非線形システムの動揺シミュレーションについて 一種子島電力系統の場合一

高田 等・八野 知博*・宮下喜三夫
 辻 輝生*
 (受理 平成7年5月31日)

On Simulations of Nonlinear System's Oscillation — A Case of the Tanegashima Power System —

Hitoshi TAKATA, Tomohiro HACHINO, Kimio MIYASHITA, and Teruo TSUJI

It is very important for power system operation to improve reliability. A power system in solitary islands has special characteristics such as a Diesel engine and capacitive load. To analyze the long period transient phenomena accurately, it is necessary to develop a detailed simulation of a power system and generating plants, including control elements. In this paper we report the simulation results on the Tanegashima power system by using a digital computer and a power system simulator.

1. まえがき

非線形システムの振動問題の代表として電力系統過 渡時の動揺問題がある1-3)。近年,電力系統の安定運 用、ならびに信頼度向上に対する要請が一段と強くなっ てきている。例えば、種子島などの離島系統において は、それぞれ離島ごとの独立した系統となっており、 しかもディーゼル機関で負荷や運用に特殊性がある。 このため系統ごとに系統事故時の操作に対しては、比 較的長時間に亘って過渡現象を精度よく解析し、電力 系統の全安定度および発電プラントの安定運転の可否 を判断する必要がある。このような目的の解析を行う ためには、電力系統、発電機、および発電ユニットの 制御装置のモデル表現を基に、詳細なシミュレーショ ンを行わなければならない。多機系統であるが故にシ ミュレーション実験は莫大な計算量となる。これは換 言すれば高次元非線形システムの動揺問題を取り扱う ことになる。

本稿では、種子島系統の早朝の比較的不安定な容量

負荷時に 3 ~ 4 機系統で運転する場合を想定した。ディ ジタル計算機によるシミュレーション実験と,電力系 統解析シミュレータによる実験をそれぞれ行った。

2. 計算機シミュレーション

図1に示される種子島電力系統を対象とし、種子島 第一6.6 kV 母線連絡 T-10を開放した場合と接続し た場合について考える。

各発電機の動揺方程式は,

$$M_{i}\ddot{\delta}_{i}+D_{i}\dot{\delta}_{i}+P_{ei} = P_{mi}$$
(1)
$$P_{ei} = \sum_{j=1}^{n} Y_{ij}V_{i}V_{j}\cos(\delta_{i}-\delta_{j}-\theta_{ij})$$
i = 1 : 種子島第一9号機
i = 2 : 種子島第一10号機
i = 3 : 種子島第一11号機
i = 4 : 新種子島 2 号機
ここで,
$$M_{i} : 慣性定数, \quad \delta_{i} : 発電機相差角$$

* 九州工業大学工学部電気工学科

図1 種子島電力系統図

 D_i :制動係数, P_{ei} :発電機の電気的出力 P_{mi} :発電機の機械的入力, n:発電機総数

 $Y_{ij}
e \theta_{ij}$:機間アドミタンス, V_i :発電機背後電圧 で表される(付録1参照)。(1)式は多機系統であり, 運転状況により強い非線形性を有する。

全島負荷13.5[MW]に対して,種子島第一10号機出 カ4.0[MW],種子島第一11号機出力4.0[MW],新 種子島2号機出力5.5[MW]で供給中,種子島第一9 号機を並列投入した際の発電機相差角動揺について, ディジタル計算機によるシミュレーションを行った。 制動係数 D_i は,本来非線形性を有するが,ここでは 簡単のため経験的な数値として $D_i = 0.5M_i$ の値を用 いた⁴⁾。シミュレーションの結果の電力 P_{ei} と相差角 速度 δ_i を図2に示す(初期値は付録2参照)。

図2より、本初期値ではT-10の開放時と接続時の 系統安定度にほとんど差異が見られない。相差角等は 時間の経過とともに一定値に復帰しているが、初期の 段階では、かなり激しい動揺を生じ、収束するまでに かなりの時間を要している。このディジタル計算機シ ミュレーションには、実システムに比べかなり大きな 近似が導入されている。そこで、比較的近似度の良い 電力系統解析シミュレータによるシミュレーション実 験を次に行う。

3. 電力系統解析シミュレータによる実験

電力系統解析シミュレータは、シミュレータ本体と 支援用計算機により構成されている。シミュレータ本 体は、実際の電力系統を構成している発電機、送電線、 変圧器などと同等の電気的特性をもった機器モデルで 構成されている。これらを任意に接続して電力の発生 から消費までを実系統と同等に模擬し、各部の電気的 諸量を測定することにより電力系統に生じる様々な現 象の解析を行うものである。今回、種子島電力系統に おける種々の事故を想定し、九州電力総合研究所の電 力系統解析シミュレータにより、系統動揺に関するシ ミュレーションを行った。

系統解析シミュレータでは、図3に示す構成により 支援用計算機で適当なパラメータを設定して AVR を近似的に模擬した(設定値は付録3参照)。なお、 AVRの複巻特性部(励磁装置部)はシミュレータ本 体では直接実現できないので、この部分は別にディジ タル計算機により構成した。具体的には、シミュレー タの出力端子より、発電機電圧 V, d 軸電流 Ia, q 軸電流 Ia, 有効電力 Pa および無効電力 Pa を得て、

 $V_{ext2} = \sqrt{(K_5 V_t + K_6 I_t \sin \theta)^2 + (K_6 I_t \cos \theta)^2}$ (2) $t_2 t_2^2 \downarrow,$

図2 電力 P。と相差角速度 Sの時間応答

をディジタル計算機により計算し,これを図3の外部 入力端子 V_{AVR2} に入力することで,複巻特性部を実現 した。

シミュレーション実験は次の4通りを行った。

図3 AVR 構成図

46

<実験1>

- (1) T-10開放時に,種子島第一10,11号機および新 種子島2号機の3機で運転中,種子島第一9号機を 位相角進み53度で並列投入する。
- (2) T-10開放時に,種子島第一10,11号機および新 種子島2号機の3機で運転中,種子島第一9号機を 位相角遅れ60度で並列投入する。
- (3) T-10接続時に,種子島第一10,11号機および新 種子島2号機の3機で運転中,種子島第一9号機を 位相角遅れ60度で並列投入する。

<実験2>

 (1) T-10開放時に,種子島第一10,11号機および新 種子島2号機の3機で運転中,新種子島2号負荷に 並列に1000[kW]力率100[%]の負荷をさらに接続

図8 実験2-(2)におけるPa, るの時間応答

し, 0.2[sec] 周期で開閉する。

(2) T-10接続時に,種子島第一10,11号機および新 種子島2号機の3機で運転中,新種子島2号負荷に 並列に1000[kW]力率100[%]の負荷をさらに接続

図10 実験 3-(2)における P_a, P_r, δ, ωの時間応答

し, 0.2[sec]周期で開閉する。 <実験3>

 (1) T-10開放時に,種子島第一10,11号機および新 種子島2号機の3機で運転中,9,10号母線で短絡 事故を発生させ、その後4サイクルで復帰させる。

 (2) AVRのパラメータKAの値をすべて(1)の時の50
 [%]にし、T-10 開放時に、種子島第一10、11号機 および新種子島2号機の3機で運転中、9、10号母

図12 実験4-(2)におけるP。の時間応答

線で短絡事故を発生させ、その後4サイクルで復帰 させる。

<実験4>

- (1) T-10 開放時に,種子島第一10,11号機および新 種子島2号機の全体力率遅れ77[%]で運転中,9, 10号母線で短絡事故を起こし,その後6サイクルで 復帰させる。
- (2) T-10開放時に,種子島第一10,11号機および新 種子島2号機の全体力率遅れ77[%]で運転中,9, 10号母線で短絡事故を起こし,その後7サイクル で復帰させる。

<実験1>~<実験4>のシミュレーション結果を図 4~図12に示す。ただしδは定常時からの差を表す。

<実験1>(1)および(2)の結果より,進相,遅相に 関係なく安定であることがわかる。(2)および(3)の結果 より,T-10を開放した状態では9号と10号間で電力 の授受が行われ,11号機の動揺は小さい。一方,T-10を接続した状態では,9,10,11号機間で電力の授 受が行われ,11号機も大きく動揺した。 <実験2> 本実験の結果では, T-10 開放時と接 続時, 共に約6秒の長周期の動揺と約0.4秒の短周期 の動揺が見られた。

<実験3>(2)の実験は AVR のゲインが半分に 下げた場合のものである。このとき有効電力や無効電 力に大きな動揺が発生した。このことは AVR が最 適に設定されなければならないことを示している。こ れから, AVR や電力系統安定化装置 (PSS) が安定 な電力供給のために重要であることがわかる⁵⁾。

<実験4>本実験の結果より、設定された運転状態のもとで、短絡事故復帰時間の安定限界は、6サイクルであることがわかった。

4. あとがき

非線形系の例として種子島電力系統を取り上げ、ディ ジタル計算機および電力系統解析シミュレータにより 動揺に関するシミュレーション実験を行った。これら の結果から、PSSや静止型無効電力補償装置(SVC) などを考慮した動揺シミュレーションについての検討 が期待される。

謝辞

本研究を行うにあたり、各種多大の御援助と便宜と 御指導を賜った、九州電力(㈱の的野力、馬渡二男、森 田友次、小茂田安訓、油井泰一、徳永靖幸、および九 州電機製造(㈱の山下裕の各諸氏に深甚の謝意を表しま す。

参考文献

- 1) 関根:電力系統解析理論,電気書院(1971)
- 2) 植田,上之菌:多機系統の動的解析のための新しい発電機シミュレーション手法,電力中央研究所, 技研報告(1970)
- 3) 高田:非線形制御理論総論, SICE 九州フォーラム pp. 1-6, (1995)
- 4) 真栄城:電力系統における制動係数に関する研究--発電機制動トルク簡略式の導出--,電力中央研究 所,技研報告 No.71031 (1971)
- 5) 高木:厳密な線形化を用いた発電機の制御装置, SICE 九州フォーラム pp. 31-43, (1995)

付録 1 種子島電力系統定数(10MVA Base pu值)

表1 機間アドミタンス

	T-10開放時		T-10接続時	
(i, j)	Yij	θij	Yij	θij
(1,1)	0.2684	-1.464	0.2741	-1.472
(1,2)	0.0826	0.978	0.0735	0.931
(1,3)	0.0585	0.752	0.0766	0.931
(1,4)	0.0935	0.862	0.0880	0.841
(2,1)	0.0826	0.978	0.0735	0.931
(2,2)	0.3963	-1.381	0.4108	-1.397
(2,3)	0.0946	0.752	0.1238	0.931
(2,4)	0.1512	0.862	0.1423	0.841
(3,1)	0.0585	0.752	0.0766	0.931
(3,2)	0.0946	0.752	0.1238	0.931
(3,3)	0.3450	-1.336	0.4244	-1.388
(3,4)	0.1299	0.773	0.1483	0.841
(4,1)	0.0935	0.862	0.0880	0.841
(4,2)	0.1512	0.862	0.1424	0.841
(4,3)	0.1299	0.773	0.1483	0.841
(4,4)	0.4911	-1.270	0.4948	-1.278

表 2 発電機背後電圧

	T-10開放時	T-10接続時		
V1	1.0892	1.0889		
V2	1.1153	1.1151		
V3 1.1132		1.1335		
V4	1.0590	1.0590		
$M_1 = 0.02400$ $M_2 = 0.01706$ $M_3 = 0.01809$ $M_4 = 0.01749$				
P	=0.17 P	=0.30		
- m1	- m2	0.00		

 $P_{m4} = 0.55$

リアチャーロ デジネイト エア・ノヨア 10元111	付録 2	計算機	シミ	ュレー	ショ	ン初期
----------------------------	------	-----	----	-----	----	-----

表3 初期值

	T-10開放時	T-10接続時
δ1	0.0176	0.0219
δ2	0.6908	0.6956
δ3	0.7830	0.7586
δ4	0.9192	0.9192

$$\dot{\delta}_1=\dot{\delta}_2=\dot{\delta}_3=\dot{\delta}_4=0$$

付録3 AVR 設 定 值

 $P_{m3} = 0.33$

表4 AVR 設定値

パラメータ	9号	10号	11号	2号
KA	70	70	70	53.36
KD	0	0	0	0.044
KE	1	1	1	1
T1	0.01	0.01	0.01	0.01
T2	—		—	0.002
TA	0.002	0.02	0.02	0.002
TD1	_	_	_	0.32
TE1	—	_		0.03
TE2	0	0	0	3.4
TE3	0.02	0.002	0.002	1.632
EA1	1.5	1.5	1.5	10
EA2	-1.5	-1.5	-1.5	-10
EC1	2.8	2.8	2.8	5
EC2	-2.8	-2.8	-2.8	-5
K5	_	0.395	0.395	1
K6	_	0.658	0.658	0.96
Efo	1	0	0	0