Partial difference sets and Jacobi sums

著者	Atsumi Tsuyoshi
journal or	鹿児島大学理学部紀要=Reports of the Faculty of
publication title	Science, Kagoshima University
volume	36
page range	11-15
URL	http://hdl.handle.net/10232/00000237

Partial difference sets and Jacobi sums

Tsuyoshi Atsumi

Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University, Japan

Abstract

Let D be a union of eth cyclotomic classes . We shall give necessary and sufficient conditions that the subset D becomes a (q, k, λ, μ) -partial difference set.

Key words: partial difference set, Jacobi sum, group algebra, cyclotomic class, residue character

1 Introduction

We recall the definition of partial difference sets

Definition. Let G be an additive abelian group of order v and D be a subset of G with k elements. Then D is called a (v, k, λ, μ) -partial difference set(PDS) if the expressions gh^{-1} , for g and h in D with $g \neq h$, represent each nonidentity element in D exactly λ times and represent each nonidentity element not in D exactly μ times.

Proposition 1 (Ma) If D is a (v, k, λ, μ) -PDS with $\lambda \neq \mu$, then $D^{-1} = D$, where $D^{-1} = \{d^{-1} \in G | d \in D\}$.

2 Group algebra

Denote the integer ring of cyclotomic field of the eth root of unity by O_e . Let F be a finite field and F^+ be its additive group. For our discussion, it will be advisable to use group rings and thus to think of F^+ as a multiplicatively written group. We consider the group ring $\Re = O_e F$. An element of \Re takes the form $\sum_{\alpha \in F} c_{\alpha} \alpha$. We regard the element $\sum_{\alpha \in F} c_{\alpha} \alpha$ in \Re as a function $f: f(\alpha) = c_{\alpha}$ defined on F with values in O_e . For a subset S of F we use the same symbol S to denote the characteristic function of S, i.e., $S = \sum_{\alpha \in S} \alpha$ and denote by $\widehat{f}(\alpha) = f(-\alpha)$. Before concluding this section, we note that for $f, g \in \Re$,

$$f * g(\alpha) = \sum_{\beta \in F} f(\beta)g(\alpha - \beta),$$

where * denote product in the group ring \Re .

3 Cyclotomic classes

Let $q = p^{\gamma} = ef + 1$ where p is a prime and let ω be a primitive element in F = GF(q). Then the eth cyclotomic classes $C_0, C_1, \ldots, C_{e-1}$ are defined by

$$C_i = \{\omega^{es+i} | s = 0, \dots, f-1\}.$$

Note that the elements of C_0 are called the *e*th power residues, and $\{C_0, C_1, \ldots, C_{e-1}\}$ is a partition of $F - \{0\}$.

4 Jacobi sums over a finite field

Let χ be an eth power residue character, i.e., $\chi(\omega) = \zeta_e^m$ where ζ_e is a primitive eth root of unity and m is a nonnegative integer. We let $\chi(0) = 0$. For the eth power residue characters χ_1 and χ_2 we define the Jacobi sum as follows:

$$\pi(\chi_1, \chi_2) = \sum_{\alpha \in F} \chi_1(\alpha) \chi_2(1 - \alpha).$$

The Jacobi sum $\pi(\chi_1, \chi_2)$ for the eth power residue characters χ_1 , χ_2 is an integer of the cyclotomic field of the eth root of unity.

The following are well known.

Theorem 1 For the eth power residue characters, the following relations on Jacobi sums are satisfied:

- (i) $\pi(\chi_1, \chi_2) = \pi(\chi_2, \chi_1)$.
- (ii) $\pi(\chi_1, \chi_2) = \chi(-1)\pi(\chi_1, \overline{\chi_1\chi_2}).$
- (iii) $\pi(\chi_0, \chi_0) = q 2$.
- (iv) $\pi(\chi, \chi_0) = -1$ for $\chi \neq \chi_0$.
- (v) $\pi(\chi,\bar{\chi}) = -\chi(-1)$ for $\chi \neq \chi_0$.
- (vi) If χ_1, χ_2 and $\chi_1\chi_2$ are nonprincipal characters, then

$$\pi(\chi_1, \chi_2) \overline{\pi(\chi_1, \chi_2)} = q.$$

5 Lemmas

The following are useful.

Lemma 1 Let χ be a primitive eth residue character. Then we have

$$C_l = \frac{1}{e} \sum_{m=0}^{e-1} \zeta_e^{-lm} \chi^m.$$

Proof. See
$$[4]$$
.

Lemma 2

$$\chi^{l} * \hat{\chi}^{m} = \pi(\chi^{m}, \chi^{-l-m}) \chi^{l+m} + (q-1)\delta_{l+m, 0} \mathbf{0},$$

where

$$\delta_{l+m, o} = \begin{cases} 1 & when \ l+m \equiv 0 \pmod{e}, \\ 0 & otherwise. \end{cases}$$

Proof. See
$$[4]$$
.

Lemma 3 χ^t $(0 \le t \le e - 1)$ and **0** are linearly independent elements of \Re .

Proof. See
$$[4]$$
.

6 Main theorem

Let $A \subset \{0, 1, \dots, e-1\}$ and $D = \bigcup_{i \in A} C_i$. When we put $\sharp A = s$, then $\sharp D = k = fs$. We now give necessary and sufficient conditions that the subset D becomes a (q, k, λ, μ) -PDS.

Theorem 2 The subset D of F becomes a (q, k, λ, μ) -PDS if and only if the following equations are satisfied:

(i)
$$k = s(q-1)/e$$
.

(ii)
$$\mu + s(\lambda - \mu)/e = (-es + (q-1)s^2)/e^2$$
.

(iii)
$$(\lambda - \mu)w_t = (1/e) \sum_{m=0}^{e-1} w_m w_{t-m} \pi(\chi^m, \chi^{-t})$$
 for all $t, 1 \le t \le e-1$, where $w_m = \sum_{l \in A} \zeta_e^{-lm}$.

Proof.

The necessary and sufficient condition that the subset D of F becomes a (q, k, λ, μ) -PDS is that the equation

$$D * \hat{D} = \mu \chi_0 + (\lambda - \mu)D + k\mathbf{0}$$
 (1)

is satisfied.

Suppose that equation (1) holds.

From Lemmas 1 and 2,

$$D = \frac{1}{e} \sum_{m=0}^{e-1} \left(\sum_{l \in A} \zeta_e^{-lm} \right) \chi^m$$
$$= \frac{1}{e} \sum_{m=0}^{e-1} w_m \chi^m. \tag{2}$$

$$D * \hat{D} = \frac{1}{e^2} \sum_{l=0}^{e-1} \sum_{m=0}^{e-1} w_l w_m \chi^l * \hat{\chi}^m$$

$$= \frac{1}{e^2} \sum_{l=0}^{e-1} \sum_{m=0}^{e-1} w_l w_m (\pi(\chi^m, \chi^{-l-m}) \chi^{l+m} + (q-1) \delta_{l+m,0} \mathbf{0})$$

$$= \frac{1}{e^2} \sum_{l=0}^{e-1} \sum_{m=0}^{e-1} w_l w_m \pi(\chi^m, \chi^{-l-m}) \chi^{l+m}$$

$$+ \frac{1}{e^2} (q-1) \sum_{m=0}^{e-1} w_m w_{-m} \mathbf{0}$$

$$= \frac{1}{e^2} \sum_{t=0}^{e-1} \sum_{m=0}^{e-1} w_m w_{t-m} \pi(\chi^m, \chi^{-t}) \chi^t$$

$$+ \frac{1}{e^2} (q-1) \sum_{m=0}^{e-1} w_m w_{t-m} \mathbf{0}. \tag{3}$$

On the other hand, we have

$$\sum_{m=0}^{e-1} w_m w_{-m} = \sum_{m=0}^{e-1} \left(\sum_{l \in A} \zeta_e^{-lm} \right) \left(\sum_{h \in A} \zeta_e^{-hm} \right)$$

$$= \sum_{l \in A} \sum_{h \in A} \sum_{m=0}^{e-1} \zeta_e^{-lm+hm}$$

$$= \sum_{l \in A} e = es.$$

$$(4)$$

By (2), (3) and (4)

$$\frac{1}{e^2} \sum_{t=0}^{e-1} \sum_{m=0}^{e-1} w_m w_{t-m} \pi(\chi^m, \chi^{-t}) \chi^t + \frac{1}{e^2} (q-1) es \mathbf{0} = \mu \chi_0 + (\lambda - \mu) \frac{1}{e} \sum_{m=0}^{e-1} w_m \chi^m + k \mathbf{0}$$
(5)

By considering the coefficient of $\chi^t(t \neq 0)$ in (5), we get $(\lambda - \mu)w_t = (1/e) \sum_{m=0}^{e-1} w_m w_{t-m} \pi(\chi^m, \chi^{-t})$ for all $t, 1 \leq t \leq e-1$. This proves (iii). Similarly by considering the coefficient of $\mathbf{0}$ and that of χ^0 in (5), we obtain (i) and (ii), respectively.

Suppose that equations (i), (ii) and (iii) are satisfied. From Lemma 3 it follow that equation (1) holds. This completes the proof of Theorem 2. \Box

We note the following;

$$\pi(\chi^{t-m}, \chi^{-t}) = \bar{\chi}^{t}(-1)\pi(\chi^{m}, \chi^{-t})
= \begin{cases} \pi(\chi^{m}, \chi^{-t}) & \text{when } -1 \in C_{0} \\ (-1)^{t}\pi(\chi^{m}, \chi^{-t}) & \text{when } -1 \notin C_{0}. \end{cases}$$

If t is odd, then the above fact implies that $\sum_{m=0}^{e-1} w_m w_{t-m} \pi(\chi^m, \chi^{-t}) = 0$. So we have

Lemma 4 If t is odd, then $w_t = 0$

Proof. Because $\lambda \neq \mu$.

References

- [1] S. L. Ma: Partial difference stes, Discrete Math. 52(1984), 75–89.
- [2] S. L. Ma: A survey of partial difference sets, Designs, Codes and Cryptography, 4(1994), 221–261.
- [3] K. Yamamoto: On Jacobi sums and difference sets, J. of Combin. Th. (A) 3(1967), 146–181.
- [4] M. Yamada: Supplementary difference sets and Jacobi sums, Discrete Math. 103(1992), 75–90.