円筒重研削における研削要因および数学モデル(第2報)

----S45C に対する 19A 砥石の硬度の影響----

田中秀穂

(受理 昭和55年5月31日)

GRINDING FACTORS AND MATHEMATICAL MODELS IN THE HEAVY CYLINDRICAL GRIDING (2nd Report) —Effects of Grade of 19A Wheel for S45C—

Hideho TANAKA

In the heavy cylindrical traverse grinding, the effects of 3 factors, A) work speed B) table speed C) radial infeed of wheel on the items 1) wear of wheel, 2) wear rate of wheel, 3) metal removal rate, 4) grinding ratio, 5) grinding force, 6) grinding power and 7) grinding cost, were analized on three kinds of wheel grade in the same manner as in former report¹⁾.

And then, the mathematical models showing the relations between these grinding factors and items 1)-7) were estimated.

1. はじめに

筆者は、いままで¹⁾²²高切込み研削において、性能 のよいといわれる 19A 砥石を用いて、円筒重研削時 における外的研削要因として、A)被削材周速度、B) デーブル速度、C)砥石切込みの3要因が、砥石の損 耗,削除率,消費動力および研削コストなどに与える 影響の程度を実験計画法を応用して、各要因の寄与率 から知るとともに、前報²⁾においては、被削材 S45C、 SCM3 の2 種類について、各要因と砥石損耗、削除率、 研削比,研削抵抗,消費動力および研削コストなどに 対する数学モデルを推定し、各測定項目に対する定量 的関係を知った。

本報では, さらに, 19A 砥石の硬度を K.M.P の 3 種にかえて, 前報と同じ方法で数学モデルを推定し, 砥石硬度の影響を調べた.

2. 実験装置および方法

表1に実験条件を示す・消費電力測定にクランプオ ン電力計(日置電機製3133型)を従来の入力測定法と 併用した以外は,前報と同様であるので実験方法装置 については省略する・

3. 実験結果および考察

3.1. 研削加工限界

図1は,実験にさきだち,砥石および研削盤の加工 限界を調べたものである・使用した3種類の硬度の砥 石の中で,硬度 M の砥石が最も加工限界が広く,つ いで K, P 硬度の順となる. 軟かい K 硬度の砥石で は、テーブル速度の小さいときは、M 硬度の砥石と 大差なく研削可能域も広いが、テーブル速度の増加に つれ、急激に研削可能域がせばまり、テーブル速度の 大きいところで研削焼け、または、表面アラサの悪化 による限界がみられる。これは、おそらく、硬度の低 い砥石は、砥粒保持力がよわいため、砥粒の脱落によ り切欠となるべき砥粒が存在しなくなるため、結合剤 自体と被削材との直接摩擦によるものと考えられる・ M硬度の砥石では,研削音の発生が主たる限界となる. また, P 硬度の砥石は, K, M 硬度の砥石の場合にく らべ、研削可能域はせまく、テーブル速度の小さいと ころでは、機械の出力限界、大きいところでは、研削 焼けの発生が限界となっている。これは、硬度が硬い と砥粒保持力が大きいための砥粒摩耗による研削焼け

		表 1 実 験 条 件				
研削	盤	円筒研削盤 豊田工機 RU28-50 主軸モーター 2.6KW				
砥	石	日本陶器製 19A36K8V 19A36M8V 19A36P8V 外径×幅×内径 ¢305×50×¢125 を幅 25mm に修正				
被削	材	外径×内径×長さ S45C φ90~80×φ50×50 熱処理行なわず HB=152 (平均)				
		砥石回転数 N rpm 1750 一定				
針削条件・要因と水準 () 内の数字は対数変換された恋	A 要因 B 要因 C	水準 19A36K 19A36M 19A36P 水準 低中高 (-1)(0)(+1) 低中高 (-1)(0)(+1) 低中高 (-1)(0)(+1) 低中高 (-1)(0)(+1) 低中高 (-1)(0)(+1) 被削材周速度 vm/min 被削材回転数 n rpm 17 30 53 18 31 55 17 30 53 水準 低中高 低中高 低中高 低中高 (-1)(0)(+1) (-1)(0)(+1) (-1)(0)(+1) 112 200 水準 低中高 低中高 低中高 (-1)(0)(+1) (-1)(0)(+1) (-1)(0)(+1) テーブル速度 f m/min 0.1 0.2 0.4 大準 低中高 低中高 低中高				
<i>変</i> 数	· 要 因	水準 icc 中間 icc 中間 (-1) (0) (+1) (-1) (0) (+1) 砥石切込み Δμm 30 55 100 50 90 160 10 20 40				
研 削 	液 測定	ジョンソンワックス 1.25%液 30l/min ベークライト転写法による				

鹿児島大学工学部研究報告

の発生とみるのが通常であるが、本実験では、砥粒の 摩耗に起因する研削焼けとは考えがたい、一般に、硬 度が高いということは、結合剤の量も多く、従って、 気孔も少ないと考えられ、そのための目つまりによる 摩擦熱が原因と考えられる.このため、P 硬度の砥石 の場合、表1に示すように、採用した砥石切込みは小 さいものにならざるを得なかった。

3.2. 各研削要因の影響

第 22 号 (1980)

研削要因として選定した, A) 被削材の周速度 vm/min, B) テーブル速度 fm/min, C) 砥石の切込み $\Delta \mu m$ の3 要因が, 1) 砥石損耗量 $W_{,mm^3}$, 2) 砥石 損耗速度 $W_{ss} mm^3/mm \cdot sec$, 3) 実削除率 $q mm^3/mm$ · sec, 4) 研削比 G, 5) 研削抵抗 F_i kg, 6) 消費動力 T_{KW} , 7) 研削コスト K円/mm³ に対してどの程度影 響するかを知るために,分散分析(附表 1~7 参照) による寄与率を,各砥石硬度別に纏めて示したのが図 2 である.同図より各要因の影響の程度を知ることは できるが,各要因の変化に対する各測定項目の増減の 傾向は知ることはできない.本実験は,前報同様,直 交実験³⁾ であるので,各要因の各本準における測定値 の平均値でその傾向線³⁾ をとれば,それぞれの要因が 各測定項目の増減の動向に与える定性的傾向を知るこ

58

とができる. これを図3に示す. つぎに各測定項目ご

i) 砥石損耗量 W。について

とに検討を加える・

砥石損耗量は,採用した3要因のうち砥石切込み⊿ の影響が最も大で,各砥石とも約50~60%の寄与率を 示している.ついで,テーブル 速度fの影響が約15~20%前後 あり,被削材周速度vの影響は 殆んどないか,あっても極めて 少ない(図2).テーブル速度 の増加につれ,また,切込みの 増加につれ,いずれの砥石にお いても,砥石損耗量は増加の傾 向を示す.一方,被削材の周速 度の変化に対しては,硬度Mの砥石にのみ増加の傾向がみら れ,他の砥石は影響をうけない (図3. イ, r, n).

ii) 砥石損耗速度 W_{ss} につ
いて

砥石損耗速度は、どの砥石で もテーブル速度を変化させる影 響が大で,約50~35%程度の寄 与率を示す.ここでも被削材周 速の影響はないといえる(図2). テーブル速度,砥石切込みの増 加につれ,砥石損耗速度は大き くなり,同一切込み,テーブル 速度では,当然ながら硬度の高 い方が損耗速度は小さい、(図3. へ).

iii) 実削除率 q について 実削除率に対しては,テーブ ル速度の影響が大きい,P 硬度 の砥石が僅かに切込みの影響が 大きい、いずれの砥石でも被削 材周速度に影響しない(図2). テーブル速度,砥石切込みの増 加につれ,どの砥石においても, 実削除率は増加するが,同一テ ーブル速度,砥石切込みでは, 軟かい順に実削除率が大きい (図3,チ,リ).

iv) 研削比 G について

軟かい、K 硬度の砥石では、テーブル速度の影響が 大きく、他の要因の影響はないが、M,P 硬度の砥石 では、いままで余り影響のなかった被削材の周速の影 響をうけている.これは、被削材周速の増加につれ、 砥石損耗速度がやや増加するのに対し、実削除率はほ

図3 各要因の影響

60

とんど変化しないためと考えられる。また,研削比は, テーブル速度,切込みの増加につれ減少の傾向を示す (図3.ル,ヲ).

v) 研削抵抗 F, および消費動力 T について 研削抵抗,消費動力とも,K,M 硬度の砥石は,テ ーブル速度の影響が大きいのに対し,P 硬度の砥石で は、切込みの影響を大きくうける、図3、(ヲ)から明 らかなように、同一砥石切込みに対して,P 硬度の砥

石はかなり研削抵抗は大きく,その増加率も大きいこ とから,テーブル速度を変化させる影響より切込みを 変化させる影響が大きいようである・

vi) 研削コスト K について

研削コストには,テーブル速度,切込みともに大き く影響する.図3.(ネ),(ナ)をみて,テーブル速度, 切込みの大きい程,研削コストは低くなる.これは, 全コスト中に占める砥石コストは低く(図7参照)人 件費等を含むランニングコストの比重が大きいため, 時間効率を上げた方がよいことを示すものと考える.

以上の図3の傾向線より,前報同様,各砥石別に, 各測定項目に対する各要因の数学モデルを,つぎの 3・3 で推定することにする.

図4は,設定削除率に対する実削除率を各砥石硬度 別に調べたものであり, 軟かい、K 硬度砥石の場合が 最もよい結果を与えており,硬度の高い砥石ほど悪く なり,P硬度の砥石が最も低い結果を示している.同 一切込みに対してもやはり,K硬度の場合が最もよい 結果を示しており,P硬度の砥石が最も低い結果を示 している(図5).

図6は、単位実削除率あたりの消費動力 T/q を、 図3を求めたと同じ方法で調べたもので、T/qは、被 削材周速度には影響されず、テーブル速度、砥石切込 みの増加とともに減少する. K, M 硬度の砥石に対し て、P 硬度の砥石では、T/q はかなり大きい. しか し、砥石切込みの増加につれ、P 硬度の砥石における T/q は急激な減少の傾向をみせる. もし、何らかの 方法で、目つまりによる切込みの低下を防ぐことがで

図6 実削除率当りの消費動力の比較

きれば(例へば、ジェットクーリングによるとか、砥 石組織を粗にするとかの方法で), P 硬度の砥石によ り切込みを大きくした方が得策と考えられる.いずれ にしても、全砥石とも、テーブル速度、切込みともに 大きな条件で研削した方が動力の面では得策であるこ とがわかる.

図7は,研削コストを各研削コスト項目で比較した ものである.いずれの砥石でも,総コスト中に占める 割合はランニングコストが最もその比率が大きい.し たがって,実削除率の大きい研削条件の採用が有利で あることはいうまでもないが,特に,P硬度の砥石で 実削除率の増加に伴うランニングコストの減少割合が 急激にみえるが,座標縦軸のスケールを同一にすれば K,M,P 各砥石ともランニングコストはほぼ同じで, 同一削除率をうるに必要なコストに変りはない. 唯, 硬度の高い砥石の方が砥石コストが低くなることは明 らかである。

3.3. 数学モデルの推定

図3の傾向線より,1) 砥石損耗量 W_s,2) 砥石損 耗速度 W_{ss},3) 実削除率 q,4) 研削比 G,5) 研削 抵抗 F_s,6) 消費電力 T,7) 研削コスト K の各項目 に対する,(A) 被削材周速度 v,(B) テーブル速 度 f,(C) 砥石切込み dの3 要因の関係を,前報同様, つぎの(1) 式で推定できるものとする.

 $f(x) = \xi(v/V)^{\xi} f^{t} \Delta^{v}$ ……(1) ここで, f(x) は, 1)~7)までの各測定項目を表わす. いまここで,この推定した(1)式の妥当性の検討に ついては,前報³¹にて報告したので省略する.

表2は、対数変換された一次モデル(2)式におけ

	砥石硬度	bo	bı	b ₂	b ₃
	K	1. 699**	0.037	0. 189**	0. 347**
砥石損耗量 W.	м	2. 134**	0. 081**	0. 107**	0.386**
	Р	0.963**	-0.056**	0.169**	0. 332**
	к	-1.369**	0.033	0. 509**	0. 349**
砥石損耗速度 W.a	М		0. 080**	0.408**	0. 387**
	Р	-2. 073**	-0.048	0. 443**	0. 306**
	к	-0. 181**	-0.013	0. 296**	0. 257**
実 削 除 率 q	М	-0.021**	0.005	0. 290**	0. 248**
	Р	-0.648**	-0.001	0. 275**	0.311**
	к	1. 181**	-0.047	-0.204**	-0.084**
研削比G	М	0. 897**	-0.076**	-0. 117**	-0.138**
	Р	1. 441**	0. 059	-0. 193**	-0.017**
	к	0.881**	-0.038**	0. 143**	0. 123**
研削抵抗F。	М	1.071**	0.029	0. 171**	0. 147**
	Р	0. 795**	0. 047	0. 225**	0.235**
	к	0. 434**	-0.014	0. 104**	0. 093**
消費動力 T	М	0. 668**	0. 020	0. 121**	0. 100**
	Р	0. 377**	0.028	0. 152**	0. 167**
	к	-1.284**	0.016	-0.284**	-0.247**
研削コスト K	М	-1.425**	0.002	-0.264**	-0. 225**
	P	0.824**	0.006	-0. 273**	-0.310**

表 2 計算された回帰係数と判定結果 砥石 19A36K8V, 19A36M8V, 19A36P8V 被削材 S45C

る各係数とその判定結果である.

 $y=b_0+b_1x_1+b_2x_2+b_3x_3$ ……(2) この表において,推定した係数 b_0 , B および C 要 因に対応する係数 b_2 , b_3 は全て 99%有意となり, 妥 当性が認められるが, A 要因に対応する係数 b_1 には, 砥石損耗量,砥石損耗速度,研削比など砥石側に関係 する項目に1部有意性が認められ,それ以外の実削除 率,研削抵抗 (K 硬度の砥石にだけ例外的に認められ る)消費動力,研削コストには有意性は認められない、 このことは,前報においても同じ結果を示し,したが って,数学モデルの中に,A 要因,即ち,被削材の周 速度を採用したことは無意味であることを示すもので あるが,この要因を数学モデルの中に組入れても,そ の値が小さいため影響が小さく,数学モデルの誤差も 小さい(表3.誤差欄参照). ** 99% 有意

表3は、これら係数より求められた数学モデルの係 数および指数を纏めたもので、この表中の指数評価に より、各要因のおよぼす影響の程度を知ることができ る.

表中,砥石の損耗に関係する項目,砥石損耗量,砥 石損耗速度,研削比など誤差が大きく,特に P 硬度 の砥石についてはかなり大きい誤差を示している。こ れは,砥石損耗量の測定精度に起因するものと考えら れ,砥石損耗測定法の今後の課題となるものと考える。

4. おわりに

 採用した3種類の硬度の砥石では、切込みを大きくできるのは、M 硬度の砥石であり、ついで、 K、P の順となる。

測定項目	砥石硬度	Ę	ζ	μ	ν	誤差%
	К	1. 136	0. 148	0.626	1.328	20. 5
砥石損耗量 ₩。	м	0.956	0. 338	0. 354	1.528	23. 5
	Р	0. 343	-0. 222	0. 562	1. 101	39.4
	К	0.005	0. 131	1.692	1. 333	21. 2
砥石損耗速度 W.3	М	0.004	0. 337	1.355	1.532	23.4
	Р	0.002	-0. 191	1. 470	1.015	39.1
	К	0.051	-0.052	0. 985	0. 983	7.9
実 削 除 率 q	М	0.058	0.019	0.962	0. 984	4.9
	P	0.044	-0.002	0.915	1.033	5.7
	к	8. 632	-0. 187	-0.676	-0.320	21. 2
研削比G	M	13.890	-0.320	-0.390	-0. 547	24.0
	Р	29. 984	-0.234	-0.642	-0.058	36.8
	к	1.354	-0. 149	0. 474	0. 472	12. 0
研削抵抗F.	М	3. 526	0. 123	0. 568	0. 580	14.3
	Р	4. 228	0. 187	0. 746	0. 782	18.6
	К	0.912	-0.055	0. 346	0. 357	11.0
消費動力 T	М	2. 107	0. 084	0. 402	0. 394	9.9
	Р	1. 579	0. 110	0. 504	0. 555	11.4
	К	0. 640	0.062	-0. 944	-0.944	7.4
研削コスト K	М	0. 515	0.007	-0. 877	-0. 891	7.3
	Р	0. 838	0. 025	-0.908	-1.029	5.5

表 3 計算された数学モデル(1)式の係数および指数 砥石 19A36K8V, 19A36M8V, 19A36P8V 被削材 S45C

- P 硬度の砥石切込みを大きくできないのは、目 つまりを起しやすいためと考えられ、目つまり対 策が講じられれば解決できると考えられるため、 組織をもう少し粗にするとか、研削液の供給方法 に一考を要する。
- 3. 採用した3要因のうち,被削材周速度の影響は 殆んどみられず,あっても僅かである.
- 4. 推定した数学モデルは,砥石損耗に関係する項目,砥石損耗量,砥石損耗速度,研削比については,誤差が大きいが,それ以外の項目には充分適用できる。

あとがき

本実験にあたり、砥石の御提供を載いた日本陶器株

式会社に対し厚くお礼を申し上げるとともに, 貴重な 御助言を賜った精機学会重研削専門委員会松尾委員長 はじめ,委員諸氏にお礼を申し上げる.さらに,本実 験に協力された四元正一,豊福暢史両君に対し,また, 種々の点で御協力,御援助を賜った中島繁教授に対し 深甚の謝意を表するものである.

塘 文

- 田中秀穂 円筒重研削における研削要因, 砥粒加工研究 会会報, 22・4 (1979)3 および鹿大工学部研究報告, 第 20号, 20ページ, 昭53-9
- 田中秀穂 円筒重研削における研削要因および数学モデル(第1報) S45C, SCM 3に対する 19A 砥石の場合-精機学会重研削専門委員会講演論文集, 44ページ, 昭 54.5,および鹿大工学部研究報告第21号,43ページ,昭 54.9
- 3) 例へば田口,実験計画法,丸善,1962,15ページ

附 表

各側定項目における分散分析表

1) 砥石損耗量(W.)に対する分散分析表

(1) 19A36K8V

要因	S	ø	v	Fo	р %
Α	165560	2	82780	0.81	
В	1463291	2	731645	7.16	16.5*
С	3889356	2	1944678	19.02	48. 2**
$\mathbf{A} \times \mathbf{B}$	586954	4	146738	1.44	
$\mathbf{B} \times \mathbf{C}$	562925	4	140731	1.38	
A×C	154395	4	38598	0.38	
e	817846	8	102230		

(¤) 19A36M8V

要因	s	ø	v	F.	ρ%
A	35296	2	17648	10.75	4.2**
В	102097	2	51049	31.09	11.8**
С	519838	2	259919	158.29	61.8**
$\mathbf{A} \times \mathbf{B}$	16844	4	4211	2.56	
B×C	116009	4	29002	17.66	13.1**
A×C	32292	4	8073	0.05	
e	13134	8	1642		

(+) 19A36P8V

要因	S	ø	v	F.	ρ%
A	287373	2	143686	1.54	
В	4576038	2	2288019	24.49	18.9**
С	12393100	2	6196550	66.33	52. 4**
$\mathbf{A} \times \mathbf{B}$	3253015	4	813253	8.70	12.4**
$\mathbf{B} \times \mathbf{C}$	1679849	4	494962	5.30	6.9*
A×C	46389	4	11597	0.12	
e	747392	8	93424		

2) 砥石損耗速度(W.s)に対する分散分析表 (1) 19A36K8V

要因	S	φ	v	Fo	ρ%
Α	8856	2	4428	1.43	
В	135248	2	67624	21.91	40. 7**
С	67108	2	33554	10.87	19. 2**
$\mathbf{A} \times \mathbf{B}$	21566	4	5391	1.75	
B×C	49592	4	12398	4.02	11.8*
A×C	9742	4	2435	0.79	
e	24702	8	3087		r.

(¤) 19A36M8V

要因	s	ø	v	F ₀	p %
Α	58602	2	29301	7.15	1.5*
В	959847	2	479924	58.59	33. 8**
С	864919	2	432460	52.80	30. 4**
$\mathbf{A} \times \mathbf{B}$	55026	4	13757	1.68	
B×C	730042	4	182511	22.28	25. 0**
A×C	59383	4	14846	1.81	
e	65528	8	8191		

(*) 19A36P8V

要因	S	φ	v	F ₀	P %
Α	39	2	19	1.27	
В	4101	2	2050	136.67	49.9**
С	1846	2	923	61.53	22. 3**
$\mathbf{A} \times \mathbf{B}$	562	4	140	9.33	6.2**
$\mathbf{B} \times \mathbf{C}$	1467	4	366	24.40	17.3**
$A \times C$	13	4	3	0.20	
e	127	8	15		

3) 実削除率(q)に対する分散分析表

(f) 19A36K8V

要因	S	φ	v	F ₀	ρ%
A	190	2	95	3.96	
В	55281	2	27640	1151.67	48.9**
С	43400	2	21700	904.17	38.4**
$\mathbf{A} \times \mathbf{B}$	373	4	93	3.88	0.3*
B×C	13417	4	3354	139.75	11.8**
A×C	160	4	40	1.67	
е	195	8	24		

(¤) 19A36M8V

要因	S	φ	v	F ₀	ρ%
Α	1296	2	648	2.85	
В	106974	2	53487	236.00	55.3**
С	63434	2	31717	140.00	32. 5**
$\mathbf{A} \times \mathbf{B}$	1233	4	308	1.36	
B×C	16941	4	4235	18.66	8.3**
A×C	950	4	238	1.05	
е	1812	8	227		

(*) 19A36P8V

要因	S	φ	v	F.	ρ%
Α	41	2	20	2.00	
В	6308	2	3154	315.40	37.7**
С	7791	2	3895	389. 50	46.6**
$\mathbf{A} \times \mathbf{B}$	105	4	26	2.60	
B×C	2320	4	580	58.00	13.7**
A×C	35	4	8	0.80	
e	82	8	10		

4) 研削比(G)に対する分散分析表

(1) 19A36K8V

要因	S	φ	v	F ₀	p %
Α	496793	2	248396	0.67	
в	9986509	2	4993254	13.48	50.0**
С	2407120	2	1203560	3.25	
$\mathbf{A} \times \mathbf{B}$	1332934	4	333233	0.90	
B×C	947857	4	236964	0.64	
A×C	357554	4	89388	0.24	
e	2963421	8	370427		

ø

2

2

2

4

4

4

8

v

2767

3302

5174

1124

148

1340

208

F,

15.87

24.88

0.71

5) 研削抵抗 (Ft) に対する分散分析表

(f) 19A36K8V

要因	S	φ	v	F.	p %
A	158252	2	79126	8.25	5.3*
В	1318351	2	659175	68.69	49.0**
С	898878	2	449439	46.84	33. 2**
$\mathbf{A} \times \mathbf{B}$	45720	4	11430	1.19	
B×C	55992	4	13998	1.46	
A×C	95371	4	23842	2.48	
e	76769	8	9596		

(¤) 19A36M8V

要因	S	φ	v	Fo	p %
А	196850	2	98425	2.88	
В	5091562	2	2545781	74.39	52.8**
С	3089836	2	1544918	45.14	Š 1. 7**
$\mathbf{A} \times \mathbf{B}$	120195	4	30049	0.88	
B×C	663399	4	165850	4.85	5.5*
A×C	82085	4	20521	0.60	
е	273793	8	34224		

(*) 19A36P8V

要因	S	φ	v	F ₀	ρ%
Α	72038	2	36019	2.17	
В	2127987	2	1063993	64.06	36.3**
С	2887987	2	1443983	86.93	49.4**
$\mathbf{A} \times \mathbf{B}$	127203	4	31800	1.91	
B×C	359135	4	89783	5.41	5.1*
$\mathbf{A} \times \mathbf{C}$	68109	4	17027	1.03	
е	132884	8	16610		

6) 消費動力(T)に対する分散分析表

(1) 19A36K8V

要因	S	φ	v	Fo	p %
Α	8482	2	4241	4.52	3.4*
В	93019	2	46509	49.58	47.3**
С	62012	2	31006	33.06	31.2**
$\mathbf{A} \times \mathbf{B}$	2226	4	556	0.59	
$\mathbf{B} \times \mathbf{C}$	4237	4	1059	1.13	
A×C	15084	4	3771	4.02	5.9*
e	7510	8	938		

(*) 19A36P8V

要因	S	ø	v	F₀	p %
Α	33681584	2	16840792	26.20	25.6**
В	40528593	2	20264296	31.52	31.0**
С	1769926	2	884963	1.38	
$\mathbf{A} \times \mathbf{B}$	40692628	4	10173157	15.82	30.1**
B×C	2162305	4	540576	0.84	
A×C	2656827	4	664206	1.03	
е	5142852	8	642856		

66

ρ%

17.9**

28.7**

13.30 14.8**

5.40 10.6*

6.44 13.1*

(¤)	19 A 36 M8 V
因	s

3533

6603

10348

4495

593

5358

1164

要因

Α

В

С

 $\mathbf{A} \times \mathbf{B}$

 $\mathbf{B} \times \mathbf{C}$

 $\mathbf{A} \times \mathbf{C}$

е

(¤) 19A36M8V

要因	S	ø	v	Fo	ρ%
Α	14426	2	7213	2.62	
В	381963	2	190982	69.50	53.2**
С	225281	2	112641	40.99	31.1**
$\mathbf{A} \times \mathbf{B}$	8270	4	2068	0.75	
$\mathbf{B} \times \mathbf{C}$	49359	4	12340	4.49	5.4*
$\mathbf{A} \times \mathbf{C}$	6634	4	1659	0.60	
е	21980	8	2748		

(*) 19A36P8V

要因	S	ø	v	Fo	ρ%
Α	719	2	359	1.80	
В	244569	2	122284	614.49	38.5**
С	314380	2	157190	789.90	49.5**
$\mathbf{A} \times \mathbf{B}$	2738	4	684	3.44	
$\mathbf{B} \times \mathbf{C}$	69561	4	17390	87.39	10.8**
$\mathbf{A} \times \mathbf{C}$	882	4	220	1.11	
е	1597	8	199		

(*) 19A36P8V

要因	S	ø	v	F ₀	ρ%
Α	4882	2	2441	2. 27	
В	141339	2	70669	65.68	36.1**
С	195025	2	97512	90.62	50.0**
$\mathbf{A} \times \mathbf{B}$	7586	4	1896	1.76	
$\mathbf{B} \times \mathbf{C}$	23055	4	5763	5.36	4.9*
A×C	5096	4	1274	1.18	
е	8610	8	1076		

7) 研削コスト (K) に対する分散分析表

(1) 19A36K8V

要因	S	ø	v	F,	ρ%
Α	235	2	117	7.80	0.4*
В	28691	2	14345	956.33	49.6**
С	23521	2	11760	784.00	40.7**
$A \times B$	447	4	111	7.40	0.7**
B×C	4631	4	1157	77.13	7.9**
A×C	109	4	27	1.80	
е	125	8	15		

(P) 19A36M8V

要因	S	ø	v	Fo	ρ%
Α	26	2	13	0.40	
В	35999	2	18000	547.43	48.4**
С	28099	2	14050	427.28	37.3**
$\mathbf{A} \times \mathbf{B}$	67	4	17	0.51	
$\mathbf{B} \times \mathbf{C}$	9792	4	2448	74.45	13.0**
$\mathbf{A} \times \mathbf{C}$	59	4	15	0.45	
e	263	8	33		