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Abstract. This paper designs a Chandrasekhar-type recursive Wiener filter for the
white observation noise in linear discrete-time wide-sense stationary stochastic systems.
The system matrix in the state-space model of the signal, the crossvariance function
of the state variable of the signal with the observed value, the observation matrix
for the signal, the variance of the white observation noise and the observed value
are assumed to be known. In particular, this paper extends the Chandrasekhar-type
recursive Wiener filter for a scalar observation equation to the case of a vector
observation equation. A characteristic of the Chandrasekhar-type filter is to calculate
the filter gain directly by solving the recursive difference equations.
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1. Introduction

In detection and estimation theory (Trees, 1968), the continuous-time estimation
problems using the covariance information have been studied extensively. Correspond-
ingly, the continuous-time recursive least-squares (RLS) estimation algorithms using the
covariance information are derived (Nakamori, 1991, 1996a). Recently, the continuous-
time Chandrasekhar-type RLS Wiener filter is proposed (Nakamori, 2000) for the white
and white plus coloured observation noise. In Nakamori (1996b, 1997a, 1997b), the
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discrete-time RLS Wiener filter is designed for the white observation noise. In Nakamori
et. al (2003), the discrete-time Chandrasekhar-type RLS Wiener filter is designed
for the case of the scalar observation equation. In (Sugisaka, 2000), the Chandrasekhar-
type recursive Wiener filter for the vector observation equation is proposed. However,
in (Sugisaka, 2000), there seem to be errornous expressions in the derivation process
of the Chandrasekhar-type filter.

In particular, this paper extends the Chandrasekhar-type RLS Wiener filter for
the scalar observation equation to the case of the vector observation equation. Namely,
this paper, in the case of the vector observation equation, newly designs the Chandrasekhar-
type recursive Wiener filter for the white observation noise in linear discrete-time
wide-sense stationary stochastic systems. The characteristic of the Chandrasekhar-type
filter is to calculate the filter gain directly by solving the recursive difference equations.
The filter necessitates the following information. (1) The system matrix. (2) The
observation matrix for the signal from the state vector. (3) The crossvariance function
of the state variable for the signal with the observed value. (4) The variance of
white observation noise. (5) The observed value. The procedure to calculate the above
quantities (1)-(4) from the observed value is studied in (Nakamori, 1997b). In Kalman
filter, the information of the state-space model generating the signal process is necessary.
For the p-dimensional discrete-time observation equation and the n-dimensinal state
vector, the number of difference equations included in the current Chandrasekhar-

type filter is 2nxp+n. Whereas the numbers of the difference equations in the RLS
n(n+1) n+1

+ 7 . This indicates, for P <T , that the number of

equations of the proposed Chandrasekhar-type recursive Wiener filter is less than

that of the RLS Wiener filter.

Wiener filter is

2. Linear least-squares filtering problems

In this section, linear least-squares filtering problems using the covariance infor-
mation are introduced for the white observation noise.

Let an n-dimensional discrete-time state-difference equation and a p-dimensional
discrete-time observation equation be represented by
x(k +1) = Fx(k) + Bu(k), E[u(k)u(s)] = 625, (k- s),
k)= 2(k)+w(k),  z(k) = Hx(k) M

in linear wide-sense stationary stochastic systems. Here, x(k) is a state vector, u(k)
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is a white noise input, y(k) is an observed value and z(k) is a zero-mean signal.
Also, F is a system matrix, B is an n X r input matrix, H is a p X n observation
matrix for the state vector x(k) and & K(k — §) represents the Kronecker delta function.
Let v(k) be the white observation noise with the variance R.

E[v(k)W' (s)]= RS, (k - 5) 2)
Here, it is assumed that the signal z(-) and the observation noise v(*) are uncorrelated
mutually.

E[z(k)v' (5)]=0, 0<s,t<o 3)
Let us assume that the filtering estimate X(k,k) of the state variable x(k) is given

by
x(k, k)= Zh(k,i)y(i), 4)

where h(k,s) represents the n X p impulse response function. Minimizing the mean-square

value of the filtering error x(k) — X(k, k)

J = E[(x(k) - X(k, k)" (x(k) - 2(k, k)], )]
we obtain the Wiener-Hopf equation (Sage and Melsa, 1971):
k
E[x(k)y" ()] =X h(k,)E[y()y" ()], (6)
i=l

Let K.(k,s) represent the crosscovariance function of the state vector x(k) with the

observed value y(s). If we substitute (1) into (6), and use (2) and (3), we obtain
k

h(k,5)R =K, (k,s) - > h(k,)HK ,(i,5). (7
i=1

(7) is the equation which the optimal impulse response function A(k,s) satisfies in linear

discrete-time least-squares filtering problem for the white observation noise.

3. Chandrasekhar-type recursive Wiener filtering algorithm
In [Theorem 1], the Chandrasekhar-type recursive Wiener algorithm for the linear

filtering estimate is shown.

[Theorem 1]
Let Z(k, k) represent the filtering estimate of the signal z(k). Let the system
matrix F, the observation matrix H, the crossvariance K.(0) of the state variable

with the observed value, the variance R of the white observation noise v(k) and
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the observed value y(k) be given in linear wide-sense stationary stochastic systems.
Then the Chandrasekhar-type recursive Wiener algorithm for the filtering estimate
2(/(, k) consists of the equations (8)-(10) for the white observation noise.

Filtering estimate of the signal z(k): Z(k,k) = Hx(k,k)

X(k, k)= Fx(k—1,k—1)+h(k, k) y(k) - HFx(k -1,k —1)) (8)

Initial condition: X(1,1) = A(1, 1)y(1)

Filter gain for the filtering estimate of x(k):/A(k, k)

h(k, k) = (h(k -1,k —1)—

Fh(k-1LDA" (k-1LD)F"H") (I - HFh(k-1,1)A" (k-1,1)F"H")™ ©))
Initial condition:

h(,D) =K, (0(R+HK, (0))"

h(k,1) = Fh(k —11) — h(k,k)HFh(k —1,1) (10)
Initial condition:

h(1,) =K, (0)(R+HK, (0)"

The proof of [Theorem 1] is deferred to the Appendix. From the proof in the
Appendix, it should be noted that (9) is valid for sufficiently large value of %,
where the stationary property for the autocovariance function of the filtering estimate
is satisfied. For the value of k relatively small, where the stationary property of
the covariance function is not satisfied, (9) might be regarded as sub-optimal expression.

The conditions on the convergence of the Chandrasekhar-type recursive Wiener
filter are that the system matrix F and the matrix F-h(k,k)HF are stable and that
the’ matrix I-HFh(K-1,1)hT(k—1, 1)FTHT is positive definite.

It is notified that (8) represents the innovations state-space model for the filtering
estimate X(k,k) of the state variable x(k). As shown in (9), in the Chandrasekhar-
type filtering algorithm, the filter gain is directly updated.

Now, let us compare the Chandrasekhar-type recursive Wiener filter in [Theorem
1] with the RLS Wiener filter (Nakamori, 1996b) in [Theorem 2] using the covariance

information.
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[Theorem 2]

Let F be the system matrix of order n in the state-space model for the signal
z(k). Let H be the observation matrix for z(k). Let K. (k, k) (=K(0)) be the crossvariance
function of the state vector x(k) with the observed value y(k). Let f(k, k) represent
the filtering estimate of z(k). Then the RLS Wiener algorithm for the filtering estimate
2(k, k) consists of the following equations (11)-(13) for white observation noise.

Filtering estimate of the signal z(k):

Z(k,k) = Hi(k,k)

x(k,k)=Fx(k-1k-1)+

h(k,k)(y(k)— HFx(k—1,k-1)), %(0,0)=0 (11)
Filter gain for the filtering estimate of x(k): h(k,k)

h(k, k) = (K., (k, k)~ FS(k~1)F"H™)

(R+HK, (k,k)~ HFS(k -1)FTH" )" (12)
Autovariance function of the filtering estimate X (k,k): aﬁ square matrix S(k) of
order n.

S(k)=FS(k-D)F" +h(k,k) K (k,k)— HFS(k-1)F"),

S0)=0 (13)

The number of the difference equations included in the current Chandrasekhar-

type recursive Wiener filter is 2nXp+n. The number of the difference equations in
n(n+1) N n+1

N . This means, for P < 4 that the number

of equations of the proposed Chandrasekhar-type recursive filter is less than that

the filter of [Theorem 2] is

of the RLS Wiener filter of [Theorem 2] in linear discrete-time wide-sense stationary

stochastic systems.

4. A numerical simulation example

Let the observed value y(k) be given by a scalar observation equation

y(k) = Hx(k) + v(k), z(k) = Hx(k),
x(k) = [xi(k)  x(k) - x(B)], z(k) = xi(k). (14)
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Let us consider to estimate a vowel signal spoken by one of the authors. Its phonetic
symbol is written as “/i:/”. The sampling frequency of the voice signal z(k) is
10.025(kHz). The autocovariance data of the signal are calculated in terms of the
N(=5,000) sampled signal data. Let the stochastic process of the vowel signal be

modeled in terms of the AR process of order n.
2(k)=—-az(k-1)-a,z(k -2)—---—a,z(k —n) +e(k), Ele(k)e(s)]= o2k (k —5) (15)

Let K.(i), i =1, ...,n, represent the autocovariance data 'of the signal z(k). The AR

parameters a;, i=1,...,n, are calculated by the Yule-Walker equations.

(KO0 KO o e Ke-D]a ] [ KO ]
KO K© - o Km-D) a -K,(2)
3 s P s N E I (16)
K,n-2 - o KO KO |a.| [-K@-D
K,(n-1) K,(n-2) -~ - KO [a | | -K® ]

By refering to (Nakamori, 1997a, b) the 1 X n observation vector H, the crossvariance
function K. (k, k)(=K.,(0)), the system matrix F and the autovariance function K.(k, k)

are obtained in terms of the autocovariance data of the signal as follows:

H=[1 0 - 0], (17)
K, (kk)=[K (©0) K1) - K@»-D Kz(n)]f (18)
[ 0 1 0 0 0]
0 0 1 0 O
F=| : : : RN : (19)
0 0 0 0 1
| —a, -a,, _ar;—Z -a, -4 |,
[ K,(0) K@ - - K@m-D]
K, K,(0 - K,n-2)
K h)=| : P 5 (20)
K,(n-2) - K0 K0
| K,m-1) K,-2) - - KO |
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K.(k, k) is also called the Hankel matrix (Akaike, 1974). As indicated in Nakamori
(1997b), a finite dimensional realization for z(k) exists if and only if the rank of
the Hankel matrix is n.

Let the order of the AR process be n=10. If we substitufe the estimates of F,
H and K,(0)(=K«(0)HT) into the proposed estimation algorithm of [Theorem 1], the
filtering estimate f(k, k) of z(k) is calculated. Fig.l illustrates the signal z(k)(=xi(k)),
and the filtering estimate f(k, k) vs. k for the S/N ratio (SNR) 5 [dB]. Here, the variance
of the signal process is 1.0873. Fig.2 illustrates the mean-square values (MSVs) of
the filtering errors by the Chandrasekhar-type recursive Wiener filter in [Theorem

1] and by the RLS Wiener filter in [Theorem 2] vs. SNR. Here, the MSV is calculated

300 ,
D (2(k)~ 2k k))
by - 300 . From Fig.2, it is shown that the proposed Chandrasekhar-

type recursive Wiener filter has almost the same estimation accuracy with the RLS
Wiener filter in [Theorem 2]. The computation time of the Chandrasekhar-type filter
is just the 1/3 of that by the RLS Wiener filter. '

N

m T
kel —— Signal
= - Filtering estimate for 5 ([dB] -
]
© 1.8 : : {
[
o
i
[J] 1r 1
Fu)
©
£
-
M J
s 0.5
1]
g ]
5 o0
o
o
hat
“-0.5 7
'
2
¢ -1 b
— R
© )
5 X .
g -1.5
0
i

1
0 50 100 150 230 250 300
time x

Fig.1 Signal z(k)(=xi(k)) and the filtering estimate ﬁk,k) vs. k for the S/N ratio (SNR) 5[dB].
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Fig.2 Mean-square values of the filtering errors by the RLS Chandrasekhar-type filter in [Theorem 1]
and the RLS Wiener filter in [Theorem 2] vs. SNR.

5. Conclusions

In this paper, in the case of the vector observation equation, the Chandrasekhar-
type recursive Wiener filter has been devised for white observation noise in linear
discrete-time wide-sense stationary stochastic systems. The proposed Chandrasekhar-

type filter has almost the same estimation accuracy with the RLS Wiener filter.

n+l

Also, for P < —4— , the number of equations of the proposed Chandrasekhar-type

recursive Wiener filter is less than that of the RLS Wiener filter of [Theorem 2].

The Chandrasekhar-type filter for the vector observation was discussed during
Nakamori’s visit at the University of Granada, in November 2003, by the financial
support from the “Ministerio de Ciencia y Tecnolog'ia” under contract BFM 2002-
00932 and from the research group of the University of Granada. Seiichi Nakamori
would like to express his sincererest gratitude for the world-wide famous and dis-
tinguished research group of the University of Granada by memorizing that he was
in all three times invited to the University of Granada in April 2001, September
2002 and November 2003.

APPENDIX. Proof of [Theorem 1]
In (7), putting k—+k—1 and s—+s—1, we have
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k=1
hk-1s-DR=K_(k-1s-1)-> h(k-Li)HK,(i,s-1)

i=l

=ny(k—1,s—1)—zk:h(k—1,i—l)Hny(i,s).

=2

Subtracting (A.1) from (7), we obtain

(h(k,s)-h(k-1,s~1))R =K, (k,s)-K,, (k1,5 1) - h(k,HK  (1,5) -

zk:(h(k, i) —h(k —1,i ~1))HK, (i, 5).

From the wide-sense stationarity for the crosscovariance

Kiy(k,s)=Kx(k—1,s-1)=Kx(k—s) is valid. Hence, (A.2) becomes

(h(k,s)=h(k-1,s —1))R =—h(k,)HK (1,s) —Zk: (h(k,i)—h(k—1,i -1)HK  (i,s).
i=2

Introducing the function J(k,s) which satisfies

k

Jk-1,s-DR=K, (1s)- Y J(k-Li-DHK,(,s)

i=2

k-1

=K, (1,s)- > J(k-1L)HK,_(i,s-1),

i=1
from (A.3) and (A.4), we obtain
h(k,s)—h(k-1,s-1)=-h(k, D)HJ(k-1,s-1).

Pre-multiplying H to both sides of (A.4), we have

k
HJ(k-1,s-D)R=HK (Ls-)F'H" -> HJ(k-1i-1)HK,(,s).
i=2

From (A.1) we have

k
HFh(k-1,s-)R=HFK_(k-1,s-1)- Y HFh(k-1i-1)HK,(,s).

i=2 .
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(A.1)

(A.2)

function,

(A.3)

(A4)

(A5)

(A.6)

(A7)

Surely, HFh(k?l,s—l)R is the estimation error covariance function of Hx(e),
HFE[x(k-1)x" (s—1)]H" — HFE[%(k-1,k-1)x" (s—1,s —=1)]JH". For sufficient large
value of k, the second terms in (A.6) and (A.7) might approach the stationary

covariance functions. Since the autocovariance function of the observed value HK,(e,*)

is the symmetric function, from (A.6) and (A.7) with the wide-sense stationary property
for the covariance functions HJ(k—1,s—1)R and HFh(k—1,s—1)R, we see that

(HI (k-1 s-1)|_,) = HFh(k—1,5-1) ._,= HFh(k-11).

(A.8)



36 BERBRFHEFHMALE HRHER H56% (2005)

Hence, putting s =k in (A.5), we obtain

h(k, k)~ h(k -1,k -1) = —h(k, DA (k -1, 1)FTH". (A.9)
The initial value of h(kk) at k=1 is given by h(l,1) = K(0)(R + HK(0))™! from
(7). For the value of k relatively small, where the stationary property of the covariance
function is not satisfied, (A.9) might be regarded as sub-optimal expression. (A.9)
coincides with the equation derived by Sugisaka (2000).

Now, from (7), the function A(k,s) satisfies
k
Wk, )R =K_ (k,s)- > h(k,)DHK_(,s). (A.10)
i=1

Subtracting the equation by putting k—k-1 in (A.10) from (A.10), we have
(h(k,s)-h(k-1,5)R =K, (k,5)- K, (k-1,5)-h(k,k)HK  (k,5) -

kz—l:(h(k,i)-h(k—1,i))HKW(i, ). A1D

Comparing the equation obtained by substituting K. (k,s) = FKy(k—1,s) into (A.11)
with (A.10), we obtain

h(k,s)—h(k-1,s) = Fh(k -1,s)—h(k =1,5) - h(k,k)Fh(k —1,s). (A.12)
Hence, h(k,s) is updated by

h(k,s) = Fh(k —1,5) - h(k, k)HFh(k -1, 5). (A.13)
Putting s=1 in (A.13), we obtain

h(k,1) = Fh(k —1,1) - h(k,k)HFh(k —1,1). (A.14)

The initial value on the difference equation (A.14) at k=1 1is
h(1,1) = Kxy(0) (R + HKy(0)) ! from (7).
From (A.9) and (A.14), we obtain

Wk, k)= (h(k -1,k —1)- Fh(k -1, 1) (k-1,1)F H")
(I -HFh(k -1, )h (k-1 )FTH™Y*. (A.15)

The filtering estimate x(k, k) is rewritten as

2k, k) = h(k, k) y(k) + 3 h(k,i)y(i)

i=1
= FR(k - Lk -1)+ h(k,k)(y(k) - HF3(k -1,k - 1)) (A.16)

from (4) and (A.13). The initial value on the difference equation (A.17) for x(k, k)
at k=1 is‘ x(1, D) =h(1,1Dy(1) from (4) (Q.E.D.).
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