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Abstract

The famous Wallace-Simson Theorem for planar triangles is generalized to spherical tri-
angles.

1 Introduction

For planar triangles there is a well-known old theorem due to W.Wallace (1799):

Let P be any point on the circumcicle of a triangle ABC. Then the feet of perpendic-
ulars from P onto the three sides of the triangle lie on a straight line.

The straight line is called a Wallace-Simson line (for example, see Coxeter and Gleitzer (1967)).
The theorem could be generalizaed into several directions. One famous example of general-

ization was made by J.V.Poncelet by drawing three straight lines of constant angle with three
sides instead of perpendiculars (for example, see . Recently another generalization was studied
by P.Pech (2005) where an analogue of the Wallace-Simson theorem in three-dimensional space.

In this paper we study an analogue of the Wallace-Simson theorem for spherical triangles. In
the below we suppose that all figures lie on a unit sphere S. Consider a spherical triangle ABC.
Then the vertices A,B,C can be represented by vectors

−→
A ,

−→
B ,

−→
C emanating from the center of

S. Since these vectors are of the unit length, we have
−→
A ·

−→
A =

−→
B ·

−→
B =

−→
C ·

−→
C = 1,

where the symbol ”·” denotes the innerprouct of vectors.
As usual we write

a = BC, b = CA, c = AB; α = ∠CAB, β = ∠ABC, γ = ∠BCA.

Then
cos a =

−→
B · −→C , cos b =

−→
C · −→A , cos c =

−→
A · −→B . (1)
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2 Method of ”six edges”

In the traditional Japanese mathematics of ”Edo” era called ”Wasan”, the method of ”six edges”
played an important role for study of planar triangles. In this section we search an analogous
method for spherical triangles. That is, putting x = PA, y = PB, z = PC for any point P on S,
we examine a relation between six edges x, y, z, a, b, c.

If we put ϕ1 = ∠BPC, ϕ2 = ∠CPA, ϕ3 = ∠APB, the COS formula gives



cos a = cos y cos z + sin y sin z cosϕ1,
cos b = cos z cosx+ sin z sinx cosϕ2,
cos c = cosx cos y + sinx sin y cosϕ3

.

To simplyfy the notation we write

A = cos a, B = cos b, C = cos c, X = cosx, Y = cos y, Z = cos z.

Then we have

cosϕ1 =
A− Y Z√

1− Y 2
√
1− Z2

, cosϕ2 =
B − ZX√

1− Z2
√
1−X2

, cosϕ3 =
C −XY√

1−X2
√
1− Y 2

. (2)

Since ϕ1 + ϕ2 + ϕ3 = 2π, we see

cosϕ3 = cos(2π − (ϕ1 + ϕ2)) = cos(ϕ1 + ϕ2) = cosϕ1 cosϕ2 − sinϕ1 sinϕ2,

that is,
sinϕ1 sinϕ2 = cosϕ1 cosϕ2 − cosϕ3.

Hence follows
(1− cos2 ϕ1)(1− cos2 ϕ2)− (cosϕ1 cosϕ2 − cosϕ3)

2 = 0.

Then substitution of (2) gives

[(1− Y 2)(1− Z2)− (A− Y Z)2][(1− Z2)(1−X2)− (B − ZX)2]

= [(A− Y Z)(B − ZX)− (1− Z2)(C −XY )]2.

Then, dividing by a factor 1− Z2, we get

(1−A2)X2+(1−B2)Y 2+(1−C2)Z2−2(A−BC)Y Z−2(B−CA)ZX−2(C−AB)XY = K, (3)

where we put
K = 1 + 2ABC − (A2 +B2 + C2).

Now the COS formula gives

A−BC = sin b sin c cosα, B − CA = sin c sin a cosβ, C −AB = sin a sin b cos γ.

Furthermore, since

(A−BC)2 + (B − CA)2 + (C −AB)2

= (A2 +B2 + C2) + (B2C2 + C2A2 +A2B2)− 6ABC

= {(1−B2)(1− C2) + (1− C2)(1−A2) + (1−A2)(1−B2)} − 3K,

2

we have

3K =
�
(sin b sin c)2 + (sin c sin a)2 + (sin a sin b)2

�

−
�
(sin b sin c cosα)2 + (sin c sin a cosβ)2 + (sin a sin b cos γ)2

�

= (sin b sin c sinα)2 + (sin c sin a sinβ)2 + (sin a sin b sin γ)2. (4)

Therefore we obtain the following method of ”six edges” for spherical triangles.

Theorem 1

(sin a cosx)2 + (sin b cos y)2 + (sin c cos z)2

−2(sin b cos y)(sin c cos z) cosα− 2(sin c cos z)(sin a cosx) cosβ − 2(sin a cosx)(sin b cos y) cos γ

=
1

3

�
(sin b sin c sinα)2 + (sin c sin a sinβ)2 + (sin a sin b sin γ)2

�

3 Circumcircle

Let O and R be the center and the circumradius of circumcircle of a triangle ABC. Putting
x = y = z = R in (3), we have

[3− 2(A+B + C) + 2(BC + CA+AB)− (A2 +B2 + C2)] cos2R = K.

Hence it follows

1

cos2R
− 1 =

3− 2(A+B + C) + 2(BC + CA+AB)− (A2 +B2 + C2)

K
− 1

=
2(1−A)(1−B)(1− C)

K

Here we substitute (4). Then

tan2R =
6(1− cos a)(1− cos b)(1− cos c)

(sin b sin c sinα)2 + (sin c sin a sinβ)2 + (sin a sin b sin γ)2
.

However the SIN formula states that

sin a

sinα
=

sin b

sinβ
=
sin c

sin γ
.

We denote the common value by k. Then, since

sin b sin c sinα = sin c sin a sinβ = sin a sin b sin γ =
sin a sin b sin c

k
,

it is derived that

tan2R =
2(1− cos a)(1− cos b)(1− cos c)k2

sin2 a sin2 b sin2 c
=

2k2

(1 + cos a)(1 + cos b)(1 + cos c)

=


 k

2 cos
a

2
cos

b

2
cos

c

2




2

.
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Accordingly

k = 2 cos
a

2
cos

b

2
cos

c

2
tanR.

Therefore we obtain the following result.

Lemma 1

sin a

sinα
=

sin b

sinβ
=
sin c

sin γ
= 2 cos

a

2
cos

b

2
cos

c

2
tanR

4 An analogue of the Wallace-Simson theorem

From a point P we draw the perpendicular onto the edge AB and let Z be its foot. Then a vector−→
Z lies on the plane spanned by two vectors

−→
A ,

−→
B , that is, it lies on the plane which passes

through two points A,B and the center of S. Accordingly the following representation holds:
−→
Z = λ

−→
A + µ

−→
B . (5)

Then, putting x = PA, y = PB, z = PC, we have

cosx =
−→
P ·

−→
A , cos y =

−→
P ·

−→
B , cos z =

−→
P ·

−→
C . (6)

Lemma 1

λ =
±(cosx− cos c cos y)

sin c · f(cosx, cos y, cos c)
, µ =

±(cos y − cos c cosx)

sin c · f(cosx, cos y, cos c)

Here f(x, y, k) =
�
x2 − 2kxy + y2 と置く．

(Proof) Since the arc of a great circle PZ is orthogonal to the arc AB, the exterior product
−→
P ×

−→
Z lies on the plane spanned by two vectors

−→
A ,

−→
B . As the exterior product

−→
A ×

−→
B is

orthogonal to the plane, the vector
−→
P ×

−→
Z is orthogonal to the vector

−→
A ×

−→
B . Consequently

it holds that
(
−→
P ×

−→
Z ) · (

−→
A ×

−→
B ) = 0. (7)

Now we use the famous formula

(
−→
P ×−→

Z ) · (−→A ×−→
B ) = (

−→
P · −→A )(

−→
Z · −→B )− (

−→
P · −→B )(

−→
Z · −→A ).

Then (7) can be written as

(
−→
P ·

−→
A )(

−→
Z ·

−→
B ) = (

−→
P ·

−→
B )(

−→
Z ·

−→
A ). (8)

Substitute (5) into (8). Then, with aid of (1) and (6), we have

cosx (λ cos c+ µ) = cos y (λ+ µ cos c).

Hence follows

µ =
cos y − cos c cosx

cosx− cos c cos y
λ. (9)

4

Now, since the point Z lies on S, we have
−→
Z ·

−→
Z = 1. Substitution of (9) gives

(cosx− cos c cos y)2

λ2

= (cosx− cos c cos y)2 + 2 cos c (cosx− cos c cos y)(cos y − cos c cosx) + (cos y − cos c cosx)2

= (1− cos2 c)(cos2 xy, cos c).

Therefore we have the required result.

（Q.E.D.）

(Remark) The occurrence of the symbol ”±” in λ, µ is not false, because the foot Z lies on the
great circle which passes through two points A,B, and if a point Z� is the opposite point of Z
with respect to the center O of S, the point Z� lies on the same great circle, and the arc PZ� is
orthogonal to the great circle. Accordingly the point Z� becomes another foot．

From the point P we draw perpendiculars onto edges BC,CA,AB, and let X,Y,Z be their
feet. Moreover we consider the following function

F (x, y, z) = 2(1− cos a cos b cos c) cosx cos y cos z

−(cos a− cos b cos c) cosx(cos2 y + cos2 z)

−(cos b− cos c cos a) cos y(cos2 z + cos2 x)

−(cos c− cos a cos b) cos z(cos2 x+ cos2 y). (10)

Then we have the following theorem.

Theorem 2

The orbit of P such that three feet X,Y,Z are colinear is given by F (x, y, z) = 0．
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Accordingly

k = 2 cos
a

2
cos

b

2
cos

c

2
tanR.
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