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Abstract
In this paper we give a proof of the theorem in [6] which asserts a
sufficient condition for a map f : M" — N*"~* between compact mani-
folds without boundary to be cobordant to an embedding, since we did

not give the details for the general case in [6].

1 Introduction

Throughout this paper, n-manifolds mean compact differentiable manifolds of dimen-
sion n. The (co-)homology is understood to have Z; for coefficients.

Foramap [ : M" — N between compact manifolds without boundary, let w; (f) be
the i-th Stiefel-Whitney class of fand f; : H i (M) — H'"™"*(N) the transfer homomorphism
(or Umkehr homomorphism) of f. Further let

0(f)=f A1) = wa-i(f)-

Then by [5, Lemma 2], M X6(f) is the H"(M)x H"*(M)-component of

Un(1xw,«(f))+(f X f) Uy, where Uy € H*"(V X V), denotes the Z,-Thom class
(or the Z>-diagonal class) of a manifold V. Therefore, A. Haefliger [Theorem 5.2] implies that
Theorem (Haefliger) If fis homotopic to an embedding, then

6(f)=0 and w,(f)=0 for i<k. (1.1)
The inverse of this theorem may be hard to study. So we will study whether fis cobordant to

an embedding in the sense of Stong [9] if the condition (1.1) in the above Theorem is satis-
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fied. Here a map f; : M{' = N/ is said to be cobordant to f> : M} — N3 if there exist
two cobordisms (W,M{’,M;'), (V,N]”k 2"+k) and a map F:W —V such that

i

FIM; = f,(i=1,2). M. A. Aguilar and G. Pastor [1] determined the necessary and sufficient
condition that a map f : M" — N>"*,(k =1,2) is cobordant to an embedding. In [6] we

have considered cases when k > 3 and obtained following results:

Corollary 1.3 in [6] Ler f: M" — N>, (k=3,4) be a map. If w,_i(f)=0 for
O0<i<k and G(f) =0, then f is cobordant to an embedding.

Moreover we have stated the following theorem:
Theorem(Theorem 5.1' in [6]) Let 1 > 2k > 0. Then a map f : M" — N*"* is cobordant
to an embedding if

(1) w,i(f)=0for1<i<k,

(2) 6(f)=0and

(3) wi(M)e f H'(N) for 4i < k.

From this theorem we obtained the following corollaries:

Corollary 1 If1<k<4,n>2k+1, amap f: M" — N*"*is cobordant to an embed-
ding if w,—i(f)=0 for 1<i <k and 6(f)=0.

Corollary 2 [f5<k<8, n>2k+1,amapf: M" — N*"*is cobordant to an embed-
ding if

1 w,_; f)=0f0r 1<i<k,

(2) 6(f)=0and

(3) wi(M)=0or w(f)=0.

Since in [6] we have omitted details of the proof of the above theorem for the general case, we
will give the proof in this paper.

This paper is organized as follows: In 82, we recall the Stiefel-Whitney class w(f) and
the transfer homomorphism f of amap f : M" — N K and prepare some lemmas concern-

ing fis Wi(f)'S, and the Steenrod squaring operations S¢s. In §3, we give the proof of the
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Theorem.

2 Preliminaries

We adopt same notations and symbols as in [6]. For a manifold V, we denote by W(V)
and w(V)=w(V)" the total Stiefel-Whitney class and the total normal Stiefel-Whitney
class of V, respectively. For a map f : M" — N?"7* | the total Stiefel-Whitney class of f,
W(f) = Zizo Wi(f), is defined by the equation

w(f)=w(M)f (w(N)), @2.1)

and the transfer homomorphism f, : H'(M) — H™*"*(N) is defined by

fi(x)= DNﬂ(x M [M]),

where Dy is the Poincaré duality and [M | € H,(M) denotes the fundamental class of M. For
1= (insiasesip )y et wu (V) = wiy (VIwiy (V). (V) and |1 =Y

Brown's theorem [2, p. 247] implies that

<<l Then R.L. W.

Theorem(Brown) Let n> 2k > 0. Then a map f-M" - N*"*is cobordant to an em-
bedding if and only if the following conditions (1) and (2) are satisfied:

(1) (wu(M)wa(f).[M]) =0 if |u| +|A| = n and X has a component with > n—k, and

@ (f (wa(N)wu(M)f* £ (M) = £ (w2 (N))ws(M)w, (M), (). [M]) = 0
for all A, and v with |A|+ ||+ V| = k.

We denote by v(M) = Z - V(M) the total Wu class of M. The following relations are

well-known:

Sq(v(M)) = w(M), 2.2)

Sq'x,_; = U;x,_; forall x,_, e H' (M), 5%

Sq'w;(&)= Y, (j e 1)”’1‘—1(5)”’1“(5)- (2.4)

0<r<i t
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In the following lemmas, we list some relations among fi, the Steenrod operations Sqi and the
Stiefel-Whitney classes, the first of which is seen in, eg, [3] (cf. [1]), while the last follows
from the definition of fi, (cf. [2]):

Lemmal Foramapf:M" — N*"* there are relations

() A(f (x)y)=xf(y) for xe H'(N),y e H (M),

(2) Sqfi(x) = £(Sq(x)w(f)),

3) (Hf(y):[N])= <f () [M]) if dimx +dimy = n,

@) (£ (x)yf £(2) ) (£ (x)af " £(y)[M]) if dimx +dimy+dimz = k.
In pameular( )f A [M]) = (f (x)f" £(1),[M]).

Further, we have the following

Lemma2 Lerf: M" — N be a map. Then
(1) f*(x,»)w,,,,-(f) =0 forx; € H'(N),(0 <i<k).
@) £ O )= 0D S Waotwica () + £ () Wi (f)
forxe H' (M),y e H*(N),(0<2i <k).
(3) In particular f*(y)f"£(1) = £ (y)wa-i(f) =0 for y e H'(N).

Proof. See the proof of Lemma 2.2[6]. U]

3 Proof of the Theorem

The following lemmas are consequences of the definition of the Wu class and the Wu's

formula (2.4).

Lemma 3 Let t be an integer such that 1 <t <k/2. Let |20 and r 21 be the integers
defined by t =2"1+2""". Assume that | > 1. Then

2!—[
w,(M)=Sq*" w,.,(M)+ Zast(M)w,_J(M), 3.1

s=1
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where s € Z,.

Lemmad If 2<2"7'<n/2 then
2m2
U, (M) =W, (M) = W,ra (M)2 + ZbSWX(M)WMS)(M), (3.2)

s=1

where b, € Z,,|A(s)|=2"" —s.

We postpone the proof of the above two lemmas and prove the Theorem using them. By

virtue of Lemma 1(4), to prove the Theorem we have only to prove

(Baw)  wa(M)f £(wu(M)f w0, (N)) = wa(M)w, (M) f w, (N)w,i (f).

for w + |,u\ +|v|=k and Ml < k/2, under the assumptions (1)(2)(3) of the Theorem.

Proof of the Theorem :

We prove by induction on |A| = £ that (El.u.V) holds for |A|+|u|+[v|=k and A|=1<k/2,
By the assumption 6(f)= 0,(E(0)‘pyv) holds. Let M| =t 21. Suppose that (El.u,v) holds for
A|<t-1
Case 1: A = (t)

First we consider the case t=2"[+2""" for [>1 and r>1. Then since
2" <1/2 < k/4 we have w;(M)e f H'(N) for i <2""". Hence by the assumption for
1<5<2"" and || +|v| =k —t we have

wo (MY, (M)( £ fi(wu (M) wy(N)) = (M) £, (N)w, i (£)) = 0.

Thus denoting W#(M)f*wv (N) = x we have by Lemma 3

wi(M)(f" fix—xw, i (£) = S8 wy (M)(f" fix = xw,i(£))
= Sq*" (w (M)(f" fix = 0w,s (1))
+ 3 T Sgtwy (M)Sg ™ (f fx = 2wai(£))
= Oyt (M)W (M)(f " fix = 3wk () + 2w (M) fixze = 32w ()
+ 3 ywei(f)



6 BRERKEBFEMHALE BAMER H$52% (2001

where Xx;. € H'_M(M),yi € Hk_i(M) and they are expressed as Zp.r Wa(M)f*Wr(N)-

Since WAI(M)(f*f!xll — X3 Wi (f)) =0 for Il’) <t by the induction hypothesis and
)’iWn-k+.'(f) =0 for 1<i<kby the assumption, we have

wi(M)(f" fox = 2w, (£)) = Oy (M), (M)(f fix = xwa-i ()
- WZ’I(M)(f*f!(vz’-‘ (M)x) ~ Uy (M)an—k (f)),

since U, (M) e f H'(N). Hence by the induction hypothesis we have

w,(M)(f*f!x—xw,,_k(f)) =),

Next we consider the case t=2""If2t<k then 2"°> <k/4 and
wi(M)e f H'(N) for i < 2" hence by Lemma 4

2 (M) f* fix = xwi(£))
=0, (M)(f fix = 3w 1 () + 20 b, (M)w(M)(f* fix = x4 ()
=5¢%" (f fix = xma s (1)) + 2 bawao (M) A, (M)x) =, (M)xw, i (£))
=5¢%" (f" fox = xw,i(f))

=0 f)z;; Sq'xw,._ (f)+ 2f=]y,-w,,_k+,~(f) (where yi € Hk“'(M))
=(),

Now we consider the remaining case t =25 =2""' = k/2. In this case vV = (0) and
w = l,LlI Hence if 4 # (1),(s,s) then w,(M)=w,(M)w, (M) for some p, i’ such that
1< p<s=k/4 and || <t. Then since w,(M) e f"H”(N) we have by the induction
hypothesis

M) fi(w,(M)w,.(M)) = w,(M)w,(M)f" fi(w,(M))

wu (M)f F(w (M)w, (M) = w,(M)w, (M)w,(M)w,(f)
= wi(M)wu(M)w,_(f)-

if 4= (t)=A, then (El.p.(())) holds by Lemma 2 (2).

If L= (S,S), then we have by Lemma 4, Lemma 2 (2), the assumption and the induction
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hypothesis

wi(M)f" fi(ws(M)*) = w,(M)w,(M)* w,i(f)
- =5q(f ﬁ(ws(M)z) = wi(MY w,i(£)) +wo (MY (£ f(w.(M)) = w, (MY w,i(£))

+ 30 b (MYwo (M) £ (s (M) = w, (M) w, ()
=0. 0
Case2: A # (t) In this case we have
wi(M)=w,(M)w;, (M), 1<s<t/2 and [A|=t-s<rt.
First we consider the case A # (t/ 2.8 2). Then we may assume that § <?/2 and by the
assumption (3) we have WS(M ) ef "H S(N ) Therefore we have by the induction hypothesis

wa(M)f" fi(wu (M) f w,(N) = w,(M)w, (M) fi(w, (M) £ w,(N))
=wu (M)f" fi(w.(M)w,(M)f'w,(N))
=w, (M)w,(M)w,(M)f w,(N)w,_.(f)
=wi(M)w, (M) f w,(N)w, i (f):
Now we consider the case w, (M) = w,(M)*,s = t/2. I t<k/2 then w,(M) € f"H*(N)
by the assumption (3), therefore (E; ., ) holds. Hence we may assume 4s =2t = k.
Then v=(0) since we assume |A/<|ul Hence if p#(r),(s,5) then

WH(M) = W,,(M)w#/(M) for some p, p' such thatl < p<s and |/.L" <t. Then since
W,,(M ) € f*H ¥ (N ) we have by the induction hypothesis

wy (M) " f(w, (M)w,e (M) = w (M) w, (M) fi(w, (M)
=, (M) F(we(M) w,(M)) = w, (M)w, (M) w,(M)w,_i(f)
= w, (M)’ wu(M)w,(f).

Ifu= ( ) then (E(s 5) ) holds since (E( )(M),(o)) holds by Case 1. If U = (s,s) = A then
(E(s.s),(s,s),(O)) holds by Lemma 2 (2). Thus we complete the proof. ]
Now we prove Lemma 3 and 4.

proof of Lemma 3: By Wu's formula (2.4) we have
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Sq* wy (M)=, M).

2'1-1 $=0 i 3
Since ( 2r_] J = 1 mOd 2, we have qu W2'[(M) - WI(M) + 25=l asws (M)Wt—S(M)’
where a, € Z,. U]

proof of Lemma 4: For an integer k > | we define Z;-submodules A;, B, of H *(M ) as

szl —s(M)W

2'l+s(

il [2"1 -2 51

follows:

A = zp,a Zwy, (M)w,,(M)---w, (M), B.:==3 A
Moreover we denote A; = zp¢q Zw,(M)w,(M).

Note that Sthk C B,. To prove Lemma 4 it suffices to prove the following

Lemma 5 For an integer t 2 2, let 1, | be the integers defined by
t=2"+1, 1<r, 0<1<2'. Then

{ if [>0, then v,(M)eB,, and

ES

" lif1=0, then v(M)ew, (M)+w,... (M)’ + A + B;.
Proof. We prove the lemma by induction on ¢.

For 1 =2, we have V,(M) = w,(M)+ W,(M)2 and (*), holds.

Suppose that (*)T holds for § <.
Ift=2"+1, 0<I<2', then

v(M)=w, M)+, Sq'v-(M)

=w,(M)+5q'w,,(M)+ Y, _Sq'v,._,(M).
2" -1
Since ( g JE 1 mod 2 we have from (2.4) w,(M)+ Sq’wz,(M) € B,. On the other

hand v,_,(M) € B, for s # [ by the induction hypothesis. Hence we have v,(M) € B,.
If 1 =2 then
v (M)=w,(M)+Y, . Sq'v_,(M)

=wy (M) 4wy (M) +3, ., Sq°v,_ (M).
We have U, (M) € B, for 1 <s<2""' —1 by the induction hypothesis. Let si(i=1,2)
P |

)EO mod 2 for 1<s; <2772 we
Si

be integers such that 0 < s; < 2”72, Since (
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have from (2.4) Sq"' W, __‘.’,(M) € B, for 1<s, <2 Therefore if 1<s,+ 5, then

Sq"wy_ (M)Sq”*w,-_ (M) does not contain w,. (M)’. Hence
Sq'v,._ (M)e€ A+ B; for 1 <5 <2 —1. Thus we have

V(M) e w, (M)+w,- (M) +A; +Bs. O
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