
55

RECURSIVE ESTIMATION OF IMPULSE RESPONSE FUNCTION

USING COVARIANCE INFORMATION

IN LINEAR CONTINUOUS STOCHASTIC SYSTEMS

Seiichi NAKAMORI *

(Received 25 September, 2000)

Abstract This paper proposes a new recursive least-squares (RLS) estimation algohthm

I:Or an impulse response function in linear continuous-time wide-sense stationary stochastic

systems･ It is assumed that the input signal to the unknown impulse response mnction is

contaminated by additive white Gaussian observation noise. The output slgnal血Om me sys-

tem related with the impulse response mnction is observed with additive white Gaussian

noise. me impulse response mnction is estimated recursively in tens of the va血ance of the

white Gaussian observation noise included in the input signal, the autocovahance mnction

or the process berore the observation noise is added to the input signal, and the crosscovariance

mnction between the output observed value and the input observed value, Concemlng the

system based on the unhown impulse response mnction･

1. Intmduction

The estimation problem of the impulse response mnction, which is classined as the

nonp紬amethc model, is one of the imponant quantities in the identincation problem of an

unhown system [11. In the contexts of signal processing and automatic con廿ol, the Laplace

transrom of ale impulse response function is defined by the transfer function in continuous-

time systems t2]. The impulse response mnction is a solution of the Wiener-Hopf integral

equation [31,[41･ In紅equency domain [51, the spectral density mnction of a signal is calcu-

lated by Fourier transfb- of its autocomelation mnction･ In the relation with the Wiener-

Hopf integral equation, the spectral density血nction for the impulse response mnction is

calculated in tens of the crossspectral density mnction of the input with output of the un-
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known system and the spectral density mnction of the input･ In time domain, on the estima-

lion of the impulse response mnction with scalar input and output, the impulse response

function in the Wiener-Hopf integral equation is obtained by applying white noise to the

input of the unknown system [5]. Howevel for the system in the state of working, it might be

desired to utilize a method which takes out the input and output data of the system and uses

some usemI information based on these data. This treatment using the sampled data is classi-

fied into the method in discrete-time systems. Also, as a diHerent approach from above, the

model-adjustlng method assumes the a pnori reference model of the impulse response func-

tion t6]･ On the estimation of the impulse response mnction in linear discrete-time systems,

the linear least-squares method [5], the method of steepest descent 171, the comlation method

[5], and etc･ are known･ In the co膜lation method, me input and output data of the system狐e

applied respectively to the whitening鮭lter t5],[8] designed for the input values to the un-

known system. Then, in terms of the variance of the whitened data in the input and the

crosscovariance of the whitened data in the input with the processed data in the output, the

impulse response mnction is calculated. As a consequence, in linear continuous-time sys-

tems, 1mStead of use of white noise in the input, development of a new method, which uses

some stochastic quantities related with the input and output infomation, might be desired･

Along above discussion, this paper designs a new RLS estimation algorithm for an un-

known impulse response mnction by uslng the covahance infbmation in linear continuous-

time wide-sense stationary stochastic systems. The input slgnal to the impulse response func-

tion is contaminated by additive white Gaussian observation noise. The output slgnal五〇m

the system related with the impulse response mnction is obseⅣed with additive white Gaussian

noise. The impulse response mnction is estimated recursively by the proposed algohthm in

tens of the following quantities. ( 1) The va血ance of the obseⅣation noise in the input of the

system related with the unhown impulse response請nction. (2) The autocovahance mnction

of the process before the observation noise is added in the input of the unknown system. (3)

The crosscovariance mnction between the output observed value degraded by the additive

observation noise and the input signal process to the system. It is assumed that the

autocovariance and crosscovariance mnctions are expressed in the semi-degenerate kemel

fob. The semi-degenerate kemel l9] is suitable for expressing these covariance functions by

a nnite sum of products of nonrandom請nctions.
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2. Linear least-squa隊s estimation of impulse mSpOnSe mnction

Fig.1 Block diagram concemed with the estimation problem of the impulse

respones function.
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Lct us consider the block diagram of Fig･ 1 concemed with the estimation problem of

the impulse response Function. Let h((,S) represent a scalar impulse response function to be

estimated Eor an unknown system･ Let w(I) represent zero-mean white Gaussian noise input

to a system which generates the stochastic process u(t)･ Let u(t) bc observed with additive

zero-mean white Gaussian noise v(t) with the va轟ance R.

EIv(i)V(∫)]= R∂(i-∫), 0≦S,t<-　　　　　　　　　　　　　　　(1)

It is assumed that u(t) is uncorrelated with v(S), i･e･ Elu(t)V(S)]=0,肱S,t<-. Let u●(t) repre-

sent a stochastic input process to the unknown system. u'(t) is given by

u'(I) = u(t) + V(t).　　　　　　　　　　　　　　　　　　　 　(2)

Let y'(I) represent a stochastic process in the output of the unknown system related with the

impulse response mnction h(t,S)･ It is assumed mat y'(t) is obseⅣed wim additive zero-mem

white Gaussian noise v'(t) and y●(t) is uncorrelated with v'(S), i.C. Ety●(t)V●(S)]=0, CE: ∫,t<-.

Let y(t) represent the observed value of y'(I)･

y(i) ≡ y'(i) + V'(i)　　　　　　　　　　　　　　　　　　　　　　　(3)

me problem is to estimate the impulse鯵SpOnSe mnction h(章,S) of me unhown system

in Fig. 1. 1t is assumed that the objective system is asymptotically stable in line紬Wide-sense

stationary stochastic systems･ Hence, A(t,S)=h(i-S)(=h(t), t=t-S) and

廊怖く-･　　　　　　　　　　　　　　(4)

Let y'(t) be expressed by

y'(t) - I:h(t･ S')u'(S')ds'･　　　　　　　　　　　(5)

Multiplying (5) by u'(S) aid taking expectation on both sides of (5), we have the Wiener-
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Hopf integral equation [3Ll5].

Ely'(i)u'(S)I - ).'h(t･ S')Elu'(S')u'(S)lds'
(6)

Let Kyu･ (i,S) represent the crosscovariance Function or y(t) with u'(S), let Ky･u, ((,S) represent

the crosscovariance function of y'(t) with u'(S) and let Ku(i,S) represent the autocovariance

function or u(I)･ From the uncorrelation property of v'(t) with y'(S), the relationship

Kyu･((,S)=Ky,u･(1,S) is valid･ Substituting (2) into (6) and using the stochastic property or (1),

we obtain

h(i,S)R - K",((,S) - Jo'h(t,S,)Ku(js)ds, '7'

It is assumed that Kyu,((,S), Ku(i,S) and the vahance R or the lobservation noise'V(t) are given in

estimating A((,S)･Here, let Kyu,((,S) and Ku((,S) be expres'sed in the semi-degenerate kemel

fbm as ibllows.

K,u, (t, S)

Ku((,S)

α(i)lT(∫), o≦S≦t

r(t)^'(S), o<t<S

A(i)BT(∫), o≦S≦t

B(i)A'(∫), 0≦t≦S

(8)

(9)

Here, a((), qs), r(i),朽S), A(i) andB(∫) are, I Xm, lXm, lXn, lXn, lXkand lXk vectors

respectively･ On the crosscovariance function Kyu:((,S). it might be seen that the covariance

inromation only for Ofs<t suHices to be used in the RLS estimation algorithm or Theorem

lforh(t,S).

3. Derivation or RLS estimation algorithm ror impulse response function

ln mi§ section, new RLS estimation algohthm for me impulse response mnction h(t,S) is

proposed in Theorem I for linear continuous-time wide-sense statiomry stochastic sys,tems･

The algohthm is de血ved staning wim (7) based on the invahant imbedding method [10]･

Theorem I. Let the crosscovariance function Kyu･(1,S) between y(t) and u'(S), the
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autocovariance function Ku(i,S) or u(t) and the variance R of the observation noise v(I) be

given･ Let Kyu,((,S) and Ku(i,S) be expressed in the semi-degenerate kemel from as shown in

(8) md (9). Then the RLS estimation algohthm fbi the impulse response mnction h(t,S) con-

sists or (10)-(16)I On the crosscovariance function Kyu,(t,S), the information for O<S<t'is

used in estimating h(章,S).

h(らS) ≡ α(i)J(i,∫)

〟(i, ∫)

囲

幻((, ∫)

囲

ニーJ(i,i)A(i)C(i,∫)

二一C(i,i)A(i)C(i,∫)

I(t,t) - (P'(i) - r(i)A'(I))/R

C(i,i) = (BT(i) - q(i)A'(i))/ R

≡ I(i,i)(B(i)-A(i)q(i)), r(0) ≡ 0

≡ C(らt)(B(i)-A(i)q(i)), q(0) = 0

(10)

阻劃

(12)

(13)

(14)

(15)

(16)

Proof. Substituting the expression (8) of the crosscovariance function Kyu･((,S) in the semi-

degenerate kemel fbm into (7), we have

a(t)pT(S) - loth(t･S')Ku(S'･S)ds' (17)
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Introducing an auxiliary function J(t,S), which satisfies

J(t･S)R ≡ lT(∫)一陣t･S'瓶S'･S輝

we have (10) for h(i,S)血om (17) and (18).

Di鵬rentiating (18) with respect to t, we have

空也RニーJ(t･t,Ku(t" -烏等Ku(S,･S,ds,･
囲

(18)

(19)

substituting the semi-degenerate expression Ku((,S)=A(i)BT'(S) for OSs<t in (9) into (19), we

have

些型RニーJ(t･t,A(i,B,(∫, ｣.'誓Ku･S,･S･ds,･
囲

Introducing an auxiliary mnction, which satisnes

c(t･S)R - B'(S) - Jo'C(t･S')Ku(S'･S)ds'･

we obtain (ll) for ∫(t,S) Hom (20) and (21).

Di任erentiating (21) with respect to t, we have

空也RニーC(t･t,Ku(t･S) ｣.'誓Ku(S,･S,ds,･
園

(21)

(22)

Similarly with the derivation of (ll),五〇m (9) and (22), we obtain the panial-di惜erential

equation (12) for C((,S).

The mnction ∫(i,t) in (ll) is fbmulated as follows. mtting s≡t in (18), we have

I(t･t)R - P'(i) - Io'J(t･S')Ku(S'･t)ds'･

substituting Ku(S', i)=B(S')AT(t), o<S '<(, from (9) into (23), we have

I(t･t)R - lT(i) - IotJ(t･S')B(S')A'(i)ds'･

Introducing a new血nction I(t) denned by

(23)

(24)
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r(i) - Io'J(t･ S')B(S')ds'･

we obtain (13)顔)I ∫(t,t).

Difrerentiating (25) with respect to t; we have

坐- I(t･t,B(i,宜等B(∫,,ds,･
dt

Substituting (ll) into (26), we have

立錐- J(i,i)B(i) - I(,,DA(i)I:C(t,S,)B(∫,)ds,･

dt

In (27), introducing a mnction a(t) de鯖ned by

q(i) - ).'C(tJ')B(S')ds',

we obtain (15) for 〟(t).

Difrerentiating (28) with respect to t, we have

哩- C(t･t･B･(,宜等B(S,,ds,･
dt

Substituting (12) into (29) and using (28). we obtain (16) for q(t).

The mnction C(t,t) in (12) is fbmulated as follows. mtting s≡t in (21), we have

c(t,t)R - B'(0 - Io'C(TIS,)Ku(S,･t)ds;

substituting Ku(S',i)=B(S')Ar(t),健S'<_(, from (9) into (30), we have

c(t･ t)R - B'(t)工.'C(t･ S')B(S')A'(t)ds'･

Using (28) in (31), we obtain (14) for C((,t)･
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(25)

(26)

(27)

(28)

(29)

(30)

It is expected that, as the value of s becomes la塘e the estimation accuracy for the sta-

tionary impulse response function h(t,S)=h(1-S)=h(1), 0Ss<t, might be improved. This point

clahned by a succeeding numehcal simulation example in section 4.
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4･ A Numencal Simulation Example

ln this section, a numehcal simulation example is demonstrated in order'to show the

validity of the proposed estimation algohthm of Theorem 〟

Let the autocovahance mnction K諦S) of (9) be given by

Ku(t･S,-iLe-a.I,-si･ a --o･85･隼0･9･ L -0･52･

Let Ale CrOSSCOVariance Function Kyu,((,S), 0Ss<(, of (8) be given by

-∫,-藷rwe-b,',-S'十両計e-a-(,-S,～ o≦ ∫ ≦t
b2a22

[111･ Let me impulse response mnction to be estimated be given by

h(t,S)=b2e-OIL, b, =2, b2 -0.95.

Fmm (9) md (32), we see mat

A(i)-計e一年･ B(∫,-ea,S･

From (8) and (33), we obtain expressions for αt) and Lys) as

α(t･ - [･b2R,krwF･, 2a.(bi,qia.,rye-a.･]･

l(∫)-ted,∫ ea,S]･

(33)

(35)

(36)

Substituting A(i), B(i), αt) and ut) into the estimation algorithm for the impulse response

mnction h(t,S) of Theomm 1, we can calculate h(t,S) sequentially･

Fig.2 illustrates the true value or h(i,S), S-0.5, 0.5 <t< 1.5, and its estimated value (speci-

fied by the notation i+　+" ) for the white Gaussian observation noise sequence N(0.0･12)I

Here, the values 0 and 0. 12 in N(0,0. 12) represent the mean and the va血ance of the observa-

tion noise respectively. Fig.2 shows that the estimated impulse response mnction coincide

with its true value almost precisely. Table 1 shows the mean-square values of estimation error

of A((,S) for the observation noise sequences or v(t), N(0,0･ 12), N(0,0･32), N(0,0･52), N(0,0･72)

and 〟(0,1), when s=0.5, SニI.0 and sこ1.5. The M.S.V is calculated on the estimation emor of

h((k+j)A, kA), 0< j I 1000, A=0.001, for each value ork, k=500, 1000, 1500. In Table 1, as

the value of s in h(t,S) becomes la堰C, the M.S.V of the estimation emor becomes small and
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the estimation accuracy for h(t,S) is improved･ Also, the M･S･V is not innuenced almost by

the noise variance R of v(I) for each conesponding value of s, S=0･5. 1･0, 1 ･5･

0　　　0.1　　0.2　　0.3　　0.4　　　0.5　　0.6　　0.7　　0.8　　　0.9　　　1

t-s

Fig.2 Tme value of h(i,∫), S=0･5, 0･5≦t≦ 1･5, and its estimated value (specined by

the notation "+　　+" ) for the white Gaussian observation noise sequence

N(0,0.12).

Table I Mean-square values or estimation error or A(I,S) for the observation noise

sequences or v(t), N(0,0･12), N(0,0･32), N(0,0･52), N(0,0･72) and N(0･1),

when s=0.5, SニI.0 and s=1.5.

WltiteGatBSian 挽�2蘆踐fW6FﾖF��M.S.V.of estimation 挽�2蘆踐f76FﾖF��

observationnoise �6ﾗ&f'%2ﾓ��2�emrfbr§-1.0 妨'&�&f�'3ﾓ�絣�

N(0,0.12) 唐���S鉄3�����示ﾂ�1.1346378×10-6 �2��c�#ャH����ﾓ��

N(0,0,32) 途�3CイCド����ﾓB�1.7405290×10-5 釘�#cSCツ(����ﾓr�

N(0,0.52) �"��S�s鉄x����示ﾂ�7.9874479×10一 �2��c��##x����ﾓr�

N(0,0.72) 澱纉�ャ3ド����ﾓR�3.2167387×10-6 �+SS��sCス����縒�

N(0,1) ��纉#田CCh����ﾓ2�9.9808150×10-7 迭��涛S#s�����ﾓ��

For references, the state-space models for generating u(t) and y'(t) are given by

dll(i)

dt

dy'(t)

dt

- -a.u(t)+a2W(t), Elw2(i)I - rw,

= -b.y'(t)+b2u'(t), u'(t) = u(t)+ V(t)･
(37)
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5. Conclusions

This paper has proposed the RLS estimation algohthm for the impulse response mnc-

tion in tens of the covariance inromation in linear continuous-time wide-sense stationary

stochastic systems. The algorithm uses the variance of the observation noise v(t), the

autocovariance function Ku((,S) of u(I) and the crosscovariance function Kyu,((,S) between the

output observed value y(t) and u'(S)･ It is a characteristic that Ku((,S) and Kyu･(i,S) are ex-

pressed in the semi-degenerate kemel fbm. The numehcal simulation example in section 4

has shown that the proposed estimation algohthm for h(t,S) is feasible･ As a result, its estima-

tion accuracy is not inHuenced almost by the value of the noise va血ance 良 of v(t)･ Also, the

estimation accuracy lS improved as the value of s becomes la堰C.
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