundle over a CPF-complex X of dimension
less than n+ 2. If ^ has a non-zero cross section, cross(£) denotes the set of (free)
homotopy classes of non-zero cross sections of £. The space X is considered as
a BO(n)-space with classifying map <!;: X-»BO(n). Then the relation

(18.1) cross(0 = [X, //]B0(n)

results from the argument similar to that of § 9.
By Lemma 17.13, there are the four homomorphisms

0: //""'(X; Z) = [X, QKL^Z, n)\K —> //«+'(X; Z2) = [X, K(Z2, n+1)],

0':H»-2(X; Z) >H»(X;Z2),

T: H»(X; Z2) >Hn+2(X; Z2) = 0,

r: //«-l(X; Z2) >//"+'(X; Z2),

of (16.2) by taking the classifying map £: X^BO(n) for u, where Z is the local
system on X associated with ^. Then, we have the following relations in the same
way as the proofs in §9 by using (17.11-12):

0(a) = Sq2p2a+p2aw2(&, 0'(b) = Sq2p2b+p2bw2(£),

T(x) = x(w2(0 + w1(^)2)+(Sq1x)wl(0+ Sq2x,

where p2 is the mod 2 reduction and Wj(f) is the i-th Stiefel-Whitney class of f.
Apply, now, Theorem D to the fourth stage Postnikov factorization (17.10)

of the universal Sn_I-bundle p: BO(n-\)^BO(n). Then we have the following
theorem, which is an extension of Theorem B in § 9.

Theorem E. Let «;>6 and let ^ be a real n-plane bundle over a CW-
complex X of dimension less than n+ 2. If £ admits a non-zero cross section,
then the set cross(£) of homotopy classes of non-zero cross sections of £ is given
by

Here

cross (£) = \j Coker©"-1 xCokerd>
aeKerB"

6>»: //'"HX; Z) —>Ht+l(X; Z2), i = n-\, n,

r:H"-x(X;Z2)—^H»^(X;Z2),

are the homomorphisms defined by
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0i(a) = Sq2p2a+ p2aw2(&,

T(b) = Sqib + Sqibw^ + Kw^ + wtf)2),

where Z is the local system on X associated with £, p2 is the mod 2 reduction
and Wi(£) is the i-th Stiefel-Whitney class of £, and <Pa: Ker6>"-1-»Cokerr
is the twisted secondary operation o/(16.8).

§ 19. The enumeration of embeddings of complex projective spaces

[CP"c Rm~\ denotes the set of isotopy classes of embeddings of the n-dimen-
sional complex projective space CP" in the real m-space Rm. Let (CPn)* denote
the reduced symmetric product of CP" and let tj denote the real line bundle as
sociated with the double covering CPnxCP" —A->(CP")*. By A. Haefliger's
theorem [5, Theoreme 1], the set [CP"c/?4"~3] is equivalent to the set cross ((4n
—3)//) for n>5. Hence we determine the cardinality of the set [CP^/?4"-3]
by studying the set cross ((4n —3)rj) and we have the following

Theorem F. Let n>5 and let n^2r + 2s (r>s>0). Then, the n-dimen-
sional complex projective space CP" is embedded in the real (4n —3)-space
/?4"-3 and there are countably many distinct isotopy classes of embeddings of
CP" in K4"-3.

Proof. The first half is shown for odd n in [9, Theorem 1.2] and for even
n in [25, Theorem 4.1.(2)], and so we concentrate ourselves on the investigation
of the cardinality of the set [CPnc/?4n_3] = cross ((4n-3>j).

Since the space (CP")* has the homotopy type of a (4n —2)-dimensional mani
fold by [3, §2] and [26, Proposition 1.6], we have

[CP"c=K4n-3] = \j Coker04"-4xCoker#fl,
aeKcre4"-3

by Theorem E, where

6>4""3: //4"~4((CP")*; Z) >//4"-2((CP")*; Z2) = Z2.

Thus in order to prove the theorem, it is sufficient to show that //4n~4((CP")*;
Z) is countable.

Now, (CP")* has the homotopy type of an unorientable (4n - 2)-dimensional
manifold with

7r, ((CP")*) = Z2, //3((CP")*;Z) = 0, H2((CP")*;Z) = Z + Z2,

by [26, Proposition 1.6, Theorem 4.10 and Theorem 4.15]. By Poincare duality
(cf. [17, p. 357]), we have
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H4"-*((CP")*; Z) = H2((CP")*; Z).

Further there is the universal coefficient theorem

0 —> Ext(//3((CP")*; Z), Z) —> H2((CP")*; Z) —•

Hom(//2((CP")*; Z), Z) —> 0.

These relations imply

//4»-4((CP")*; Z) = Z,

and we have Theorem F completely.

Remark. By calculating more precisely, one can show that Coker 6>4n_4=0
or Z2 according as n is even or odd, and Coker F=Coker 4>a=Q.

For completeness' sake, we mention the cardinality %[CP"<=Rm] for m
;>4n—2, as follows:

(19.1) S[CP"c/?4n+1] = 1, [29],

(19.2) 8[CP"c/?4«] = 1, ^CP'c:/?4"-1] = K0, [7, Theorem 2.4],

(19.3) 8[CPncR4»-2] = 1, [26, Theorem 5.5(3)].
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