エアリフトに関する研究 (第1報)

----流動現象と揚水特性-----

松 村 博 久・堀之内 昇 吾* (受理 昭和54年5月31日)

STUDIES ON AIR-LIFT PUMPS (Report 1) Flow Behaviors and Characteristics in Air-Lift Pumps

Hirohisa MATSUMURA and Shogo HORINOUCHI

Relations between the flow pattern and the characteristics of air-lift pumps were analyzed experimentally and the effects of the type of air supply nozzle, length of air-lift pipe and submergence ratio were examined. The air-lift pipe was constructed of transparent polyacrylate pipe with 25.5 mm I. D. and 2.45 m or 4.05 m length. Two types of air supply nozzle, namely the upward and the sideward air injection types, were used.

It was concluded that the characteristics of air-lift pumps could be expressed well in terms of nondimensional numbers such as water Froude number, air Froude number and submergence ratio.

1. 緒 言

エアリフトは、単純な構造である上に機械的可動部 が少ないので、地下水などの揚水および金属に対して 腐食性を持っており、高温度の状態にある特殊液体の 揚液に従来から利用されているが、最近では揚水だけ を目的とするよりも、揚水による固体粒子の輸送にま で用途を拡張してきている.深海底のマンガンノジュ ールの採鉱システムにはエアリフト式、連続ラインバ ケット式および潜水バージ式などの3方式があり、そ れぞれの方式についての開発が進められているが、特 殊船の建造が容易になったことなどから特にエアリフ ト式が注視されている.

エアリフトの揚水特性に関しての実験的研究^{3)7/13)} ¹⁴⁾¹⁵⁾および理論的研究^{3)8/9)}は多数報告されており,実 用面に広く寄与しているが,揚水と同時に固体粒子の 輸送を行う場合には,それらの結果だけでは不十分で ある.エアリフトにおける気体一液体一固体3相の混 相流の研究⁴⁾⁸⁾もいくつかあるが,揚水特性と流動現 象の関係を明確にするまでにはいたっていない.固体

* 株式会社ヤシカ

粒子の輸送特性を解析するためにも流動現象を解明す る必要があり,特に気体一液体2相流における流動現 象が基礎となっている.エアリフト内の流動様式と圧 力損失などに触れている研究¹¹⁾¹⁸⁾¹⁰⁾もわずかにみられ るが,いずれも部分的な現象の観察や考察を行ってい るに過ぎない.

本報告では、エアリフトによる固体粒子輸送の基礎 的研究として、空気一水2相流における流動様式およ びボイド率などの流動現象と揚水特性の関係を実験的 に調べている.供給空気吹込み形式、揚水管長さおよ び浸水率の揚水性能に与える影響についての実験と流 動状態の詳細な観察の結果、いくつかの有意義な知見 が得られたので報告する.

2. 実験装置および実験方法

実験装置の概略を図1に示す. 揚水管(1)には内径 D が25.5 mm で, 長さ L が2.45 m および4.05 m の 2 種類の透明アクリル樹脂管を用いた. 供給空気の揚 水管内吹込みは, 横向き吹込み口と上向き吹込み口の 2 形式で行った. 横向き吹込み口は, 揚水管壁の円周 方向に, 1 列で等間隔に直径1.0 mm の19個の孔を持 ち, それらの孔から水流に直角に空気が吹込まれる.

		COM/LIN
④圧力計	⑤空気流量調節弁	⑥電磁弁
⑦空気流量計	⑧水銀マノメータ	⑨温度計
⑩空気吹込み口	⑪水流量調節弁	12貯水槽
国電磁弁	印 揭水管	19気水分離器
仍水流且計	①自在ホース	®オーバーフロータンク
(1)可動装置	⑳水マノメータ	(2)マノメータ
-		

図1 実験装置の概略

上向き吹込み口は,外径6.0mm,内径4.3mmのス テンレス管で,揚水管下端から揚水管中心に設置され, その管から水流と同方向に空気が吹込まれる.

供給空気は空気圧縮機①で加圧されて、ストレーナ ②、減圧弁③を経て空気流量調節弁⑤で流量を調節さ れ、空気流量計⑦で測定される。制御された空気は逆 止弁を通り、供給空気吹込み口⑩から揚水管に導入さ れる.水は水道より水流量調節弁⑪を通って貯水槽⑲ へ供給され、そこから電磁弁⑲を経て揚水管に流入す る.気水混合流体は揚水管内を上昇して管末端開口部 から気水分離器⑲に入り、ここで分離した空気は大気 に放出し、水は水流量計⑲に導いて揚水量として測定 される。

浸水率 $\sigma(=H_S/L)$ の設定は、貯水槽と連結してあ

るオーバーフロータンク®を利用して, 貯水槽内の水 位を一定にして行った. なお導水管部の電磁弁などに よって生じる圧力損失は, 供給空気吹込み口のすぐ上 流側の圧力を水マノメータ⑳で測定することによって 求め, これを浸水率の補正に用いている. 揚水管内平 均ボイド率は, 流れを電磁弁によりしゃ断された揚水 管内の空気体積から算定された. 供給空気温度は空気 吹込み口の直前で, 揚水温度は水流量計内でそれぞれ 計測されている.

揚水管内の気水2相流の流動状態を電気的触針法で 調べるために, 揚水管上端から750mmと1,050mm の2個所に管壁から電極をそう入してある. 電極は直 径0.8mmのエナメル被覆銅線であり, その先端を 0.1mmだけエナメル被覆をはいで,約5mmの先端 間隔にて2本を対向させてある. 電極からの信号は電 磁オシログラフに記録させている. また揚水管内の圧 力損失は, 揚水管軸方向の500mm間隔で管壁に設け てある静圧孔と連結してあるマノメータの読みから算 出している.

3. 実験結果および考察

3.1. 流動様式について

揚水管内の流動は気液2相流となっているので,流 動現象の肉眼観察ならびに気液両相の挙動の相違によ る電気的容量変化から,流動様式をプラグ流 (P),気 泡流 (B),気泡ースラグ流 (BS)およびスラグ流 (S) の4形式に分類した。図2は肉眼観察によって分類し た流動様式のスケッチであり,図3は図2の流動様式 に対応して触針法による電気的容量変化を電磁オシロ グラフによって記録した例である.

プラグ流は供給空気量の非常に小さい範囲で生じ, 気液界面の滑らかな砲弾形の気泡がほぼ周期的に流動 する.気泡長さは浸水率が小さくなると大きくなる傾 向にあった.さらに供給空気量を増すにしたがって, 横向き吹込み形式の流動様式は気泡流,気泡ースラグ 流を経てスラグ流へと移行したが,上向き吹込み形式 ではプラグ流から直ちにスラグ流へと遷移した.気泡 流は小気泡を管内全体に分布させた流れで,気液の相 対速度が最も小さく,気泡ースラグ流は小気泡の流れ とともに管内径に相当する大きさの気泡が周期的にみ られる流れである.スラグ流は小気泡の含まれた水ス ラグと水スラグ長さの約2~10倍もある空気スラグと

図3 各流動様式の電磁オシログラフ記録例

の交互した流れで、空気スラグと水の界面はやや波立 っており、空気スラグの流れは平均的にみると周期性 を有していた. 特に水スラグ長さに比べて, 空気スラ

グが非常に大きくなったスラグ流はフロス流と呼ばれ, スラグ流と区別されることもある.

3.2. 揚水特性について

揚水可能な最小供給空気量は浸水率が小さくなるに したがって大きくなる. 0.4~0.8の範囲を 0.1 きざみ にとった浸水率について、供給空気量 QGn と揚水量

揚水特性(揚水管長2.45m)

図 5 揚水特性(揚水管長4.05m)

表1 本実験値の記号

Air supply		
sideword	upward	0-
0		0.8
•		0.7
Φ	Ξ	0.6
•		0.5
θ	8	0.4

Q_Lの関係で表わしたのが図4および図5である.図 4は揚水管長さ2.45mの場合で、図5は揚水管長さ 4.05mの場合である.図中の印は吹込み形式と浸水 率をそれぞれ表1に示すように設定した場合の実験値 を表しており、以下の図でも特に説明を加えていない ものは全て同じ印が使用してある.

いずれの揚水管でもそれぞれの浸水率について、供 給空気量を増していくと揚水量も増加し、供給空気量 がほぼ 1,000Ncm³/sec 付近で揚水量は最大値をとる. それ以上は供給空気量を増しても揚水量は減少する. とくに浸水率が小さい場合, 揚水暈最大点からは供給 空気量を増加しても、揚水量はほぼ一定となる傾向が ある. 同一供給空気量における揚水量は浸水率の増加 とともに増える。さらに一定の浸水率および供給空気 量においては、揚水管の長い方が揚水量は多くなる. なお揚水管長さと管径の比 L/D が約400以上になる と、揚水量に与える揚水管長さの影響はないとしてい る結果8)もある。供給空気吹込み形式の影響は小さい ことがわかった。図4および図5には流動様式のおお よその境界と流動様式の記号を記入してあるように, 空気吹込み形式による流動様式の差異がみられるが、 横向き吹込みは気泡-スラグ流からスラグ流へ,上向 き吹込みではプラグ流からスラグ流へ遷移した後のス ラグ流領域で揚水量が最大となっている.

一方従来のように¹⁶),気体の等温圧縮動力に対する 揚水の正味動力(実際に液体の得た動力)の比を揚水 効率 η_Pと定義すると,揚水効率はそれぞれの揚水管 長さごとに図6および図7に示すようになる.これら の図によると,それぞれの浸水率に対して最大揚水効 率を与える供給空気量が存在し,最大揚水効率を示す 供給空気量は横向き吹込みの気泡流から気泡-スラグ 流へ,上向き吹込みのプラグ流からスラグ流への遷移

点附近であることが,図4と図6および図5と図7の 比較からわかる.またその最大揚水効率は,浸水率の 大きい方が大きくなっていることを表している.しか し,最大揚水効率を示す供給空気量よりも空気量を増 加していくと,反対に浸水率の小さい方が揚水効率は 良くなることがわかる.そして揚水効率に与える空気 吹込み形式の影響はほとんど認められないが,揚水管 は長い方が最大揚水効率も大きくなっている.

3.3. 無次元整理について

図4および図5のように,実験値を供給空気量と揚 水量の関係で整理すると,浸水率をパラメータとする 曲線群となる.そこで無次元整理について考察してみ る.揚水管内の気液2相流に作用するおもな力を慣性 力と重力であるとし,供給空気量と揚水量を単位断面 積,単位時間当りのみかけの流速で表すと,それらの 力に与える揚水管径の影響は小さいと考えられる.し たがって,代表速度にみかけの流速ならびに代表長さ に揚水管長さをとった揚水および供給空気のフルード

図8 揚水フルード数と供給空気フルード数の関係

数で、実験値を整理したのが図8である。供給空気吹 込み形式による差異は小さかったので横向き吹込みの 場合を示した。この図に実線で示すように、揚水フル ード数 V_L/\sqrt{gL} と供給空気フルード数 V_{Gn}/\sqrt{gL} の関係は、近似的に円弧で表すことができるので、浸 水率の関数として次の式を得た。

$$\log\left(\frac{V_L}{\sqrt{gL}}\right) = \zeta + \sqrt{\gamma^2 - \left\{\log\left(\frac{V_{Gn}}{\sqrt{gL}}\right) + \xi\right\}^2}$$
(1)

ここに、 V_L/\sqrt{gL} >8×10⁻³ ならびに V_{Gn}/\sqrt{gL} <1.2 の範囲において、

 $\zeta = 0.340\sigma - 2.24$

 $\eta = 1.45\sigma^{0.581}$

 $\xi = 10^{(0.398 \sigma - 0.645)}$

である。

なお現在の一般に実用されている範囲は、 V_L/\sqrt{gL} >2×10⁻² ならびに V_{Gn}/\sqrt{gL} <1.0 であるので、 式(1) は適用範囲にある.式(1) で計算した値と 実験値との比較を図9に示しているが、揚水量の少な い場合には、計算値の方がいくらか大きくなる傾向に ある.図中には従来の他の研究者の結果³⁰¹⁴⁰¹⁶⁰¹⁶⁰ も示 している.また図4および図5にも式(1)の関係を 実線で記入してある.

図9 実験値と計算値の比較

3.4. 流量比と平均ボイド率について

供給空気量と揚水量の和に対する供給空気量の比を 空気体積流量比と呼称する、平均ボイド率 fa と空気 体積流量比 Q_G/(Q_G+Q_L)の関係について, 揚水管 長さ2.45 m の場合を図10に, 4.05 m の場合を図11に 示す。

鉛直管内のプラグ流およびスラグ流における空気ス ラグの上昇速度を与える Nicklin ら¹⁰⁾の式

$$V_{S} = 1.2(V_{G} + V_{L}) + 0.35\sqrt{gD}$$
 (2)

において、右辺第2項は第1項に比べて一般に小さい ので無視すると、この場合の平均ボイド率は次式で表

される。

$$f_{g} = \frac{V_{g}}{1.2(V_{g} + V_{L})} = \frac{Q_{g}}{1.2(Q_{g} + Q_{L})}$$
(3)

図10および図11には、実験値と比較するために式(3) を実線で表してある.

管内を強制流動している気液2相流では,式(3) からある空気体積流量比に対して1つのボイド率を与 えるが,エアリフトの気液2相流ではどの浸水率にお いても,ある空気体積流量比に対して2つのボイド率 を与えることが,これらの図から明らかである。そし て従来からしばしば引用されている式(2)の関係は 実験結果を十分に表現しているとはいえない。供給空 気吹込み形式の影響を同じ空気体積流量比に対する平 均ボイド率について見ると,プラグ流および気泡流領 域では上向き吹込みよりも横向き吹込みの方が大きく なっているが,気泡ースラグ流およびスラグ流領域で は反対に上向き吹込みの方がいくらか大きくなってい る.

3.5. 摩擦圧力損失について

揚水だけが管内を満して流れると仮定した摩擦圧力 損失と気水2相流の摩擦圧力損失の比を圧力損失倍率 と呼ぶことにする。図12および図13は、圧力損失倍率 $\Delta P_T/\Delta P_L$ と平均ホールドアップ(1- f_a)との関係

図12 圧力損失倍率(揚水管長2.45m)

図13 圧力損失倍率(揚水管長4.05m)

を, 揚水管長さ2.45 m および4.05 mのそれぞれについて示している. これらの図には比較のために, 管内を強制流動する気液2相流から得られた赤川口 および勝原⁵⁾の次の関係式も表してある.

$$\Delta P_T / \Delta P_L = (1 - f_G)^{-m}$$
 (4)
ここに、m=2.0 (赤川による)、あるいは m=1.75
(勝原による) である.

平均ホールドアップの大きい範囲の圧力損失倍率が非 常に大きくなっているのは,図10および図11における プラグ流領域のものであり,これらの領域のものは揚 水量および揚水効率も小さいので,実際のエアリフト 運転の条件には不都合である.したがってこれらの点 を除いて考えれば,実験結果は図9に表したように± 20%の範囲でほぼ整理できることがわかった.

4. 結 言

エアリフトによる固体粒子輸送の基礎的研究として, 揚水管内の気水2相流の流動現象と揚水特性を実験的 に解析し,以下の結論を得た.

1)供給空気吹込み形式の相違により流動様式の領域が異なり、横向き吹込み形式は気泡ースラグ流から スラグ流へ、上向き吹込み形式はプラグ流からスラグ 流へ遷移した後のスラグ流領域において、最大揚水量 を与えた.

 2)供給空気量がある値(内径25.5mm管について, ほぼ 1,000 Ncm³/sec)で最大揚水量を示し, 揚水管 長さおよび浸水率は大きい方が揚水量を多くした.

3) 揚水効率は、横向き吹込み形式の気泡流から気 泡ースラグ流および上向き吹込み形式のプラグ流から スラグ流への遷移時が最大を示した。最大揚水効率は 揚水管長さおよび浸水率が大きいほど大きかった。

4) 代表速度にみかけの流速および代表長さに揚水 管長さをとったフルード数と浸水率の関係式(1) は 実験結果を良好にまとめた.

5) エアリフトによる固体粒子の輸送には,1),3) で述べた最大揚水量あるいは最大揚水効率を与える流 動様式を利用すればよいことが推察できた。

終りに本実験に協力を得た落合秀志, 宮里和彦およ び森永洋一郎の各氏に謝意を表します.

記 号

- D : 揚水管の内径, m
- fa : 平均ボイド率, 無次元
- g : 重力の加速度, m/sec²
- H_d : 吐出し揚程, m
- *Hs* : 浸水深さ, m
- L : 揚水管長さ, m
- *m* : 式(4)における定数, 無次元
- △P_L: 水単相流における単位長さ当りの摩擦圧力 損失, kg/m²
- △P_T: 2 相流における単位長さ当りの摩擦圧力損 失, kg/m²
- *Q_G* : 供給空気量, m³/sec
- Q_{Gn} : 標準状態に換算した供給空気量, Nm^3/sec
- *Q_L* : 揚水量, m³/sec
- V_G : みかけの空気流速, m/sec
- *V_{Gn}*: 標準状態に換算したみかけの空気流速, m/sec
- V_L : みかけの水流速, m/sec
- V_s : 空気スラグの上昇速度, m/sec
- ζ : 式(1)における浸水率の関数, 無次元
- η : 式(1)における浸水率の関数, 無次元
- η_P : 揚水効率, 無次元

- ま : 式 (1)における浸水率の関数, 無次元
- σ : 浸水率,無次元

exp: 実験值

文

添字; cal : 計算值

献

- 赤川:気水混合物の流動,第3報 水平管および 傾斜管上向流における摩擦損失,日本機械学会論 文集,23,128,292,1957.
- Hjalmars, S.: The Origin of Instability in Airlift Pump, Trans. ASME, 95, (1973), 399.
- 井伊谷:小型揚水用エア・リフト・ポンプの性能, 化学機械, 16, 4, 111, 1952.
- 4) 井伊谷・木村: 揚液用エア・リフト・ポンプの性 能実験,化学工学,18,12,586,1954.
- 勝原:気水二相流の摩擦損失に及ぼす管内面あら さの影響,日本機械学会論文集,24,148,1050, 1958.
- 川島・野田・益山・尾田: エアリフトポンプによる固体粒子の水力輸送,日本鉱業会誌,91,1054,765,1975.
- 7) 三谷・有江:気泡ポンプの揚水特性,第1報 揚 水基礎式の定式化について,北海道教育大学紀要, 25, 1, 1, 1974.
- 8) 三谷・有江:気泡ポンプの揚水特性,第2報 効 率式の定式化と設計手順について,北海道教育大 学紀要,26,1,27,1975.
- Nicklin, D. J.: The Air-Lift Pump, Theory and Optimisation, Trans. Inst. Chem. Engrs., 41, (1963), 29.
- Nicklin, D. J., Wilkes, J. O. and Davidson, J. F.: Two-Phase Flow in Vertical Tubes, Trans. Inst. Chem. Engrs., 40, (1962), 61.
- 11) 岡山・八木: エアリフトの揚水特性について,港 湾技術研究所報告, 12, 3, 261, 1973.
- 12) 岡山・八木・佐藤: エアリフトの揚水性能式に対 する一考察, 港湾技術研究所報告, 13, 3, 69, 1974.
- 13) Richardson, J. F. and Higson, D. J. : A Study of the Energy Losses Associated with the Operation of an Air-Lift Pump, Trans. Inst. Chem. Engrs, 40, (1962), 169.
- 14) Stenning, A. H. and Martin, C. B.: An Analytical and Experimental Study of Air-Lift Pump Performance, Trans. ASME, 90, (1968), 106.
- 15) 藤・佐藤・本田:気ほうポンプの揚水特性,日本 機械学会論文集,38,312,2085,1972.
- 16) 山内: 空気揚水ポンプに関する研究,工学院大学 研究報告, 8, 60, 1960.