## シラスの工業的利用に関する研究(第18報)

シラスガラス―マグネシア―ジルコニア系における ガラス化領域と同系ガラスの二,三の性質

## 島田欣二・福重安雄・平田好洋・井田重信 (受理 昭和 58 年 5 月 27 日)

## STUDIES ON THE INDUSTRIAL APPLICATION OF SHIRASU (Report 18)

# Glass-Forming Regions in the System Shirasu Volcanic Glass $(SVG) - MgO - ZrO_2$ and Some Properties of the Glasses in This System

## Kinji SHIMADA, Yasuo FUKUSHIGE, Yoshihiro HIRATA and Shigenobu IDA

Shirasu, which is a sort of volcanic ejecta and widely deposited in southern Kyushu, consists mainly of volcanic glass (shorten as SVG) with a fixed chemical composition. In this paper, glass-forming regions were examined for the system  $SVG-MgO-ZrO_2$ , furthermore the alkaline durability and crystallization property were investigated on the glasses for GRC (Glassfiber Reinforced Concrete).

The batches of the system were heated at 1400 °C and 1500 °C, and quenched into cold water. The compositions of clear or partially crystallized glasses are shown in Fig. 1. The  $SVG-MgO-ZrO_2$  glass particles (2.5 g) were immersed in 2N NaOH solution  $(100 \text{ m}\ell)$  at 70 °C for 24 h. The weight loss of the glass particles decreased with an increase in particle size and also in MgO or  $ZrO_2$  content of the glasses (Fig. 2). Heat treatment of the glasses at 1200 °C for 1 h caused the formation of monoclinic zirconia, tetragonal zirconia, zircon, and forsterite crystals. The formation regions of the crystals precipitated from the  $SVG-MgO-ZrO_2$  glasses by heat treatment are shown in Fig. 3.

## 1. 緒 言

GRC(Glassfiber Reinforced Concrete)用の耐ア ルカリ性ガラス繊維はMajumdar<sup>1)</sup>により発明されて 以来,多くの研究報告や特許がある<sup>2),3)</sup>.著者らもシ ラスガラス—カルシア—マグネシア系ガラスは耐アル カリ性に優れていることを前報で報告した<sup>4)</sup>.また, Baak ら<sup>5)</sup>及びKamiya ら<sup>6)</sup>はNa<sub>2</sub>O-ZrO<sub>2</sub>-SiO<sub>2</sub>系 ガラス繊維は極めて耐アルカリ性に優れていることを 報告している.本研究では、シラス中の火山ガラスは 原土シラスの産出場所の如何によらず、化学組成がほ ぼ一定であるので、シラスの工業的利用の見地から一 成分とみなし、この火山ガラス(シラスガラスあるい は SVG と呼ぶ)を主原料に用いた SVG-MgO-ZrO2 系ガラスの製造を試み,作製したガラスの耐ア ルカリ性を検討した.また, SVG-MgO-ZrO2 系 ガラスを再加熱したとき生成する結晶相の種類も調べた.

### 2. 実験法

#### 2.1 SVG-MgO-ZrO<sub>2</sub>系のガラス化試験

シラス原土からの火山ガラスの分離法および火山ガ ラスと添加酸化物とのガラス化実験の方法の詳細につ いては前報<sup>4)</sup>に述べた.用いた火山ガラスは、宮崎県

えびの市京町産シラス原土から分離したもので、粒径 350~44 µm の粒子を実験に供した.表1に火山ガラ スの化学組成を示す. 主成分は SiO<sub>2</sub>, Aℓ<sub>2</sub>O<sub>3</sub>, アル カリ酸化物で、それぞれ約76、13、7 wt%火山ガラ ス中に含まれている. SVG-MgO-ZrO, 系ガラス の MgO 源, ZrO2 源としては、それぞれ和光純薬工 業社製試薬特級酸化マグネシウムと半井化学薬品社製 特級酸化ジルコニウム(単斜晶系晶)を用いた.これ らの原料粉末は所定の割合に配合し、めのう乳鉢で十 分混合粉砕した.調製した試料(約0.8 g)は円筒形 白金容器(5mm Ø×20mm)に入れ, 1400 および 1500 ℃の温度でそれぞれ1時間加熱したのち、白金容器 とともに水中に落下させ急冷した. 急冷した試料のガ ラス化の判定は、肉眼および光学顕微鏡による観察と 粉砕試料の X 線回折によって行った. X 線回折の結 果,全く結晶相の認められないものをガラス化試料と し、ガラスと結晶相が混在しているものを非ガラス化 試料とした.

Table 1. Chemical compositions of volcanic glass separated from Shirasu (wt%).

| Ig.loss | sio <sub>2</sub> | A1203 | $Fe_2O_3$ | Ca0  | MgO  | Na20 | к <sub>2</sub> 0 | Total |
|---------|------------------|-------|-----------|------|------|------|------------------|-------|
| 0.61    | 75.66            | 13.36 | 0.63      | 1.73 | 0.69 | 4.00 | 3.27             | 99.95 |

#### 2.2 耐アルカリ性の測定

SVG-MgO-ZrO<sub>2</sub>系で得られたガラスはめのう 乳鉢で粉砕し、840~420  $\mu$ m、420~297  $\mu$ m、297~ 177  $\mu$ m、177~149  $\mu$ m および 149~74  $\mu$ m の 5 種の 粒子群にふるい分けした.それぞれの粒度にふるい分 けた粉末試料はアルコールで洗浄して微粉末をとり除 いたのち、約 2.5 gを 100 mlの 2N-NaOH 水溶液と ともに 200 ml硬質ガラス製三角フラスコに入れ、硬 質ガラス製還流冷却器を付して 70 ℃の湯浴中に 24 時間保持した.そして、フラスコ中の内容物を濾過し たのち、残留ガラス粉末を 105 ℃の空気乾燥機中で 十分乾燥して重量を測定した.試料の耐アルカリ性は 2N-NaOH 溶液で処理したのちの重量減少率で評価 した.

#### 2.3 ガラス化試料の熱処理

SVG-MgO-ZrO₂系の 1500 ℃溶融物を急冷して 得られたガラス化試料約 0.5 gを白金板にのせ,空気 中, 1200 ℃で1 時間処理し,生成する結晶相の種類 を X 線回折で調べた.

#### 実験結果と考察

## 3.1 SVG-MgO-ZrO2 系のガラス化領域

1400 ℃および 1500 ℃での SVG-MgO-ZrO<sub>2</sub> 系 溶融物を急冷して得られるガラスの生成領域を図 1 に示す. 1400 ℃溶融物から得られるガラス化領域は SVG 約 80 %以上, MgO 約 20 %以下, ZrO<sub>2</sub> 約 5 %以下の組成範囲である. 1500 ℃溶融物からのガラ ス化領域は, SVG 約 60 %以上, MgO 約 28 %以下, ZrO<sub>2</sub> 約 10 %以下の組成範囲であり, SVG-MgO 系側に偏ったガラス化領域となっている.

非ガラス化領域内では, SVG と MgO を多く含む 領域では主にフォルステライト (Mg<sub>2</sub>SiO<sub>4</sub>)が,ま た ZrO<sub>2</sub> の含有量が増すと単斜晶および正方晶ジル コニアが生成する.

SVG-MgO-ZrO₂ 系のガラス化領域が SVG と MgO 系側で広いのは次の理由によるためと考えられ る. すなわち, シラスガラス単味の軟化温度は約 900 ℃であり, 1300 ℃に加熱すると十分溶融する. しか



Fig. 1 Glass-forming tendency of melts in the SVG-MgO-ZrO<sub>2</sub> system.

|            | of melts (°C) | Troduct                                                                                                             |
|------------|---------------|---------------------------------------------------------------------------------------------------------------------|
| ( <u>)</u> | 1400          | glass                                                                                                               |
| $\bigcirc$ | 1500          | glass                                                                                                               |
| $\bigcirc$ | 1500          | partially crystallized glass<br>F: forsterite<br>Zm: monoclinic ZrO <sub>2</sub><br>Zt: tetragonal ZrO <sub>2</sub> |

し、SiO<sub>2</sub>-MgO 系、SiO<sub>2</sub>-ZrO<sub>2</sub> 系、MgO-ZrO<sub>2</sub> 系の最低液相生成温度はそれぞれ 1543  $\mathbb{C}^{71}$  (約 64 wt% SiO<sub>2</sub>), 1713  $\mathbb{C}^{81}$  (約 88 wt% SiO<sub>2</sub>) および 2000  $\mathbb{C}$ 以上<sup>9)</sup>であり、ZrO<sub>2</sub> を含む系の液相生成温度 はかなり高い. そのため、SVG-MgO-ZrO<sub>2</sub> 系に おける ZrO<sub>2</sub> の含有量が増すと、1400  $\mathbb{C}$ あるいは 1500  $\mathbb{C}$ の加熱では試料は完全に溶融しきれず、急冷 により結晶を含むガラスが得られたものと考える.

3.2 SVG-MgO-ZrO<sub>2</sub>系ガラスの耐アルカリ性

**2.2**の方法で測定した SVG−MgO−ZrO<sub>2</sub>系ガ ラスの耐アルカリ性の結果を図 2 に示す.



Fig. 2 Weight loss and MgO or ZrO<sub>2</sub> content in the SVG - MgO - ZrO<sub>2</sub> glass particles (2.5 g) after immersed in 2 N NaOH solution (100 mℓ) at 70°C for 24 h.

| Key      | size of glass particles ( $\mu$ m |
|----------|-----------------------------------|
|          | 77 ~ 149                          |
| Δ        | 149 ~ 177                         |
| <b>A</b> | 177~297                           |
| 0        | 297~ 420                          |
| ٠        | 420~840                           |
|          |                                   |

2N-NaOH 水溶液(70℃)で処理したときの試料の 重量減少率は、試料の粒径が大きい場合には MgO あ るいは ZrO<sub>2</sub>の含有量が増しても、あまり重量変化 はないが、試料の粒径が小さい場合には著しく減少す る. 試料の耐アルカリ性に対する MgO および ZrO<sub>2</sub> の効果は図 2 の粒径 149~74 μm の曲線からわかる ように、ZrO<sub>2</sub>の方が MgO に比べ少量の添加でより 大きな耐アルカリ性の向上に役立っており、試料の耐 アルカリ性は MgO よりむしろ ZrO<sub>2</sub>の含有量に大 きく支配されているといえる.また、試料の粒径が大 きくなるほど重量減少率が小さくなるのは、試料粒径 が大きいほどガラス粒子の比表面積が小さくなり、 NaOH 水溶液による腐蝕面積が減少するためである.

著者らは前報<sup>41</sup>で, SVG-CaO-MgO 系ガラスの 耐アルカリ性について報告したが, CaO を 10~30 wt %, MgO を 10~20 wt %含む粒径 420~297 μm のガラス粒子を 100 ℃の 2N-NaOH 水溶液で処理し た場合の重量減少率は, 0.1~0.9 %であった. この系 のガラスと本報での SVG-MgO-ZrO₂ 系ガラスの 耐アルカリ性は, 試料の重量減少率からみて, ほぼ同 程度であると思われる.

## 3.3 SVG-MgO-ZrO₂系ガラスから熱処理に よって析出する結晶相

1500 ℃での SVG-MgO-ZrO₂ 系溶融物を急冷し て得られるガラス化試料を,空気中 1200 ℃で1 時間



Fig. 3 Crystalline precipitated from the SVG − MgO − ZrO<sub>2</sub> glass by heat treatment at 1200°C for 1 h.



熱処理したとき析出する結晶の種類とその生成領域を 図3に示した.図3からわかるように,最も広い領 域に析出する結晶相は正方晶ジルコニアであり,この 相と同時にエンスタタイト (Mg Si O<sub>3</sub>),フォルステ ライト,ジルコン ZrO<sub>2</sub>·SiO<sub>2</sub>,単斜晶ジルコニアが, 2 相あるいは3 相共存して生成する.

本研究の一部は昭和 53 年 7 月第 23 回人工鉱物討 論会において発表したものである.

## 文 献

- A. J. Majumdar, J. F. Ryder, Glass Tech., 9, 78~84 (1968).
- 2) V. Velpari, B. F. Ramachandran, T. A. Bhaskaran, B. C. Pai,

N. Balasubramanian, J. Mater. Sci., 15, 1765~ 1771 (1980).

- 3) 井本立也, バルカーレビュー, 21, 22~28 (1977).
- 4) 島田欣二,福重安雄,古城一紀,留守茂人,窯協, 89,626~628 (1981).
- 5) T. Baak, C. F. Rapp, H. T. Hartly,
  B. E. Wien, Am. Ceram. Soc. Bull., 47, 727~
  730 (1968) .
- K. Kamiya, S. Sakka, Y. Tatemichi, J. Mater. Sci., 15, 1765~1771 (1980).
- 7) E. M. Levin, C. R. Robbins, H. F. Mc Murdie, "Phase Diagrams for Ceramists", The American Ceramic Society, Inc. (1964) p. 112
- 8) ibid., p.141
- 9) ibid., p.113

·····