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By Takahide KUROKAWA

Abstract. It is well known that the LP-spaces are invariant
for singular integrals. In this paper we establish invariance of

certain classes which consist of smooth functions.

1. Introduction and preliminaries

Let R™ be the n-dimensional Euclidean space. Elements of R™ are denoted
by z = (v1,---,2,). For a domain @ C R", we denote by C®(2) the set of
all infinitely differentiable functions on . A function k(z) is called a smooth
Calderon-Zygmund kernel if k(x) satisfies the following three conditions:

(L1) k() € C=(R" - {0}),

(1.2)  k(z) is homogeneous of degree —n,

(1.3)  [sk(z)dS(z) =
where ¥ is the unit sphere {|z| = 1} and dS is the surface element of ¥ (cf. [Sa:
Chap.6]). For a smooth Calderon-Zygmund kernel k(x) we consider the singular
integral

K f(z) = lim K. f (z)

where

KJ@waLﬂmk@—yﬁwwy
For 1 < p < oo we let
LR = {f : [ flly = ([ |f(@)Pdn)'’” < oo},

The LP-theory of singular integrals ([Sa: Chap.6], [St: Chap.II] and [SW: Chap.VI])
shows that the LP-spaces (1 < p < oo) are invariant for singular integrals. Namely,
for f € LP, K f(r) = lim._,o K. f(z) exists for almost every 2 € R” and K f € LP.
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For a multi-index o = (v, - - -, o, ), we denote D* = D' - - - Do g% = (" - - 20"
and |a| = oy + -+ + «,, where D; denotes the differentiation with respect to x;

(j=1,---,n). The Lizorkin space ® is defined by
d={pesS: /gp(w)x“dx =0 for any multi-index a}

where S is the Schwartz space (see [Li: §2 in Chap.ll] and [SKM: §25]). The
discussion in [Kul: §2] shows that the Lizorkin space ® is also invariant for singular
integrals.  Further, in [Ku2] we proved that the class C°>*(R") is invariant for
singular integrals where

Coc,+(Rn) — UT>OCOO,T(R7L)

with

C"(R™") = {f € C*(R") : sup (1 + |z|)"|D* f(z)| < oo for any a}.
zeR"

In this article we investigate invariance of the following class C°°"(R™): For positive
number r we let

Co"(R") = {f € C®(R"™) : sup (1 + |z|)"*®|D*f(z)| < oo for any a}.

T€R"

We introduce a topology on C'°" that makes the space a Fréchet space.  Toward
this end we introduce a countable family of seminorms {py,}s=012... defined by

pea(f) = 2 sup (1+ [z)""|D* f(2)].

‘O‘l':[ zERM

We prove that K f is a continuous linear operator on C°"(R") for 0 < r < n
(Theorem 2.4).  We use the symbol C for a generic positive constant whose value
may be different at each occurrence.

2. Imvariance of the space C*" (0 <r <mn)
We prepare three lemmas.

Lemma 2.1, Letq+s+n<0ands+n>0. Then

Isrc:/ z—yl'(1+ |y)*dy < C(1 + |z|)7+*
w@= [ )y < C(L )
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Proor. First, let |z] < 2.  Since |z| < 2 implies (1 + |z —y|)/3 < 1+ |y| <
3(1+ |z — y|), we see that

(2.1) I,(x) < max(3°,3°%) [ eyl (U e = yl)dy = Gy < o0
Se—y|>

by the condition g + s +n < 0.
Next, let |z| > 2. We devide I, ;(z) as follows:

qus(l') - I;,e(T) + [q2,9($) + [;,s(x)

where
L@ = [ o=yl + fyl)dy,
ly/<zl/2

12 (z) = |z —y|9(1+ |y|)*dy

B lyl>1xl/2,|lz—y|>y]|
and
B ) lw“ylZ\M/z,\z—y\gy;! ‘ ( |9D !

For I} (), since |y| < |z|/2 implies (1 + |z])/4 < |2 — y|, we have

22 L@ Sl [ )y < OO ]

yi<|z|/2
by the conditions ¢ < 0 and s +n > 0. For I? (z), since 1 < [z[/2 < |y| and
|z —y| > |y| imply |z —y| > (1 + |y|)/2, we obtain

2 ~ - s +s+n

(2.3) o) <270 [ (U )™y < OO Jal)et

by the conditions ¢ < 0 and ¢+s+n < 0. For I} (), since 1 < |z|/2 < |z —y| and

[z=y| < |yl imply 1+|z—y| < 1+|y| < 3(1+]z—y|) and |z—y| < 1+|z—y| < 2Jz—y|,

we get

(24) 1], (x) < 27%max(1, ?‘5)/| o '/2(1 + |z — y|) T dy < C(1 + |z[)atstm
z—y|>|z

by the conditions ¢ < 0 and ¢+ s +n < 0. The estimates (2.1), (2.2), (2.3) and

(2.4) give the lemma.

Lemma 2.2, If f € C"(R") (r >0), then Kf € C®(R") and D*(K f)(z) =
K(D®f)(x) for any a.
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Proor. First, we prove that K.f € C®(R™) and D*(K_ f)(z) = K (D*f)(z).
For T > 0, let By = {z : |z| < T}. It suffices to show that K.f € C*(Br) and
D*(K f)(x) = K(D*f)(x) on Br. Since 1+|y| < (14+T)(1+|z—y|) for z € B,
we have

C
k()Df(z — )] < ,

by the condition f € C*"(R") and (1.2). Therefore we can apply the differentia-
tion under the integral sign, and hence

x € By

D*(K.f)(z) = /ma k()D*f(z —y)dy, x € By.

This implies the neccessary conclusions. Next we prove that D*K_ f(x) converges
uniformly on R"™ as € tends to 0 for any «. Let 0 <e <n. By (1.3) we have

|D*Kef(z) = DKy f(z)] = |KD*f(x) — K,D*f ()|
= I/tgwknk‘(a? —y)D*f(y)dyl

= 1. K =)D f) ~ D" f(a))dy.

By the mean value theorem of calculus we see that

ID°f() = D] = 3D Sy -+ 6y - 2~ )
1
< e T
< Cl:v—yl

where 0 < 0 < 1. Therefore by (1.2) we get
DKo f(@) = D, f(@)] < C [ — |y = Cln— o).
e<|z— y|<n

Hence DK f(r) converges uniformly on R™ as € tends to 0 for any . This implies
that K f(z) € C*(R") and D*(K f)(z) = K(D*f)(z) for any . We complete the
proof of the lemma.
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The following lemma follows from Gauss’s divergence theorem.

Lemma 2.3. Let D be a bounded domain with C*-boundary 0D.  Let n(z) =
(ny(z),---,n,(z)) denote the outer unit normal to the boundary OD at the point x €
0D. We assume that g and h have continuous partial derivatives on a neighborhood
of the closure of D.  Then

[ s@Dih@)de = [ gl@)h(@)n;(@)dS@) - [ Digla)h(z)da
where dS represents the surface element of OD.
Now we prove our main result.
THEOREM 2.4.  Let 0 <r <mn. Iffe€ C®"(R"), then

(Zi;(]pkr( )+p€+1r( )) le
(pos(f) +p1r(f), £=0,

and hence K f is a continuous linear operator on C*"(R™).

])Z,T(Kf) S C {

Proor. Let f € C>"(R™). It follows from Lemma 2.2 that Kf € C®(R")
and D*(K f)(z) = K(D*f)(z) for any a. Let |a| =¢. We have

DK f(x) = KD°f(x)
= lim k(xz —y) D" f(y)dy

=0 Je<|o—y|<max((|e|/2,1)

+ / _ k(z—y)D*f(y)dy
|z—y|>max(|z|/2,1)

= Ky(D*f)(x) + Ko( D" f)(z).
By (1.2) and (1.3) we obtain

[Ky(D*f)(z)] = [lim

0 /e<|m-y|<max<|w|/2,1) k(z —y)(D f(y) — D f(x))dyl

B ‘[m~ylﬁlrlax(Ix|/2,1) k(l’ N y)<Daf(y) - Daf(‘l))d?/’
|D*f(y) — D f(z)|

Jfo—y| <max(|z]/2,1) |z —y["

< C

dy.

Since f € C*"(R"), by the mean value theorem of calculus we obtain

D f(y) — D) = |30 D™ f(x + 6y — )y, — )

J=1
|z —y|
1+ |z+60(y—=z

VAN

)Dr+g+1pf+1.r(f)
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where 0 < # < 1. Further, since |z — y| < max(|z|/2,1) implies 1+ |z +0(y — )| >
(1+ |z|)/2, we have

&\ _Penelf)
@5) D@ < O .

Pey1,r (f)

PZ+1,r(f)
- (=)t

o — yl'dy

The multi-index e; denotes the ordered n-tuple that has 1 in the jth spot and 0
everywhere else (j = 1,---,n). Incase £ > 1, we let & = e;, +--- +¢,. By
Lemma 2.3 we have

Ko(D°f)(z) = lim | k(z — ) D% f(y)d
2( f)(T) MEHOC M>|z—y|>max(|z|/2,1) (E y) f(y) v
= lim k(z —y) D™ f(y)ny, (y)dS(y)

M—o0 J{y:lx—y|=M}

+ Z lim DT Ok k(g — y) DT f(y)my, (y)dS(y)

5 M—00 J{y:|z—y|=M}

+/ k(x —y)D*" f(y)n;, (y)dS(;
{y:lz—y|=max(|z|/2,1)} ( y) f(J) J (y) (y)

¢
Dénttei a(r — y) D97 % f(y)ny, (y)dS (1
> _/{y;|z—y|—-maX(|cvl/271)} (z —y) f(y)n, (y)dS(y)

4+ lim Dk(z — y) f(y)dy

M—oo JM>|z— y}>max(|¢]/2 1)

= lim I “+Z lim_ IPM(x) + (1‘)—%2[:[5(&?)—#[3(9;).

M—oo kz

In case ¢ = 0, we have

Ka(D°f)(2) = Kaf(z) = I(x).

By the condition f € C°*"(R") and (1.2) we have

M@ S Conr (1) [ ey fy) S ),
lﬂ<M<0mkAﬂAMPWmmmmmm»wr““%errT”wﬂm
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fork=1,2,---,¢, and

I3(z)| = / D®k(z — y) f(y)dy|
@1 =1 e sismanyaay = &~ 9 W)

< Cpolf) [ =y (1 )y,

{y:lz—y|>max(|x|/2,1)}

We may assume that M > 2|x|. Therefore, since |z — y| > 2|z| implies (1 + |z —
J)/2 < 1+ [y] < 3(1+ |z — yl)/2, we obtain

V@) < Cpemgr(HM (14 a7tk [ as(y)

{y:|lz—y|=M}
= Cprp, M* A+ M) 50 (M — 00).

Since |z — y| = max(|x|/2, 1) implies (1 + |x])/2 < 1+ |y| < 3(1 + |z|)/2, we get

(@) < Cpeoger(f)(max(lz]/2, 1)) (L + [a]) 7~ * (max(|z] /2, 1))
< Cpepe(L+|2])7"

Furthermore, since 0 < r < n, Lemma 2.1 gives

|I3(2)] < Cpo(f)(1+ Jaf) ™"

Thus

26) KD )@ < CO+Ial) ™ 3 peose (1) = COLE )™ pic(),

k=1

The estimates (2.5) and (2.6) give the theorem.
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