
Abstract. Polycomb group proteins control the transcriptional
memory of cells by maintaining the stable silencing of specific
sets of genes through chromatin modifications. Polycomb
group protein complexes control gene repression through
recruitment of histone deacetylase. This recruitment leads to
trimethylation of Lys27 of histone H3 (H3K27). Histone H3K27
trimethylation is a property of stably silenced heterochromatin.
EZH2 and BMI-1 are pivotal components of polycomb group
protein complexes. Increased EZH2 levels have been found
in several malignancies and reported as a molecular biomarker
of poor prognosis. Similarly, BMI-1 has also been found to
be associated with malignant transformation. In addition,
inhibition of EZH2 or BMI-1 inhibits the growth of various
types of malignancies. The expression of BMI-1 and EZH2 in
human osteosarcoma has not been clearly determined. We
examined the potential involvement of aberrant polycomb
group protein expression in the pathogenesis of osteosarcoma.
Real-time PCR revealed that expression of EZH2 in 143B,
HOS, NOS-1 and Saos2 was increased compared to normal
osteoblasts. BMI-1 was also up-regulated in 143B, HOS and
NOS-1. Expression of EZH2 and BMI-1 were up-regulated in
osteosarcoma patient biopsy specimens compared to normal
bone. Immunohistochemical examinations showed that
EZH2 and BMI-1 were up-regulated in osteosarcoma cells
and that trimethylation of histone H3K27 was increased. We
examined the effects of knock down of EZH2 and BMI-1 by
shRNA. Unexpectedly, the knock-down of EZH2 and BMI-1
did not prevent osteosarcoma growth either in vitro or in vivo.
Our findings suggest that EZH2 and BMI-1 may be tumor-

associated antigens of osteosarcoma, but are not useful
molecular targets of osteosarcoma treatment.

Introduction

Osteosarcoma is the most common primary bone cancer
occurring mainly in children (1). Standard treatment involves
the use of ‘up-front’ multi-agent chemotherapy, definitive
surgery of the primary tumor and postoperative chemotherapy.
In recent years, great effort has been made aiming at
elucidating the molecular events underpinning the biology of
osteosarcoma including dysregulation of cell division and
apoptotic processes. Although such dysregulation may
constitute a potent source of new therapeutic targets, the
molecular mechanisms of regulation of osteosarcoma cell
proliferation are largely unknown.

Polycomb group (PcG) proteins control the transcriptional
memory of cells by maintaining the stable silencing of specific
sets of genes through chromatin modifications (2). Two distinct
and evolutionarily conserved PcG complexes have been
identified, consisting of various PcG proteins and non-PcG
proteins. The polycomb repressive complex 1 (PRC1) contains
the BMI-1, MEL-18, RING1, HPH and HPC PcG proteins,
while the polycomb repressive complex 2 (PRC2) contains the
EZH2, EED, YY1 and SUZ PcG proteins (3-15). EZH2 is a
histone methyltransferase associated with transcriptional
repression. EZH2 catalyzes trimethylation of histone H3 at
lysine 27 (H3K27) (16-19).

Recent findings have linked deregulated expression of
human PcG genes to malignant transformation, loss of
differentiation in tumor cells, and metastatic behavior (20).
Increased EZH2 levels have been found in several epithelial
tumors (21-26) and in various hematological malignancies
(27-29). Similarly, BMI-1 has also been associated with
malignant transformation (23,27,30-38). The expression of
BMI-1 and EZH2 in human osteosarcoma cell lines and
osteosarcoma patient specimens have not been well defined.
To explore the potential involvement of aberrant PcG
expression in the pathogenesis of osteosarcoma, we
investigated the expression of EZH2 and BMI-1 in osteo-
sarcoma cell lines and patient samples. We next examined
the status of trimethylation of H3K27. In addition, we
examined the effect of the knock-down of EZH2 and BMI-1
by shRNA in vitro and in vivo.

ONCOLOGY REPORTS  23:  677-684,  2010 677

The knock-down of overexpressed EZH2 and 
BMI-1 does not prevent osteosarcoma growth

HIROMI SASAKI*,  TAKAO SETOGUCHI*,  YUKIHIRO MATSUNOSHITA,  
HUI GAO,  MASATAKA HIROTSU  and SETSURO KOMIYA

1Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, 
Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan

Received September 17, 2009;  Accepted October 12, 2009

DOI: 10.3892/or_00000684

_________________________________________

Correspondence to: Dr Takao Setoguchi, Department of
Orthopaedic Surgery, Graduate School of Medical and Dental
Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima
890-8520, Japan
E-mail: setoro@m2.kufm.kagoshima-u.ac.jp

*Contributed equally

Key words: polycomb protein, osteosarcoma, EZH2, BMI-1

677-684.qxd  19/1/2010  03:36 ÌÌ  Page 677



Materials and methods

Cell culture. HOS, 143B and Saos2 cells were purchased
from the American Type Culture Collection (ATCC). NOS-1
was purchased from RIKEN cell bank (39). Cells were
grown in Dulbecco's modified Eagle's medium (DMEM)
supplemented with 10% FBS, penicillin (100 U/ml) and
streptomycin (100 μg/ml). Human osteoblast cells (NHOst)
were purchased from Sanko Junyaku (Tokyo, Japan). Cells
were cultured with OBM™ (Cambrex, NJ, USA) or DMEM
supplemented with 10% FBS. All cells were grown in a
humidified atmosphere containing 5% CO2 at 37˚C.

Patient osteosarcoma biopsy specimens . All human
osteosarcoma biopsy specimens were obtained from primary
lesions. Biopsy was performed before chemotherapy or radio
therapy to make the diagnosis.

RT-PCR. Each sample was run minimally at three
concentrations in triplicate. All primer sets amplified 100- to
200-bp fragments. Total RNA was extracted using the miR-
Vana RNA isolation system (Ambion, TX, USA) or TRIzol
(Invitrogen, CA, USA). Reactions were run using SYBR-
Green (Bio-Rad, CA, USA) on a MiniOpticon™ machine
(Bio-Rad). The comparative Ct (ΔΔCt) method was used to
determine fold change in expression using ßII-microglobulin.
Each sample was run minimally at three concentrations in
triplicate. The following primers were used. EZH2: 5-TTCA
TGCAACACCCAACACT-3, 5-GAGAGCAGCAGCAAAC
TCCT-3; BMI-1: 5-TTCATTGATGCCACAACCAT-3, 5-GTA
CTGGGGCTAGGCAAACA; ßII-microglobulin: 5-TCAATG
TCGGATGGATGAAA-3, 5-GTGCTCGCGCTACTCTC
TCT-3.

Cell proliferation assay. MTT assay: Cells were incubated
with substrate with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] for 4 h and washed with PBS
and lysed to release formazan from cells. Then cells were
analyzed in a Safire microplate reader (Bio-Rad) at 562 nm.
shRNAs were purchased from (SABiosciences, MD, USA).
Lipofection of siRNA was performed every other day as
recommended in the supplier's protocol using FuGENE 6
(Roche, Basel, Switzerland).

Immunohistochemistry. The following primary antibodies
were used: anti-EZH2 (diluted 1:200 Zymed Laboratories,
CA, USA), anti-BMI-1 (diluted 1:200 R&D Systems, MN,
USA), and anti-trimethylated H3K27 (diluted 1:200 Abcam,
Cambridge, UK). The following secondary antibodies were
used: fluorescein-conjugated goat anti-mouse IgG antibody
(diluted 1:200; Jackson ImmunoResearch, PA, USA) and
rhodamine-conjugated donkey anti-rabbit IgG antibody
(diluted 1:200; Chemicon, CA, USA). The cells were
counterstained with Hoechst 33258 to identify nuclei.
Immunohistochemistry with each second antibody alone
without primary antibody was performed as a control.

Animal experiments. shRNA-transfected 143B cells (1x105)
were mixed with collagen gel in a 1:1 volume and inoculated
subcutaneously in 5-week-old nude mice. Tumor size was

measured, and tumor volume was calculated using the formula
LW2/2 (with L and W representing the length and width of
tumors). All experimental procedures were performed in
compliance with the guiding principles for the Care and Use
of Animals described in the American Journal of Physiology
and with the Guidelines established by the Institute of
Laboratory Animal Sciences, Faculty of Medicine,
Kagoshima University. All efforts were made to minimize
animal suffering, to reduce the number of animals used and
to utilize possible alternatives to in vivo techniques.

Data analysis. Each sample was analyzed in triplicate and
experiments were repeated three times. In figures the error
bar means standard error. Data were analyzed by the
STASTISCA (StatSoft, OK, USA). Differences between mean
values were evaluated by the unpaired t-test and differences
in frequencies were evaluated by Fisher's exact test. Results
were considered statistically significant at P<0.05.

Results

Overexpression of EZH2 and BMI-1 in osteosarcoma. RT-PCR
was performed to examine the expression of EZH2 and BMI-1
in osteosarcoma cell lines. RT-PCR revealed that NOS-1, HOS
and 143B osteosarcoma cell lines expressed EZH2 more
strongly than normal human osteoblasts (NHOst) (Fig. 1A).
More sensitive real-time PCR analyses revealed that expression
of EZH2 in 143B, HOS, NOS-1 and Saos2 was increased 13-,
11-, 4.9- and 4.4-fold, respectively (Fig. 1B). RT-PCR revealed
that NOS-1, HOS and 143B osteosarcoma cell lines expressed
BMI-1 more strongly than NHOst (Fig. 1C). Real-time PCR
revealed that expression of BMI-1 in 143B, HOS and NOS-1
was increased 6.7-, 3.7- and 3.7-fold, respectively, while that
in Saos2 did not change appreciably (Fig. 1D). We next
examined the expression of EZH2 and BMI-1 in osteo-
sarcoma patient biopsy samples. RT-PCR revealed that 3
osteosarcoma patient samples expressed EZH2 more strongly
than normal bone tissue (Fig. 1E). Real-time PCR revealed
that expression of EZH2 in patient samples was increased
1.4- to 4.2-fold (Fig. 1F). RT-PCR revealed that 3 osteo-
sarcoma patient samples expressed BMI-1 more strongly
than normal bone (Fig. 1G). Real-time PCR revealed that
expression of BMI-1 in patient samples increased 4.5- to 9.4-
fold (Fig. 1H). To extend these findings, we performed
immunohistochemistry for EZH2 and BMI-1 examination
revealed that osteosarcoma cell lines and osteosarcoma
patient samples expressed EZH2 and BMI-1 more strongly
than normal bone tissue (Fig. 2A and B). EZH2 and BMI-1
were localized in the nucleus of osteosarcoma cells (Fig. 2A
and B). These findings showed that EZH2 and BMI-1 are
overexpressed in osteosarcomas.

Histone H3-K27 is trimethylated in osteosarcoma. To
determine if overexpression of polycomb proteins promoted
histone H3K27 trimethylation, we performed immuno-
histochemical examination using trimethylated histone
H3K27-specific antibody. Histone H3K27 was found to be
trimethylated more strongly in osteosarcoma cells lines and
osteosarcoma patient samples than in normal osteoblasts and
bone tissue (Fig. 2C).
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Knock-down of overexpressed EZH2 and BMI-1 does not
prevent osteosarcoma growth in vitro or in vivo. It has been
reported that overexpression of EZH2 or BMI-1 promotes
malignant transformation (21,36,38,40-47). In addition,
inhibition of EZH2 or BMI-1 inhibits growth of various types
of malignancies (38,41,43,45,46). To determine whether
knock-down of EZH2 and BMI-1 prevents osteosarcoma
growth, we examined the effects of EZH2 and BMI-1
shRNA. We used 143B and HOS, which strongly express
EZH2 and BMI-1. Real-time PCR revealed that shRNA
effectively knocked-down EZH2 and BMI-1 (Fig. 3A). 143B
and HOS were transfected with EZH2 shRNA, BMI-1
shRNA and EZH2 shRNA plus BMI-1 shRNA. Unexpectedly,
MTT assay revealed that the knock-down of EZH2, BMI-1
and EZH2 plus BMI-1 did not prevent osteosarcoma growth

in vitro (Fig. 3B-D). To confirm the effects of EZH2 and
BMI-1 knock-down, we examined xenograft models. Nude
mice were inoculated with control shRNA-transfected 143B
cells, EZH2 shRNA-transfected 143B cells and BMI-1-
shRNA-transfected cells intradermally and tumor sizes were
measured. Tumor sizes did not significantly differ among
these three groups (Fig. 4).

Discussion

The PcG genes encode a family of evolutionarily conserved
regulators that were discovered in Drosophila as repressors
of homoeotic genes, which are involved in establishing body
segmentation patterns during development. In mammalian
systems, PcG proteins regulate genes involved in development
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Figure 1. Overexpression of EZH2 and BMI-1 in osteosarcoma. (A) RT-PCR revealed that 3 osteosarcoma cell lines including NOS-1, 143B and HOS
expressed EZH2 more strongly than NHOst (normal osteoblasts). (B) Real-time PCR revealed that expression of EZH2 in 143B, HOS, NOS-1 and Saos2 was
increased 13-, 11-, 4.9- and 4.4-fold, respectively. (C) RT-PCR revealed that 3 osteosarcoma cell lines including NOS-1, 143B and HOS expressed BMI-1
more strongly than NHOst. (D) Real-time PCR revealed that expression of BMI-1 in 143B, HOS and NOS-1 was increased 6.7-, 3.7- and 3.7-fold,
respectively, while that in Saos2 did not change appreciably. (E) Total RNA extracted from osteosarcoma biopsy samples were used for RT-PCR. RT-PCR
revealed that osteosarcoma biopsy sample 1 (OS1), OS2 and OS3 expressed EZH2 more strongly than normal bone. (F) Real-time PCR revealed that
expression of EZH2 in patient samples was increased 1.2- to 4.2-fold. (G) RT-PCR revealed that 3 osteosarcoma samples expressed BMI-1 more strongly than
normal bone. (H) Real-time PCR revealed that expression of BMI-1 in patient samples increased 4.5- to 9.4-fold.
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and differentiation via epigenetic mechanisms. Transcriptional
profiling of human tumor samples holds significant promise
for the advancement of cancer therapy, both in terms of
improving diagnosis as well as predicting patient responses to
treatment. Recently, an RNA expression signature associated
with ‘stem-cell-ness’, based partly on PcGs-driven trans-
criptional changes, was postulated to predict poor therapeutic
outcome in patients with various types of cancers (48).
Although these claims await further validation, they suggest
that levels of PcGs expression might prove valuable as
prognostic markers, particularly because EZH2 and BMI-1
overexpression appears to be tightly correlated with poor
prognosis in various types of cancers (49,50). BMI-1 was
originally identified as an oncogene (8). BMI-1 up-regulation
induces development of B- and T-cell lymphomas (7,41,42).
In this study, we found that EZH2 and BMI-1 RNAs are
up-regulated in osteosarcoma cell lines and patient samples,
following the study of overexpression of EZH2 in the U2OS
human osteosarcoma cell line (51). Steele et al reported that
CD8+ T-cell epitopes derived from EZH2 and BMI-1 elicited
T-cell responses as assessed by IFN-Á release confirming the
presence of CD8 responses against these proteins in patients

with cancer (52). These findings suggest that EZH2 and
BMI-1 may be useful targets for cancer immunotherapy of
osteosarcoma.

The PRC2 containing EZH2 controls gene repression
through recruitment of histone deacetylase. This recruitment
leads to local chromatin deacetylation and subsequent
trimethylation of Lys27 of histone H3 (H3K27). Histone H3K27
trimethylation is a property of stably silenced heterochromatin.
The PRC1 complex containing BMI-1 subsequently binds to
histone H3K27, suppresses gene expression and contributes
to the maintenance of epigenetic memory (53). In this study,
we found that histone H3K27 was trimethylated both in
osteosarcoma cell lines and patient samples. These findings
suggest the possibility that overexpressed EZH2 and BMI-1
are functionally active and promote histone H3K27 trimethy-
lation in osteosarcoma as in stem cells and other types of
cancer cells (45,54,55). In addition, trimethylated histone
H3K27 suppresses target gene expression via epigenetic
regulation (45,55,56). The gene suppression may contribute
to the pathogenesis of osteosarcoma. BMI-1 represses the
transcription of cell cycle repressors encoded by the ink4a
locus (41,57-59). Although PcG proteins are generally
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Figure 2. Histone H3-K27 is trimethylated in osteosarcoma which over-
expressed EZH2 and BMI-1. (A) Immunohistochemical examination revealed
that osteosarcoma cells lines and osteosarcoma biopsy samples expressed
EZH2 more strongly than NHOst and normal bone tissue (red, EZH2; blue,
Hoechst 33258). (B) Immunohistochemical examination revealed that
osteosarcoma cells lines and osteosarcoma biopsy samples expressed BMI-1
more strongly than NHOst and normal bone tissue (red, BMI-1; blue, Hoechst
33258). (C) To determine if overexpression of polycomb proteins promoted
histone H3K27 trimethylation, we performed immunohistochemistry using
trimethylated histone H3K27-specific antibody. Histone H3K27 was found
to be trimethylated more strongly in osteosarcoma cells lines and osteosarcoma
biopsy samples than in normal osteoblasts and bone tissue (green, trimethy-
lated histon H3K27; blue, Hoechst 33258).
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recognized as suppressors of target gene transcription, Shi et al
reported that EZH2 enhances the transcription of c-myc and
cyclin D1 (60). We previously found that transcription of
c-myc is activated and expression of the ink4a locus are
suppressed in osteosarcoma (61). These findings suggest
that these genes may be targets of EZH2 and BMI-1 in
osteosarcoma.

It has been reported that overexpression of EZH2 or BMI-1
promotes malignant transformation (21,36,38,40-47,49). In
addition, inhibition of EZH2 or BMI-1 inhibits growth of
various types of malignancies (38,41-43,45,46,49). These
findings suggest that EZH2 and BMI-1 play roles in regulating
cell proliferation and survival and that EZH2 or BMI-1 may be
useful as molecular targets in various types of malignancies.

ONCOLOGY REPORTS  23:  677-684,  2010 681

Figure 3. the knock-down of EZH2 and BMI-1 does not inhibit osteosarcoma growth in vitro. (A) 143B cells were transfected with EZH2 shRNA and BMI-1
shRNA. Real-time PCR revealed the knock-down effect by EZH2 shRNA or BMI-1 shRNA. (B) MTT assay showed that knock down of EZH2 and BMI-1 did
not prevent 143B growth in vitro. (C) MTT assay showed that knock down of EZH2 and BMI-1 did not prevent HOS growth in vitro. (D) Double knock-down
of EZH2 plus BMI-1 did not prevent HOS and 143B growth in vitro.
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In fact, pharmacologic interference of EZH2 function induces
selective apoptosis of cancer cells but not normal cells (62).
In the present study, we examined the effect of EZH2 and
BMI-1 knock-down in osteosarcoma and found unexpectedly
that EZH2 or BMI-1 knock-down by shRNA did not prevent
osteosarcoma growth in vitro or in vivo. These findings are
contrary to those reported in previous studies. Two groups
reported that although PcG protein overexpression appeared
to be correlated with poor prognosis for some types of
malignancies, low BMI-1 expression was correlated with
poor prognosis of endometrial carcinomas and malignant
melanocytic lesion (63,64). These studies suggest that osteo-
sarcoma may be included among these types of malignancies.
In addition, McGarvey et al reported that EZH2 knock-down
results in increased expression of unmethylated and basally
expressing genes but not of completely silenced and hyper-
methylated tumor suppressor genes (65). These findings
suggest that important regulator genes for osteosarcoma growth
may be hypermethylated. BMI-1 co-overexpression with
other inducers, such as H-RAS, hTERT and p16INK4a shRNA,
resulted in efficient malignant transformation (36,40,41,44).
These findings in turn suggest that other factors might be
regulated in addition to BMI-1 to suppress osteosarcoma
growth. Taken together, these findings suggest that inhibition
of PcG proteins may not be useful for treatment of some other
malignancies in addition to osteosarcoma.

In conclusion, we found that EZH2 and BMI-1 are up-
regulated in osteosarcoma. EZH2 and BMI-1 may be useful
targets for cancer immunotherapy of osteosarcoma, although
knock-down of EZH2 and BMI-1 could not prevent osteo-
sarcoma growth. Further investigation of the functions of
EZH2 and BMI-1 in osteosarcoma is needed.
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