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Abstract
Let D be a union of eth cyclotomic classes . We shall give necessary
and sufficient conditions that the subset D becomes a (g, k, A, u)-partial
difference set.
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1 Introduction

We recall the definition of partial difference sets

Definition. Let G be an additive abelian group of order v and D be a subset
of G with k elements. Then D is called a (v, k, A, u)-partial difference set(PDS)
if the expressions gh™!, for g and h in D with g s h, represent each nonidentity
element in D exactly A times and represent each nonidentity element not in D
exactly p times.

Proposition 1 (Ma) If D is a (v,k, A\, pn)-PDS with A\ # p, then D~! = D,
where D™ = {d~! € G|d € D}.

2 Group algebra

Denote the integer ring of cyclotomic field of the eth root of unity by O,.. Let
F be a finite field and F'* be its additive group . For our discussion, it will be
advisable to use group rings and thus to think of F'+ as a multiplicatively written
group. We consider the group ring ® = O.F. An element of R takes the form
Y ack Cat. We regard the element Y acr Cat in R as a function f: f(a) = ¢,
defined on F' with values in O,. For a subset S of F' we use the same symbol
S to denote the characteristic function of S, i.e., § = Zae g a and denote by

0 = {0} the characteristic function of 0. The conjugate f of f is denoted by
f(a) = f(—a). Before concluding this section, we note that for f, geR,

Frgla) =) f(B)gla—B),
BEF

where * denote product in the group ring R.
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3 Cyclotomic classes

Let ¢ = p7 = ef + 1 where p is a prime and let w be a primitive element in
F = GF(q). Then the eth cyclotomic classes Cy,C1,...,C._; are defined by

Ci = {w*ts=0,...,f—1}.

Note that the elements of Cy are called the eth power residues, and {Cy, C1,...,Ce_1}
is a partition of F' — {0}.

4 Jacobi sums over a finite field

Let x be an eth power residue character, i.e., x(w) = (™ where (, is a primitive
eth root of unity and m is a nonnegative integer. We let x(0) = 0. For the eth
power residue characters x; and ys we define the Jacobi sum as follows:

T(x1:x2) = Y x1(@)xa(l ~ ).

«EF

The Jacobi sum 7(x1,x2) for the eth power residue characters yi, Y2 is an
integer of the cyclotomic field of the eth root of unity.
The following are well known.

Theorem 1 For the eth power residue characters, the following relations on
Jacobi sums are satisfied:

(1) 7(x1, x2) = 7(x2, x1)-

(i) 7(x1,x2) = x(=1)7(x1, X1X2)-
(iii) 7(x0,X0) = ¢ — 2.

(iv) m(x.x0) = —1 for x # xo-
(v) 7(x;x) = —x(=1) for x # xo-

(vi) If x1,x2 and x1x2 are nonprincipal characters, then

W(X1$X2)7T(X1,X2) =4q.

5 Lemmas

The following are useful.

Lemma 1 Let x be a primitive eth residue character. Then we have

C 16*1 —lim_m
ZZEZCC X"

m=0
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Proof. See [4]. O

Lemma 2
X X™ =™ x T+ (g = 1)14m, 00,

where
5 ! when | +m = 0(mod e),
Hm. 0 =19 otherwise.

Proof. See [4]. O
Lemma 3 x! (0 <t <e—1) and O are linearly independent elements of R.

Proof. See [4]. O

6 Main theorem

Let AC {0,1,...,e—1} and D = U;c 4C;. When we put §A = s, then §D = k =
fs. We now give necessary and sufficient conditions that the subset D becomes
a (g, k, A\, pu)-PDS.

Theorem 2 The subset D of F' becomes a (q,k,\, u)-PDS if and only if the
following equations are satisfied:

(i) k=s(¢g—1)/e.
(ii) p+s(A—p)/e=(—es+ (g —1)s%) /e

(iii) A—p)w = (1/e) S0 wmwi—mm(X™, x™) for allt, 1 <t < e—1, where
Wi =3 e n G

Proof.
The necessary and sufficient condition that the subset D of F becomes a
(q,k, A\, u)-PDS is that the equation

D*ﬁ:uX0+()\~[L)D+kO (1)

is satisfied.
Suppose that equation (1) holds.
From Lemmas 1 and 2,

D =

Q| -~

5 (5o

m=0 \l€A

e—1
- ) wnx™ (2)
m=0

| =

o
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e—1 e—1

DxD = BZZZwlme x X

=0 m=0
e—1 e—-1

- o2 Z Z LUl’wm ? X—l—m)Xl+m + (q - 1)6l+m,00)

=0 m=0
e—1 e—1

—l—m l+m
= S wwnrl X

=0 m=0

>—1
1 e
+ Eﬁ(q - 1) Z wmw—mo

m=0
1 e—1 1
m -t t
= —B—EZ wmwt_mﬂ'(x , X )X
t=0 0

=0 m=

e—

e—1
1
s DY w0 5

m=(

On the other hand, we have

Swmww = i Zc;“") (Zc‘;"m>

m=0 m=0 \l€A

e—1

= Q. e=es (4)
leA
By (2), (3) and (4)
1 e—1 e—1 ] o1
o2 Z Wi we—mm(X™, X )X+ (q 1)es0 = pxo+(A— ,u) Z Wi X™ +k0
(=0m=0 ¢ m=0

(5

By considering the coefficient of x*(¢ # 0) in (5), we get (A — plw, =
(1/e) Zf,:lo Wi Wi—m (™, x 7! forallt, 1 <t <e-— ] This proves (iii). Simi-
larly by considering the (oefﬁment of 0 and that of x° in (5), we obtain (i) and
(ii), respectively.

Suppose that equations (i), (ii) and (iii) are satisfied. From Lemma 3 it
follow that equation (1) holds. This completes the proof of Theorem 2. [J

We note the following;

~—

X7 = XDy ox 7Y
X", x7h) when —1 € Cj
7T(X X7 when —1 ¢ Cj.

t—m

m(x
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If ¢ is odd, then the above fact implies that an;lo Wi wWi—mm(x™, x"t) = 0. So
we have

Lemma 4 Ift is odd, then w; =0

Proof. Because A # p. O
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