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There are many papers which deal with problems of the dynamic stability in elas
ticity under periodic force. In these systems, the deformation before instability is sym
metric deformation and the deformation after instability is asymmetric deformation.

In conventional treatment of the systems, the symmetric deformation modes are
assumed to be solved under separate variables from the asymmetric deformation modes.
Assuming separate variables, the symmetric deformation modes are solved with linear
terms, then these solutions are substituted into the equations of motion corresponding to
the asymmetric deformation modes. The derived Mathieu-Hill equations are treated as
the basic equations for the dynamic stability under periodic force.

In this paper the approximate procedure is not adopted, but the nonlinear equations
of motion where the symmetric and the asymmetric deformation modes are coupled are
analyzed by applying the method of harmonic balance.

Introduction

There are many papers which deal with problems of the dynamic stability in
elasticity under periodic force. In these systems, the deformation before instability is
the symmetric deformation (axial deformation in rods, inplane deformation in plates,
symmetric deformation in arch, ring and shells), and the deformation after instability is
the asymmetric deformation (bending deformation in rods and plates, asymmetric deforma
tion in arch, ring and shells). If the equations of motion are derived by considering the
finite deformation theory in elasticity, the symmetric and the asymmetric deformation
modes are coupled through nonlinear terms of spring. Then, applying periodic force with
symmetric mode, weget the equations of motion which have external periodic force terms,
and the symmetric and the asymmetric deformation modes coupled in nonlinear spring
terms.

In conventional treatment of the systems, the symmetric deformation modes are
assumed to be solved under separate variables from the asymmetric deformation modes.
Assuming separate variables, the symmetric deformation modes are solved with linear
terms, then these solutions are substituted into the equations of motion corresponding to
the asymmetric deformation modes. The derived Mathieu-Hill equations are treated as
the basic equations for the dynamic stability under periodic force.

In this paper the approximate procedure is not adopted, but the nonlinear equations
of motion where the symmetric and the asymmetric deformation modes are coupled are
analyzed by applying the method of harmonic balance. Then, the obtained results are
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compared with the results which are obtained by adopting the conventional approximate
procedure.

In order to examine whether the obtained solutions are stable or unstable for

disturbance, the complex eigenvalue problem is solved.

In the last, an approximate method to solve a sort of nonlinear equations of motion
is proposed. By applying the method, some nonlinear vibrations are analyzed without
solving nonlinear algebraic equations by iteration procedures such as the Newton-Raphson
procedure.

1. The Equations of Motion with Two-degree-of-freedom

The elastic system under periodic force with symmetric deformation mode in which
we consider the symmetric defomation mode (xx) and the asymmtric mode (x2) is govern
ed by the following equations;

Xx+tolXx+axxl+2a2x1x\ +a3x\ +aixl=fl cos cot, (1.1-a)
x2+co22x2+2a1x1x2+2a2x21x2+a5xi=0. (1.1-b)

The axial deformation mode CO and the bending deformation mode (x2) in rods,
the inplane deformation mode (xx) and the bending deformation mode (x2) in plates, the
symmetric deformation mode (xx) and the asymmetric deformation mode (x2) in arches16)17)
and ring, and the deformation mode for n=0 (xj and the mode for n=rn(nt*0)(x2) of
shells of revolution14* (where n means harmonic number in circumferential direction of
the shells) are all expressed by Eq. (1.1). So in this paper Eq. (1.1) are considered.

Assuming Eq. (1.1-a) is solved statically and linearly, normal mode xx* is given by

x1*=^coscot (1.2)
Substiuting Eq. (1.2) into Eq. (1.1-b), we obtain the following equation:

x2+(cD22 +2a1- |̂-cos a)t)x2+a5xi=0 (1. 3)
CO\

where the coefficient a2 is assumed to be zero. In the conventional treatment of the
dynamic stability in elasticity, the quadratic order terms of the deformation before insta
bility are neglected. Now, assuming Eq. (1.1-a) is solved linearly, normal mode xx* is
given by

x*= 2 2cos cot (l, 4)co\—co2 \*-*J

Substituting Eq. (1.4) into Eq. (1.1-b), we obtain the following equation corresponding
to Eq. (1.3)

x2+ (co22 +2tt, y1 2coscot)x2+asx\ =0. (1.5)
CO\ —CO '

In the problems called the dynamic stability in elasticity under periodic force, the
Mathieu-Hill equations expressed in Eqs. (1.3) and (1.5) are treated as basic equations of
them. Many authors5)~12) who investigated the problems based on the Mathieu-Hill equa
tions corresponding to Eq. (1.3), where not only the dynamic response before instability
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but also the influence of nonlinear spring terms are neglected. Bolotin1* and Koval9) in
vestigated the equations corresponding to Eq. (1.5), which include the linear response
before instability.

In this paper Eq. (1.1) is solved by the method of harmonic balance, which makes
clear the influence of nonlinear response before instability and the nonlinear vibration
after instability15). The results are compared with the results which are obtained by
applying the conventional treatment.

2. Investigation of Stability of Periodic Solutions

Assuming periodic solutions (jc0(O) corresponding to undisturbed motion are obtained,
the variational equations for disturbed motion are expressed in the form

5i+a>!f4+2fli/(x0)fi=0(i=l-») (2.1)

where x0={x°1x% #X}
x\(i)=x\(t+T): periodic solutions,
$i=dxi: variations,

Hii(Xo): periodic functions.
Particular solutions of Eq. (2.1) are expressed in the form1)2)

e*=*"*i(*)(*=i. ,») C2-2)

where ju is the characteristic exponent and 0,(f) are periodic functions with period T.
The periodic functions 0«(O are assumed in the form

0i(O =Ci0/2+S(Cifc cos-^-*+5« sin-^-O. (2.3)
Substituting Eqs. (2.2) and (2.3) into Eq. (2.1) and equating the coefficients of

identical e^smcot, e* cos cot (co^kn/T), the following equations are obtained:

lju2I+juC+KHy}=0 (2.4)

where {y} = {C1QCnS11 }.
In order for Eq. (2.4) to have nontrivial solutions, the following complex eigenvalue

problem is obtained:

detl/i2I+juC+Kl=Q. (2.5)

When the variational equation is expressed as the Mathieu-Hill equation with one-
degree-of-freedom, Hayashi2) approximately applied the following condition for stability
of the undisturbed periodic solution:

det K>0: stable, det A<0: unstable. (2.6)

But in this paper the equations of motion with multi-degree-of-freedom are inves
tigated, so the complex eigenvalue problem defined in Eq. (2.5) is solved to examine
the stability of the undisturbed periodic solutions. In this case the following condition is
applied.
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ReviSO (i=lf ,2«): stable,

Revi>0 /<={G| 1,2, , 2n\ :unstable. (2.7)

3. Numerical Analysis

Shallow arch models are used as the system governed by Eq. (1.1), because the
coefficients of Eq. (1.1) for the shallow arch16)17) are explicitly calculated

co?=H-iy2/2,a1=-^a2 = l/2,

co22=16, a3=-3H/4, a4=l/4,a5=4 (3.1)

where normal modes xx and x2 correspond to the first and the second mode of the arch,
respectively, and H means the nondimerisionalized arch rise.

Let #=10, A=30 in Eq. (1.1), the solutions of Eq. (1.1) are assumed in the form

Xi= C10/2+Cn coscot,

x2 =C2Q12+C21cos-rrcot +S21 sin-g-cot +C21 cos cot+S21 sin cot. (3.2)

Since x2 in Eq. (1.1-b) has the trivial solution, Eq. (1.1) is solved under x2=0.
The resonance curve in this case is shown in Fig. 1. On the resonance curve shown in
Fig. 1, there are four branching points, and from these points nontrivial solutions of x2
branch out. Then, for the case x2 has nontrivial solution, the resonance curves of Eq.
(1. l)are shown in Fig. 2. From the points Pl9 P2 (denoted in Fig. 2), the vibration component
C2i branches out. The component S21 bifurcates from P3, and the components C20 and
C21 branch out from P4.

——:xi(x2=o)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 «M

Fig. 1 Resonance Curve of the Symmetric
Mode xlf (Symmetric Force).

Max.xi

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0o>M

Fig. 2 Resonance Curves of the Asymmetric
Mode x2, (Symmetric Force).

Then, we will investigate the stability of the periodic solutions shown in Fig. 2.
For the variational equations of Eq. (1.1), periodic solutions in Eq. (2.3) are assumed in
the form

0i=Cio/2+C11 cos cot+ Sn sin cot,

02=C2O/2+C2icos-2-^+52isin-

Substituting Eqs. (2.2) and (3. 3) into the variational equations, the eigenvalue problem

02=C2O/2+C2icos-2-^+52isin^-^+C21 cos cot +Sn sin cot. (3.3)



On the Strict Treatment of the Dynamic Stability in Elasticity under Periodic Force 119

corresponding to Eq. (2.5) is obtained. The result of the stability of periodic solutions is

shown in Fig. 3, where Det means detK in Eq. (2.5). The resonance curve for xx{x2=^)

is stable in the region of cojco^ for (0, P4), (P3, P2), (Plt oo). The branching resonance

curve from Px is stable, and the other branching resonance curves are unstable. And the

sign of detK in Eq. (2.5) are shown in Fig. 3.

Max.xi

S : stability (Det>0)

I+: instability (Det>0)

I": instability (Det<0)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0«M

Fig. 3 Stability of the Periodic Solutions
in Figs. 1 and 2.

4. Comparison of the results

In this section the results shown in the section 3 are compared with the results obtained

by applying the conventional treatment. The main instability region is shown in Table
1. Table 1 shows that the dynamic response before instability should be considered to
analyze the dynamic stability of the shallow arch model adopted in this paper. The
difference between the results of Eqs. (1.5) and (1.1) is caused by the nonlinear response

before instability and the influence of a2 in Eq. (1.1-b).

Table 1

a>/ Q) i

Mathieu-Hill Equation (Eq. (1,3)) 0.89K < 1.310

Mathieu-Hill Equation (Eq. (1,5)) 0.660< < 1.349

present (1,1)) 0.630< < 1.337

The Width of the Region of Main Instability,
(The First-order Approximation).

Then, the behavior after instability is investigated,

cedures to analyze the behavior.

1. Procedure 1

In this procedure Eq. (1.1) are dealt in the form

xx+ coIxx4-axx\ =/i cos cot,

x2 + co\x2+2alxlx2=0

The solutions of Eq. (4.1) are assumed in the form

Bolotin1* described two pro-

(4.1)
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^i=C,10/2+C11cosa>^>

a:2=:^42cos-2-<w^ or A2 sin-o-atf.

ft m 21 ^ (1979)

(4.2)

Substituting Eq. (4.2) in to Eq. (4.1) and applying the condition A2**Q, we have the
following equation:

A2_co\(AcoVcol-v2)q-v2)±4a1f1
*2~ 2(1-2**) (4.3)

where 7}=co/col.

Let #=10, /i=30, the value A2 calculated by Eq. (4.3) is shown in Fig. 4 by the solid
lines, where the dotted lines are corresponding to Fig. 2.
2. Procedure 2

Bolotin1* also showed the procedure to determine the steady-state amplitude after
instability. In this case the following Mathieu-Hill equation was dealt:

x2+Q\ (l-2u cos cot)x2+a5xl =0. (4.4)

The solution x2 to Eq. (4.4) was assumed in the form

x2=a sin-o-a>*+£ cos-n-cot. (4.5)

Substituting Eq. (4.5) into Eq. (4.4) and assuming abs=0, the following equation was
obtained

A2=
2Q

«/3<
2 I CO2 - _,

(4.6)

where A2=+/a2+b2.

Instead of Eq. (1.4), xx is assumed as xt=C?0/2+C*n coscot, then coefficients in Eq. (4.4)

corresponding to Eq. (1.5) are obtained

ju^-a&JQl. (4.7)

As the values C*10 and C*n, what are obtained at branching points Px and P2 in Fig. 2

Max.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 oj/u>x

Fig. 4 Resonance Curves after Instability
Obtained by the Conventional Tre
atment 1.
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Obtained by the Conventional Tre
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Fig. 5



On the Strict Treatment of the Dynamic Stability in Elasticity under Periodic Force 121

are used. Then A2 in Eq. (4.6) is calculated and shown in Fig. 5 by the solid lines.
Then, the stability of the solution xx shown in Fig. 1 is investigated by assuming

the following periodic functions corresponding to Eq. (3. 3):

0i==C1o/2+C11 cos cot-\-Sn sin cot,

02=O. (4.8)

In this case, it is well-known that the sign of det K is expressed as shown in Fig. 6.

*.xi(x2 —0)
Det=det K

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 »M

Fig. 6 Stability of the Periodic Solution
of the Symmetric Mode xx.

Comparing the results of Figs. 4,5 with Fig. 2, there is substantial difference in the
steady-state amplitude after instability for the same elastic systems. Then, it is clear
that we may consider the equation (such as Eq. (1.1)) where the symmetric and the asym

metric modes are coupled in elasticity instead of the Mathieu-Hill equations (such as Eqs.
(1.3), (1.5)), in order to determine the steady-state amplitude after instability. Espe
cially, the elastic models where prebuckling deformation may have great influence on the
buckling load of the systems in static analysis, should be investigated with the coupled
equations.

Comparing the results shown in Fig. 3 with Fig. 6, we have the following conclusion.
The stability of the periodic solution cannot be investigated by the procedure determining

the sign of detJ?, and has to be concluded by solving the complex eigenvalue problem
given by Eq. (2.7).

5. Proposal of an Approximate Procedure to Solve Nonlinear Vibrations

When we write resonance curves of a nonlinear system, we generally have to solve

nonlinear algebraic equations with iteration methods. Here an approximate method to
solve nonlinear equations of motion without iteration method is proposed.
Considering normal mode xx in Eq. (1.1), the following equation is obtained:

xx+ co\xx+ azx\ +a4x\ =/i cos cot. (5.1)

The solution of Eq. (5.1) is approximately assumed in the form

x^do/2+Cu cos cot. (5.2)
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Substiuting Eq. (5.2) into Eq. (5.1) and equating each harmonics, the following nonlinear
algebraic equations are derived:

a%^5C10+^(C102+C112)+-^-(2C103+3C10C112)=0,

(a>i-6>2)C11+a8C1oC11+-j-a4(C102C11 +C113)=/1.

(5. 3-a)

(5. 3-b)

If co is selected as a parameter, C10 and Cn are not expressed by the parameter. But
selecting C10 as a parameter, Cn2 is solved from Eq. (5. 3-a) in the form

C 2
4co\C10+2cz3C102+a4C103

2(2a3+3a4C10)

From Eq. (5.3-b), the frequency co2 is derived

co2=w\+a3C10+^a4(Cl02+Cn2)--^.
Then, Cn and co2 are expressed by a parameter C10. But in Eqs. (5.4) and (5.5), Cn=
0 and Cn=oo have to be excepted, so the proposed approximate method cannot be
applied in the case

4a>?C10+2a3C102 + a4C103=0,

2a3+3a4C10=0. (5.6)

When Eq. (5.6) is satisfied, the potential curve which is defined in the following equation

V(xx) =J*1 (col$+a3$2+a4e)de

(5.4)

(5.5)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 w/o^

Fig. 8 Resonance Curves of the Symmetric
Mode xi.'.Approximation

I Precise Solution19)

Fig. 7 Backbone Curves (H=3).
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has a symmetric axis.19)

Let's apply the approximation method to some cases where Eq. (5.6) is not satisfied.
1) Free vibration (f,=0 in Eq. (5.1))

Backbone curve of the shallow arch with H=3 is shown in Fig. 7 by the solid line.
The dotted line in Fig. 7 is the precise solution19) which is solved by assuming

x1=C10/2+ S Clk cos kcot. (5. 7)
*=i

2) Forced vibration

Applying the approximation method to the shallow arch with H=3, /i=l. 68, the

resonance curve is obtained and shown in Fig. 8. And the resonance curve shown in

Fig. 1 for the model 11=10, /i=30 is obtained without iteration method.

3) The boundary region of instability

The solution xx solved from Eqs. (5.1), (5.2) is denoted as #?, then Eq. (1.1-b) is
given by

x2+ {co\ ^-2a1x\^2a2x\2)x2-\-a^x\ =0 (5.8)

Here, Eq. (5.8) is rewritten in the form

x2+Q\ (1—2jux cos cot—2/x2 cos 2cot)x2+asxl =0 (5.9)

where Q\ =col +a1C10+ a2C1Q2/2+a2Cn2,

Vi=—Cn («! 4-oc2C10) IQ\,

ju2=-a2Cn2/(4ai).

The odd regions of instability of Eq. (5.9) satisfy the following equation;

the first approximation;

Detx= (1+^-^) (1-Mi-jgi) =0. (5.10-a)
the second approximation;

9o>2Det13= {(1+Ai-j£|)CL-EJi) " Oii+Md1}

x{a~^-m)a'm)~(jUl~JU2y}=z0' (5.10-b)

For the even regions of instability of Eq. (5.9), the following equation is obtained as

the first approximation;

Det2=a+M2-^)a-V2-^-2ju2i)=0. (5.11)
Let H=10, /i=30 for the shallow arch, #?(C10, Cn and co) is determined by Eqs. (5.4)

and (5.5), then Detlt Det13 in Eq. (5.10) and Det2 in Eq. (5.11) are calculated and

shown in Figs. 9, 10 and 11. The point which satisfies Det^O in Fig. 9 has the same

frequency as the point P± in Fig. 2.

The point satisfies Det13=0 in Figs. 9, 10 is corresponding to the branching point which

is obtained by assuming the following solution in Eq. (1.1):
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-o.i-

Fig.9 Det2 and Det13 (1). Fig. 10 Deti and Deti8, (2)

-o.

Fig. 11 Det2.

#i = Cio/2+Cn cos cot,

x2=C2Q/2+C1i cos-2~o>^+ S1^sm-2-cot+C21 cos cot

3 3+ S21 sin cot+C2 3cos-g-oj* 4- 521 sin-Tpwtf. (5.12)

And the difference of Detx=0 and Det13=0 is caused by the influence of higher har
monics of x2.

The points which satisfy Det2=0 in Fig. 11 have the same frequencies as the points
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P3 and P4 in Fig. 2. Then, if the proposed approximate method is applied to Eq.
(1.1), the branching points for x2 are determined withoht iteration method.

4) The branching point for subharmonic oscillations
In order to determine the branching points for subharmonics in Eq. (5.1), the following
approximate method may be applied.
Let's consider the branching points for 1/2-subharmonics, and the solution xx of Eq.
(5.1) is assumed in the form

jt:1=C10/2+Ci^ cos~2~cot+ S±i sin-grarf+Cn cos cot. (5.13)

The nonlinear algebraic equations obtained by substituting Eq. (5.13) into Eq. (5.1)
are solved on the condition C2£=Si i=0. The conditions which correspond to the
branching points for Cji or S^ are expressed in the form

co\^\+«3(C10±Cn) +-j-a4(C 102 ±2C10Cu+2Cn») =0. (5.14)

From Eq. (5.14), the regions of instability (branching points) for 1/2-subharmonic
oscillations satisfy the following equation:

^^={o>!-^+a3(C10+Cn)+-|-a4(C102+2C10C11+2C112}

x{a>21-^+a3(C10-C11)+^-a4(C102-2C10C11+2Cll2}=0. (5.15)
Let H=3, fx=1.68 for the shallow arch, Deti is plotted in Fig. 12.

Meanwhile the branching resonance curves which are obtained from Eq. (5.1) by
assuming the solution of Eq. (5.13) for the same shallow arch are shown in Fig. 13.19)
From the points Px and P2, the vibration components Cti and S±i are respectively

branching out. The proposed method can be applied to determine the instability
region of any other subharmonics of Eq. (5.1).

xio-2:c10
DetK

<0.6

'0.4

(0.2

Cio -

Det^

cO.O ^^TsH) 1.95^ 2JP^ 2.05 2.1

-0.2

Fig. 12 Det1/2.

Max.xi
cI+.sl+

Fig. 13 Resonance Curves of 1/2-subharmonic
Oscillation.
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