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RECURSIVE ESTIMATION OF IMPULSE RESPONSE FUNCTION
USING COVARIANCE INFORMATION
IN LINEAR CONTINUOUS STOCHASTIC SYSTEMS
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Abstract This paper proposes a new recursive least-squares (RLS) estimation algorithm
for an impulse response function in linear continuous-time wide-sense stationary stochastic
systems. It is assumed that the input signal to the unknown impulse response function is
contaminated by additive white Gaussian observation noise. The output signal from the sys-
tem related with the impulse response function is observed with additive white Gaussian
noise. The impulse response function is estimated recursively in terms of the variance of the
white Gaussian observation noise included in the input signal, the autocovariance function
of the process before the observation noise is added to the input signal, and the crosscovariance
function between the output observed value and the input observed value, concerning the

system based on the unknown impulse response function.

1. Introduction

The estimation problem of the impulse response function, which is classified as the
nonparametric model, is one of the importaﬁt quantities in the identification problem of an
unknown system [1]. In the contexts of signal processing and automatic control, the Laplace
transform of the impulse response function is defined by the transfer function in continuous-
time systems [2]. The impulse response function is a solution of the Wiener-Hopf integral
equation [3],[4]. In frequency domain [5], the spectral density function of a signal is calcu-
lated by Fourier transform of its autocorrelation function. In the relation with the Wiener-
Hopf integral equation, the spectral density function for the impulse response function is

calculated in terms of the crossspectral density function of the input with output of the un-
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known system and the spectral density function of the input. In time domain, on the estima-
tion of the impulse response function with scalar input and output, the impulse response
function in the Wiener-Hopf integral equation is obtained by applying white noise to the
input of the unknown system [5]. However, for the system in the state of working, it might be
desired to utilize a method which takes out the input and output data of the system and uses
some useful information based on these data. This treatment using the sampled data is classi-
fied into the method in discrete-time systems. Also, as a different approach from above, the
model-adjusting method assumes the a priori reference model of the impulse response func-
tion [6]. On the estimation of the impulse response function in linear discrete-time systems,
the linear least-squares method [5], the method of steepest descent [7], the correlation method
[5], and etc. are known. In the correlation method, the input and output data of the system are
applied respectively to the whitening filter [5],[8] designed for the input values to the un-
known system. Then, in terms of the variance of the whitened data in the input and the
crosscovariance of the whitened data in the input with the processed data in the output, the
impulse response function is calculated. As a consequence, in linear continuous-time sys-
tems, instead of use of white noise in the input, development of a new method, which uses
some stochastic quantities related with the input and output information, might be desired.
Along above discussion, this paper designs a new RLS estimation algorithm for an un-
known impulse response function by using the covariance information in linear continuous-
time wide-sense stationary stochastic systems. The input signal to the impulse response func-
tion is contaminated by additive white Gaussian observation noise. The output signal from
the system related with the impulse response function is observed with additive white Gaussian
noise. The impulse response function is estimated recursively by the proposed algorithm in
terms of the following quantities. (1) The variance of the observation noise in the input of the
system related with the unknown impulse response function. (2) The autocovariance function
of the process before the observation noise is added in the input of the unknown system. (3)
The crosscovariance function between the output observed value degraded by the additive
observation noise and the input signal process to the system. It is assumed that the
autocovariance and crosscovariance functions are expressed in the semi-degenerate kernel
form. The semi-degenerate kernel [9] is suitable for expressing these covariance functions by

a finite sum of products of nonrandom functions.
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2. Linear least-squares estimation of impulse response function

v(t) v (t)

+
+ System related with the ’
vt) System for ut) _+¥ (k) u:kno‘m impulse y (®). 3 y(t)
= generating u(t) reisponse function
ht, s

Fig.1 Block diagram concerned with the estimation problem of the impulse
respones function.

Let us consider the block diagram of Fig.1 concerned with the estimation problem of
the impulse response function. Let h(t,s) represent a scalar impulse response function to be
estimated for an unknown system. Let w(t) represent zero-mean white Gaussian noise input
to a system which generates the stochastic process u(t). Let u(t) be observed with additive

zero-mean white Gaussian noise v(t) with the variance R.

E[v(t)v(s)]=RO(t—5), 0< 5,0 <00 (1)

It is assumed that u(t) is uncorrelated with v(s), i.e. E[u(t)v(s)]=0, O< s,t<eo. Let u'(t) repre-

sent a stochastic input process to the unknown system. u'(t) is given by

u'(t) = u(t) +v(1). )

Let y'(t) represent a stochastic process in the output of the unknown system related with the

impulse response function h(t,s). It is assumed that y'(t) is observed with additive zero-mean

white Gaussian noise v'(t) and y'(t) is uncorrelated with v'(s), i.e. E[y'(t)v'(s)]=0, O0< s,1<co.

Let y(t) represent the observed value of y'(t).

YO =y @+ () €)
The problem is to estimate the impulse response function h(t,s) of the unknown system

in Fig.1. It is assumed that the objective system is asymptotically stable in linear wide-sense

stationary stochastic systems. Hence, h(t,s)=h(t-s)(=h(t), T=t-s) and
J:)|h(T)|d‘t < oo, (4)
Let y' (t) be expressed by
f g
y'()= [ hit,su'(s")ds". )

Multiplying (5) by u' (s) and taking expectation on both sides of (5), we have the Wiener-
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Hopf integral equation [3]-[5]:
E[y (tyw'(s)] = joh(t,s')E[u'(s')u'(s)]ds' ©6)

Let K, (t,s) represent the crosscovariance function of y(t) with u'(s), let K, (t,s) represent
the crosscovariance function of y'(t) with u'(s) and let K,(¢,s) represent the autocovariance
function of u(t). From the uncorrelation property of v'(t) with y'(s), the relationship
Kyu(t,s)=Ky(t,s) is valid. Substituting (2) into (6) and using the stochastic property of (1),

we obtain
h(t,$)R = K, (t,5) - j;h(z,s')Ku(s',s)ds', 0<s<t. @

It is assumed that K, (7,s), K,(t,s) and the variance R of the observation noise v(t) are given in
estimating h(t,s).Here, let K,,(t,s) and K,(t,s) be expressed in the semi-degenerate kernel

form as follows.

a()B’(s), 0<s<t

K .(ts)=
’ YN (s), 0<t<s ®)

A(t)B'(s), 0<s<t
Ku (t,5)= 5 )
B(t)A'(s), 0<t<s
Here, oft), fB(s), ¥(t), As), A(t) and B(s) are, 1 Xm, 1Xm, 1Xn, 1Xn, 1Xk and 1Xk vectors
respectively. On the crosscovariance function K, (t,s), it might be seen that the covariance
information only for 0<s<t suffices to be used in the RLS estimation algorithm of Theorem

1 for h(t,s).

3. Derivation of RLS estimation algorithm for impulse response function
In this section, new RLS estimation algorithm for the impulse response function h(t,s) is
proposed in Theorem 1 for linear continuous-time wide-sense stationary stochastic systems.

The algorithm is derived starting with (7) based on the invariant imbedding method [10].

Theorem 1. Let the crosscovariance function Ky, (t,s) between y(t) and u'(s), the
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autocovariance function K,(z,s) of u(t) and the variance R of the observation noise v(t) be
given. Let K, (t,s) and K,(t,5) be expressed in the semi-degenerate kernel from as shown in
(8) and (9). Then the RLS estimation algorithm for the impulse response function h(t,s) con-
sists of (10)~(16). On the crosscovariance function K, (¢,s), the information for 0<s<r'is

used in estimating h(t,s).

h(t,s) = a(t)J(t,s) (10)
VS - 10,0AG)CGr.5) an
gD
acg’“‘) = —C(L.HAMC(t,5) 02
Jt,H)=(B"(t)-r()A"(t))/ R (13)
C(t,t) = (B (t)— q(t)AT (1))/ R (14)
i’—:—i(tﬁ = J(t,0)(B(t)— A(D)q(1), r(0)=0 (1)
? = C(t.1)(B(1) - A1), g(0)=0 (18)

Proof. Substituting the expression (8) of the crosscovariance function K, (t,s) in the semi-

degenerate kernel form into (7), we have

ht,5)R = a)B (s) - [ (t,5)K, (s',5)ds". (17
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Introducing an auxiliary function J(t,s), which satisfies

J(t,5)R=B"(5)~ [ J(2,5)K,(s",9)ds’, (18)

we have (10) for h(t,s) from (17) and (18).

Differentiating (18) with respect to t, we have

a(t,s) 1Al (t,5) o o s s g
= R=—J(0K, (6:9)- jOT K,(s',5)ds’. (19)
Substituting the semi-degenerate expression K,(,s)=A( t)B(s) for 0<s<t in (9) into (19), we
have
al(t,s) , T 1dJ(t,s") , ,

> R=—-J(t0ADB (5)- Jo—at—Ku(s ,5)ds’. 20)

Introducing an auxiliary function, which satisfies

C(t,5)R = B'(5) - [ C(t,5)K,(",)ds’, @1

we obtain (11) for J(t,s) from (20) and (21).

Differentiating (21) with respect to t, we have

&C;’S) R=-C(t,NK,(t,5) - ﬂ% K, (s",9)ds". =2

Similarly with the derivation of (11), from (9) and (22), we obtain the partial-differential
equation (12) for C(t,s).

The function J(t,t) in (11) is formulated as follows. Putting s=t in (18), we have
T g ’ ’ ’
J(t,H)R= B () - JOJ(t,s K, (s’,t)ds’. (23)
Substituting K,(s’, t)=B(s')AT(1), 0<s'<t, from (9) into (23), we have

JtOR= B0 [ J(t,5)B(s") AT (s’ 24)

Introducing a new function r(t) defined by
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r(t) = [ J(t,5)B(s")ds’, 25)
we obtain (13) for J(t,t).

Differentiating (25) with respect to t, we have
dr(t 1 dJ(t,s ,

( ) 1B+ [ ( ) B(s')ds' 26)
Substituting (11) into (26), we have
) _ 1t,B(t) - J(t,t)A(t)J; C(1,5")B(s")ds’. @7
In (27), introducing a function q(t) defined by
q(t) = [ C(t,5)B(s")ds’ 28)
we obtain (15) for r(t).

Differentiating (28) with respect to t, we have
dq(t 1dC(t,s ,

—‘C’% = C(t,1)B(t) + j ( KOS gy, 29)
Substituting (12) into (29) and using (28), we obtain (16) for q(t).

The function C(t,t) in (12) is formulated as follows. Putting s=t in (21), we have
C(t,0)R = B" (1) - jo Ct,s")K,(s',t)ds’. (30)
Substituting K,,(s',t)=B(s 1AT(1), 0<s'<t, from (9) into (30), we have
Ct,OR=B"(1) = [ C(t,5")B(s")A” (1)ds". 31)
Using (28) in (31), we obtain (14) for C(t,t). I

It is expected that, as the value of s becomes large the estimation accuracy for the sta-
tionary impulse response function h(z,s)=h(t-s)=h(1), 0<s<t, might be improved. This point

is clarified by a succeeding numerical simulation example in section 4.
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4. A Numerical Simulation Example
In this section, a numerical simulation example is demonstrated in order to show the
validity of the proposed estimation algorithm of Theorem 1.

Let the autocovariance function K,(,s) of (9) be given by

2

K, (t,5)= 2“—2rwe‘“l"“', a,=085, a,=09, T, =0.5% 32)

q

Let the crosscovariance function Ky, (t,s), 0<s<t, of (8) be given by

b,a; by (1-5) b,a, -ay(1-9)
Ky’u(t’s)zz—bzrwe s +2—b——Fwe il S OSSSI, (33)
a, — b a,(b, —a,)

[11]. Let the impulse response function to be estimated be given by

h(t,s)=b,e™, b =2, b,=0.95. (34)
From (9) and (32), we see that

2
A(t) = ;—"I‘we‘“", B(s) =e™". (35)

q

From (8) and (33), we obtain expressions for () and f(s) as

2 2
a(t) = (bzR + 2b2—a22‘rw )e_b" _—b2a2 I“we_“l’ ,
a —b, 2a,(b, - a))

ﬂ(s)z[eb" e’ . (36)

Substituting A(t), B(t), oft) and f(t) into the estimation algorithm for the impulse response
function h(t,s) of Theorem 1, we can calculate h(t,s) sequentially.

Fig.2 illustrates the true value of A(t,s), s=0.5, 0.5<¢<1.5, and its estimated value (speci-
fied by the notation “+ +”) for the white Gaussian observation noise sequence N(0,0. 1.
Here, the values 0 and 0. 1% in N(0,0.lz) represent the mean and the variance of the observa-
tion noise respectively. Fig.2 shows that the estimated impulse response function coincide
with its true value almost precisely. Table 1 shows the mean-square values of estimation error
of h(t,s) for the observation noise sequences of v(t), N(0,0. 12), N(O,O.32), N(O,O.SZ), N(O,O.72)
and N(0,1), when s=0.5, s=1.0 and s=1.5. The M.S.V. is calculated on the estimation error of
h((k+))A, kA), 0< j <1000, A=0.001, for each value of k, k=500, 1000, 1500. In Table 1, as

the value of s in h(t,s) becomes large, the M.S.V. of the estimation error becomes small and
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the estimation accuracy for h(t,s) is improved. Also, the M.S.V. is not influenced almost by

the noise variance R of v(t) for each corresponding value of s, s=0.5, 1.0, 1.5.

0.8

True value 71
+ + Estimate

0.7}

0.6 |

0.5}

0.4

Impulse response function

0.3}

0.2}

0'1 A - ' 1 ' 1 A A A
0 04 02 03 04 05 06 07 08 0.9 1
t-s
Fig.2 True value of A(t,s), s=0.5, 0.5<¢<1.5, and its estimated value (specified by
the notation “+ +” ) for the white Gaussian observation noise sequence

N(0,0.1%).

Table 1 Mean-square values of estimation error of h(t,s) for the observation noise
sequences of v(t), N(0,0.1%), N(0,0.3%), N(0,0.5%), N(0,0.7%) and N(0.1),
when s=0.5, s=1.0 and s=1.5.

White Gaussian

observation noise

M.S.V. of estimation

error for s=0.5

M.S.V. of estimation

error for s=1.0

M.S.V. of estimation

error for s=1.5

N(0,0.1%)

8.1059539x10™*

1.1346378 x 107

3.0692884 x 10~°

N(0,0.3%)

7.3484486 x10™

1.7405290 x 107

42654862 %1077

N(0,0.5%)

2.0517957 x 107

7.9874479 x 107

3.1611227 x10™

N(0,0.7%)

6.9188386x107°

3.2167387x10°°

1.5117485x 107’

N(0,1)

1.9296446 x 10~

9.9808150x 10’

5.1995271x 107

For references, the state-space models for generating u(t) and y'(t) are given by

du(t) 2
2 = () +aw(o), E[w(®)]=T,,

dy‘; gt) = by (1) + by (1), W (1) =u(t)+w(1).

37
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5. Conclusions

This paper has proposed the RLS estimation algorithm for the impulse response func-
tion in terms of the covariance information in linear continuous-time wide-sense stationary
stochastic systems. The algorithm uses the variance of the observation noise v(t), the
autocovariance function K,(z,s) of u(t) and the crosscovariance function Ky, (t,s) between the
output observed value y(t) and u'(s). It is a characteristic that K,(t,s) and K,,(t,s) are ex-
pressed in the semi-degenerate kernel form. The numerical simulation example in section 4
has shown that the proposed estimation algorithm for h(t,s) is feasible. As a result, its estima-
tion accuracy is not influenced almost by the value of the noise variance R of v(t). Also, the

estimation accuracy is improved as the value of s becomes large.

References

[1] P. Eykhoff, System Identification - Parameter and State Estimation, John Wiley & Sons,
1974.

[2] J. N. Juang, Applied System Identification, PTR Prentice-Hall, Englewood Cliffs, NJ,
1994 Chapter 3, pp.41-80.

[3] G. M. Jenkins, Cross-Spectral Analysis and Estimation of Linear Open Loop Transfer
Functions, Proc. Symposium Time Series Analysis, M. Rosenblatt, Ed., pp.267-276, John
Wiley & Sons, 1963.

[4] G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications, Holden-Day, 1968.

[5] S. Sagara, K. Akizuki, T. Nakamizo and T. Katayama, System Identification, SICE, 1981
(in Japanese)

[6] K. Furuta, Estimation and Identification of Linear Dynamical Systems, Corona Publish-
ing, 1976 (in Japanese) Chapter 4, pp.148-223.

[7] B. F. Boroujeny, Adaptive Filters, John Wiley & Sons, 1999 Chapter 3, pp.49-88.

[8] T. Nakamizo, Signal Analysis and System Identification, Corona Publishing, 1988 (in

- Japanese)

[9] S. Nakamori, Design of predictor using covariance information in continuous-time sto-
chastic systems with nonlinear observation mechanism, Signal Processing, 68 (1998) 183-
193.

[10] H. Kagiwada and R. Kalaba, An initial value theory for Fredholm integral equation with



NAKAMORI:RECURSIVE ESTIMATION OF IMPULSE RESPONSE FUNCTION USING COVARIANCE INFORMATION
IN LINEAR CONTINUOUS STOCHASTIC SYSTEMS

65
semi-degenerate kernels, J. Assoc. Comp. Mach., 1 (1970) 412-419.
[11]J. L. Melsa and A. P. Sage, Introduction to Probability and Stochastic Processes, Prentice-

Hall, 1973.





