Magnetic and electrical properties of $Mn_{2}Sb_{1-x}Z_{x}(Z = Ge, Sn)$ under high pressures and high magnetic fields

著者	KOYAMA Keiichi, SHIMADA Daisuke, ADACHI Yoshiya, ORIHASHI Hiroki, MITSUNAGA Daisuke, HIROI Masahiko, MITSUI Yoshifuru, KIMURA Shojiro, MATSUBAYASHI Kazuyuki, UWATOKO Yoshiya
journal or	鹿児島大学理学部紀要=Reports of the Faculty of
publication title	Science, Kagoshima University
volume	48
page range	15-21
URL	http://hdl.handle.net/10232/00003129

Magnetic and electrical properties of $Mn_2Sb_{1-x}Z_x$ (Z = Ge, Sn) under high pressures and high magnetic fields

Keiichi KOYAMA¹*, Daisuke SHIMADA¹, Yoshiya ADACHI², Hiroki ORIHASHI¹, Daisuke MITSUNAGA¹, Masahiko HIROI¹, Yoshifuru MITSUI¹, Shojiro KIMURA³, Kazuyuki MATSUBAYASHI⁴, Yoshiya UWATOKO⁴

Abstract:

High pressures and high magnetic field effects on magnetic and electrical properties of polycrystalline $Mn_2Sb_{0.92}Ge_{0.08}$, $Mn_2Sb_{0.92}Sn_{0.08}$ and $Mn_2Sb_{0.85}Sn_{0.15}$ were investigated. These compounds showed a first-order magnetic transition between the ferrimagnetic (FRI) and antiferromagnetic (AFM) phases for 150–250 K temperature range in a zero magnetic field. The pressure dependence of the AFM/FRI transition temperature was estimated to be $-5.1 \times 10^{-2} \text{ GPa}^{-1}$ for $Mn_2Sb_{0.92}Ge_{0.08}$. The electrical resistivity changed abruptly by 50% for $Mn_2Sb_{0.92}Sn_{0.08}$ and by 71% for $Mn_2Sb_{0.85}Sn_{0.15}$ at the transition temperature. We confirmed the negative magnetoresistance over 60% for the Sn-substituted compounds.

Keywords: Mn₂Sb, first-order magnetic transition, pressure effect, negative magnetoresistance

I. Introduction

 Mn_2Sb compound with a Cu₂Sb-type tetragonal structure (space group: P4/nmm) is ferrimagnetic (FRI) at temperatures below $T_C \sim 550$ K.¹⁻³⁾ The crystal and spin structures are shown in Fig. 1.³⁾ There are two crystallographically nonequivalent sites for Mn atoms, Mn1 (2a-site) and Mn2 (2c-site), which are tetrahedrally and octahedrally surrounded by Sb atoms. The Sb atom occupies the 2c-site. Neutron diffraction study shows the presence of triple layers (Mn2-Mn1-Mn2) along the *c*-axis and antiparallel magnetic moments on Mn1 and Mn2. The magnetic moments of Mn atoms are $2.1\mu_B/Mn1$ and $3.9\mu_B/Mn2$, leading to the FRI state in $Mn_2Sb.^{2)}$

The substitution of various elements (V, Cr, Co, Cu and Zn) for Mn, as well as (As, Ge and Sn) for Sb, results in a first-order magnetic transition from the FRI to an antiferromagnetic (AFM) state at the transition temperatures T_t (~100–300 K) for cooling process.^{1–17)} The moments of all triple layers are parallel in the FRI state whereas the arrangement is antiparallel in the AFM state.^{2,3)} The lattice parameters, the magnetization *M*, the electrical resistivity ρ , *etc.* of these substitution compounds change abruptly and are accompanied by the FRI-AFM transition.^{4–7,15,16)} In addition, the magnetoresistance and the magnetostrictive effects of these compounds were observed at temperatures below T_t and were accompanied by a field-induced AFM/FRI transition.^{5–7,15,16)} Therefore, these compounds have attracted attention as magnetic field-controlled materials.

Recently, the thermal FRI/AFM transition in $Mn_{1.85}Co_{0.15}Sb^{6}$ and $Mn_{1.8}Co_{0.2}Sb^{7,14}$ was reported to be arrested by applying a magnetic field *B*, called "kinetic arrest effect (KA effect)"⁶) or "thermal transformation arrest (TTA) effect". On the other hand, Shimada *et al.*¹⁵ and Koyama *et al.*¹⁶ reported that $Mn_2Sb_{1-x}Z_x$ (Z = Ge or Sn) does not exhibit the TTA effect. The substitution of Co for Mn as well as Ge and Sn for Sb results in a lattice contraction and a first-order magnetic transition from the FRI to an antiferromagnetic (AFM).^{15,16} Therefore, in order to clarify the origin of the TTA effect and to estimate the potential of $Mn_2Sb_{1-x}Z_x$ for applications, it is necessary to clarify the magnetic and

¹ Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan

² Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan

³ High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

⁴ Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan

Corresponding author: 鹿児島大学大学院理工学研究科 物理·宇宙専攻 小山佳一 〒890-0065 鹿児島県鹿児島市郡元2丁目21-35 e-mail: koyama@sci.kagoshima-u.ac.jp

Fig. 1. Crystal structure and arrangement of Mn1 and Mn2 moments in the ferrimagnetic (FRI) and the antiferromagnetic (AFM) states in Mn_2Sb based compound. The length of the arrow represents the magnitude of the magnetic moment of the atom.³⁾

electrical properties for these compounds in high magnetic fields and high pressures. In this report, we present the experimental results of the magnetic properties of $Mn_2Sb_{0.92}Ge_{0.08}$ under high pressures up to 1 GPa and the electrical properties of $Mn_2Sb_{1-x}Sn_x$ (x = 0.08 and 0.15) under high magnetic fields up to 16 T.

2. Experimental

Polycrystalline $Mn_2Sb_{0.92}Ge_{0.08}$, $Mn_2Sb_{0.92}Sn_{0.08}$ and $Mn_2Sb_{0.85}Sn_{0.15}$ were prepared by arc-melting a mixture of nominal amounts of pure elements (Mn, 3N; Co, 3N; Sb, 4N) in an argon atmosphere. The obtained button-shaped ingots were turned over and re-melted several times. After that, the ingot was annealed at 923 K for 24 h in a quartz tube with a vacuum and then slowly cooled to room temperature. The obtained sample was confirmed to be a single phase of a Cu_2Sb -type structure by X-ray powder diffraction (XRD) measurements at room temperature.

The magnetization *M* measurements were carried out using a superconducting quantum interference device (SQUID) magnetometer (Quantum Design) in the temperature *T* range from 10 to 330 K and magnetic fields *B* up to 5 T. The electrical resistivity ρ was measured by using a standard four-probe technique for $4.2 \le T \le 280$ K and $0 \le B \le 16$ T with an 18-T superconducting magnet. The initial permeability μ was measured by an AC transformer method using a piston-cylinder type pressure cell under hydrostatic pressures *P* up to 1 GPa for $77 \le T \le 400$ K.

3. Results and discussion

Figure 2 shows the temperature dependence of the magnetization of $Mn_2Sb_{0.92}Ge_{0.08}$ for B = 0.1 T and 5 T. Here, the measurements were made in field cooling (FC; solid curve), field cooled warming (FCW; solid curve) and field warming after zero-field cooling (ZFCW; broken curve). The data of $Mn_2Sb_{0.92}Ge_{0.08}$ for B = 0.1 T show that a first-order phase transition from a FRI to an AFM phases occurs in the vicinity of 230 K (= T_t) with a thermal hysteresis of approximately 15 K. This transition temperature T_t of $Mn_2Sb_{0.92}Ge_{0.08}$ is larger than that ($T_t = 172$ K) of $Mn_2Sb_{0.95}Ge_{0.05}$. When a magnetic field of 5 T was applied, T_t of $Mn_2Sb_{0.92}Ge_{0.08}$ decreases to 210 K, and the width of the hysteresis did not change and was approximately 15 K. This phenomenon is different from that of $Mn_2Sb_{0.95}Ge_{0.05}$. The width of the hysteresis of $Mn_2Sb_{0.95}Ge_{0.05}$ at T_t expands by applying magnetic fields.¹⁶ As seen in Fig.2, $Mn_2Sb_{0.92}Ge_{0.08}$ does not exhibit the TTA effect observed in $Mn_{2-x}Co_xSb^{7,13,14}$.

Fig. 2. Temperature dependence of the magnetization of $Mn_2Sb_{0.92}Ge_{0.08}$ for B = 0.1 T and 5 T. The measurements were made in field cooling (FC; solid curve), field cooled warming (FCW; solid curve) and field warming after zero-field cooling (ZFCW; broken curve).

Figure 3 shows the temperature dependence of the initial AC permeability μ (μ -*T* curve) of Mn₂Sb_{0.92}Ge_{0.08} under various pressures up to 1 GPa. Here, the measurements were carried out for heating process. The first-order AFM/FRI transition temperature for heating process, T_t^* , was estimated by the inflection point on the μ -*T* curve for heating process. In this figure, the vertical arrows indicate the determined T_t^* in various pressures.

Fig. 3. Temperature dependence of the initial AC permeability μ (μ -*T* curve) of Mn₂Sb_{0.92}Ge_{0.08} under various pressures up to 1 GPa. The measurements were carried out for heating process. The vertical arrows indicate the determined AFM/FRI transition temperature for heating process T_t^* .

Figure 4 shows the pressure dependence of the AFM/FRI transition temperature for heating process. As seen in this figure, T_t^* decreases linearly with increasing a pressure P, and the line in this figure is calculated by the least-square method using a linear function. The AFM/FRI transition temperature for heating process under 0.1 MPa and a zero field was estimated to be 246 K by the linear extrapolation of $T_t^* vs$. P. The pressure dependence of T_t^* was estimated to be dln $T_t^*/dP = -5.1 \times 10^{-2} \text{ GPa}^{-1}$. This result on the pressure effect with the lattice contraction indicates that the AFM interaction is suppressed by applying a pressure, but the FRI interaction for Mn₂Sb_{1-x}Ge_x. According to a report by Koyama *et al.*, the lattice parameters *a* and *c* of the Ge-substituted Mn₂Sb_{1-x}Ge_x compound contract with increasing *x*, and the AFM/FRI transition temperature T_t increases while the Curie temperature T_c decreases.¹⁶⁾ Their result indicates that the AFM interaction is enhanced but the FRI interaction is suppressed with the lattice contract with the lattice contract with increasing *x*, and the AFM/FRI transition temperature T_t increases while the Curie temperature T_c decreases.¹⁶⁾ Their result indicates that the AFM interaction is enhanced but the FRI interaction is suppressed with the lattice contraction by the substitution of Ge for Sb in Mn₂Sb_{1-x}Ge_x.

For Co-substituted compounds, $dln T_t^*/dP$ was estimated to be -0.16 GPa⁻¹ for $Mn_{1.9}Co_{0.1}Sb^{18}$ and +0.3 GPa⁻¹ for $Mn_{1.8}Co_{0.2}Sb^{19}$. The absolute value of $dln T_t^*/dP$ for $Mn_2Sb_{0.92}Ge_{0.08}$ is much smaller than that for $Mn_{1.9}Co_{0.1}Sb$ or

Fig. 4. Pressure dependence of the AFM/FRI transition temperature for heating process.

 $Mn_{1.8}Co_{0.2}Sb$. Considering the substitution and pressure effects as mentioned above, the AFM/FRI transition is probably due to modification of hybridization among Mn-3d, Sb-p and Ge-p electrons as well as simple change of the distance among magnetic Mn ions.

Figure 5 shows the temperature dependence of the electrical resistivity ρ (ρ -*T* curve) of Mn₂Sb_{0.92}Sn_{0.08} (a) and Mn₂Sb_{0.85}Sn_{0.15} (b) for a zero magnetic field and *B* = 16 T. Here, ZFC and ZFW mean zero-field cooling and zero-field-warming measurements, respectively. A first-order magnetic transition from a FRI (low resistivity) to an AFM (high resistivity) states occurs with decreasing temperature for Mn₂Sb_{0.92}Sn_{0.08} under a zero field and for Mn₂Sb_{0.85}Sn_{0.15} under 0 and 16 T. The broken arrows in this figure indicate the determined AFM/FRI transition temperature *T*_t. For Mn₂Sb_{0.92}Sn_{0.08} under a zero magnetic field, ρ changes abruptly by 50% (=[(ρ (173 K) – ρ (122 K))/ ρ (173 K)] = $\Delta\rho/\rho$) in the vicinity of *T*_t = 150 K. On the other hand, $\Delta\rho/\rho$ of Mn₂Sb_{0.85}Sn_{0.15} under a zero magnetic field was estimated to be 71% in the vicinity of *T*_t = 183 K. These values of $\Delta\rho/\rho$ for Mn₂Sb_{0.92}Sn_{0.08} and Mn₂Sb_{0.85}Sn_{0.15} are consistent with that of a previous report for Mn₂Sb_{1-x}Sn_x.^{11,16} When a high magnetic field of 16 T was applied to Mn₂Sb_{0.92}Sn_{0.08}, the AFM/FRI magnetic transition disappeared even at 4.2 K, indicating that the FRI state is stable for 4.2 ≤ *T* ≤ 280 K.

Fig. 5. Temperature dependence of the electrical resistivity ρ of Mn₂Sb_{0.92}Sn_{0.08} (a) and Mn₂Sb_{0.85}Sn_{0.15} (b) for a zero magnetic field and B = 16 T. The measurements were made in zero-field cooling (ZFC), zero-field warming (ZFW), field cooling (FC), field cooled warming (FCW) and field warming after zero-field cooling (ZFCW). The broken allows indicate the determined transition temperature T_t between the AFM and FRI phases.

Figure 6 shows the magnetic field dependence of the transverse magnetoresistance ratio $\Delta\rho/\rho(0) [= (\rho(0) - \rho(B))/\rho(0)]$ for Mn₂Sb_{0.92}Sn_{0.08} at 100 K (a) and Mn₂Sb_{0.85}Sn_{0.15} at 144 K (b) in magnetic fields up to 16 T. The measurements were made in field increasing process. A large negative magnetoresistance was observed, when a magnetic field of B = 16T was applied. The change in $\Delta\rho/\rho$ was over -60% under our conditions. The obtained values of $\Delta\rho/\rho$ were larger than that of Mn₂Sb_{1-x}Ge_x¹⁵ and of Mn₂Sb_{1-x}Sn_x¹¹. Considering previous results, the negative magnetoresistance relates closely to the metamagnetic transition.^{11,15}

Fig. 6. Magnetic field dependence of the transverse magnetoresistance $\Delta \rho / \rho(0)$ for Mn₂Sb_{0.92}Sn_{0.08} at 100 K (a) and Mn₂Sb_{0.85}Sn_{0.15} at 144 K (b) in magnetic fields up to 16 T. The measurements were made in field increasing process.

The AFM/FRI transition temperatures T_t of Mn₂Sb_{1-x}Ge_x and Mn₂Sb_{1-x}Sn_x decrease by applying a magnetic field. When a magnetic field is applied to these systems, the decrease of the Gibbs free energy of the FRI phase is larger than that of the AFM phase because of a gain in the Zeeman energy. This leads that the AFM/FRI transition temperature decreases with increasing magnetic fields. The decrease of T_t by applying magnetic fields is similar to that of Mn_{2-x}Co_xSb.^{6,7,13,14} However, we could not observe any characteristic property of the TTA effect for Mn₂Sb_{1-x}Ge_x for $B \le 5$ T and Mn₂Sb_{1-x}Sn_x for $B \le 16$ T. In Mn₂Sb_{1-x}Ge_x. The value of magnetization *M* for FCW at 5 T (5T-FCW; solid curve) was same value for ZFCW at 5 T (5T-ZFCW; broken curve), as shown in Fig. 2. This behavior is quite different from that of Mn_{2-x}Co_xSb. In Mn₂Sb_{0.85}Sn_{0.15} for B = 16 T are traced on those for B = 0 T at low temperature in the AFM phase; that is, the value of ρ at low temperature in the AFM phase is independent on the cooling process under a magnetic field, as seen in Fig. 5.

In contrast to the obtained results on $Mn_2Sb_{1-x}Sn_x$, the values of ρ of $Mn_{2-x}Co_xSb$ at the temperatures (AFM phase) below T_t depend strongly on the cooling process under a magnetic field.^{6,7)} This reason is that a residual FRI phase (metastable phase) exists in the AFM phase (stable phase) under a magnetic field even at low temperature, and the content of the residual FRI phase depends strongly on the intensity of the magnetic field.^{6,7,13,14)} This behavior of $Mn_{2-x}Co_xSb$ is thought to be due to the critically slow dynamics induced by the magnetic field, which is called the TTA effect induced by a magnetic field.⁶⁾ Koyama *et al.* suggested that the TTA effect under a magnetic field was mainly due to the instability of the magnetic states rather than the structural or elastic properties.^{13–17)} The results of firstprincipals total-energy calculations for $Mn_{2-x}Co_xSb^{20,21}$, $Mn_{2-x}Cu_xSb^{22}$ and $Mn_2Sb_{1-x}As_x^{23}$ suggested that the environment around the Mn atoms and the lattice distortion play an important role in the stabilization of the magnetic state. Thought the origin of the field-induced TTA effect is still unclear, we confirmed that the magnetic and electrical properties of $Mn_2Sb_{0.92}Ge_{0.08}$, $Mn_2Sb_{0.92}Sn_{0.08}$ and $Mn_2Sb_{0.85}Sn_{0.15}$ could be controlled by magnetic fields and pressures without the TTA effect.

4. Summary

The magnetization measurements in $B \le 5$ T and the initial permeability measurements under high pressures up to 1 GPa were carried out for Mn₂Sb_{0.92}Ge_{0.08}, and the electrical resistivity was measured for Mn₂Sb_{0.92}Sn_{0.08} and Mn₂Sb_{0.85}Sn_{0.15} for $B \le 16$ T and $4.2 \le T \le 270$ K. Mn₂Sb_{0.92}Ge_{0.08} showed a first-order AFM/FRI transition at 230 K with a thermal hysteresis of 15 K. The AFM/FRI transition temperature decreased by applying magnetic field. The AFM/FRI transition temperature also decreased linearly with increasing pressures. The pressure dependence of the AFM/FRI transition temperature of Mn₂Sb_{0.92}Ge_{0.08} was estimated to be -5.1×10^{-2} GPa⁻¹. At the transition temperature, the electrical resistivity changed abruptly by 50% for Mn₂Sb_{0.92}Sn_{0.08} and by 71% for Mn₂Sb_{0.85}Sn_{0.15}. The values of the negative magnetoresistance of Mn₂Sb_{0.92}Sn_{0.08} and Mn₂Sb_{0.92}Sn_{0.15} were over 60%.

Acknowledgments

The electrical resistivity measurements were carried out at the High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University. The magnetization measurements using a SQUID magnetometer were carried out at Institute for Solid State Physics, the University of Tokyo. This work was supported in part by the KAKENHI 22360285 and 24560855.

REFERENCES

- O. Beckman and L. Lundgren: *Handbook of Magnetic Materials vol. 6, ed K H J Buschow* (Amsterdam, Elsevier, 1991) pp. 181–287.
- 2) M.K. Wilkinson, N.S. Gingrich and C.G. Shull: J. Phys. Chem. Solids. 2 (1957) 289–300.
- 3) T. Kanomata and H. Ido: J. Appl. Phys. 55 (1984) 2039–2041.
- M.I. Bartashevich, T. Goto, T. Tomita, N.V. Baranov, S.V. Zemlyanski, G. Hilscher and H. Michor: Physica B 318 (2002) 198–210.
- 5) M.I. Bartashevich, T. Goto, N.V. Baranov and V.S. Gaviko: Physica B 351 (2004) 71–76.
- 6) P. Kushwaha, R. Rawat and P. Chaddah: J. Phys., Condense. Matter 20 (2008) 022204.
- H. Orihashi, D. Mitsunaga, M. Hiroi, Y. Mitsui, K. Takahashi, K. Watanabe and K. Koyama: J. Japan Inst. Metals 76 (2012) 246–250.
- 8) T.J. Swoboda, W.H. Cloud, T.A. Bither, M.S. Sadler and H.S. Jarrett: Phys. Rev. Lett. 4 (1960) 509-511.
- 9) T.A. Bither, P.H.L. Walter, W.H. Cloud, T.J. Swoboda and P.E. Bierstedt: J. Appl. Phys., suppl. 33 (1962) 1346–1347.
- 10) K. Shirakawa and H. Ido: J. Phys. Soc. Jpn. 40 (1976) 666-673.
- 11) Y.Q. Zhang and Z.D. Zhang: Phys. Rev. B 67 (2003) 132405.
- 12) Y.Q. Zhang, Z.D. Zhang, D.K. Xiong. W.F. Li and J. He: J. Appl. Phys. 94 (2003) 4726–4728.
- H. Orihashi, D. Mitsunaga, M. Hiroi, Y. Mitsui, K. Takahashi, K. Watanabe, K. Matsubayashi, Y. Uwatoko and K. Koyama: Rep. Fac. Sci. Kagoshima Univ. 45 (2012) 43–49.
- H. Orihashi, M. Hiroi, Y. Mitsui, K. Takahashi, K. Watanabe, K. Matsubayashi, Y. Uwatoko and K. Koyama: Mater. Trans. 54 (2013) 696–973.
- D. Shimada, H. Orihashi, D. Mitsunaga, M. Ito, M. Hiroi, K. Koyama, R. Onodera, K. Takahashi, K. Matsubayashi and Y. Uwatoko: J. Korea Phys. Soc. 63 (2013) 747–750.
- 16) K. Koyama, D. Shimada, H. Orihashi, D. Mitsunaga, M. Hiroi, K. Matsubayashi, Y. Uwatoko, R. Onodera, S. Kimura, and K. Takahashi: Rep. Fac. Sci., Kagoshima Univ. 46 (2013) 37–42.
- 17) Y. Matsumoto, H. Orihashi, K. Matsubayashi, Y. Uwatoko, M. Hiroi and K. Koyama: IEEE Trans. Magn. 50 (2014)

1000704-(4).

- 18) T. Kanomata, T. Tto, Y. Hasebe, H. Yoshida and T. Kaneko: J. Magn. Magn. Mater. 90&91 (1990) 719-720.
- 19) T. Suzuki, T. Kanomata, H. Yoshida and T. Kaneko: J. Appl. Phys. 67 (1990) 4816-4817.
- 20) J. Goto, T. Kakimoto, S. Fujii and K. Koyama: J. Japan Inst. Met. Mater. 77 (2013) 461-465.
- 21) J. Goto, T. Kakimoto, S. Fujii and K. Koyama: Mater. Trans. 56 (2015) 415-423.
- 22) J. Goto, T. Kakimoto, S. Fujii and K. Koyama: Mater. Trans. 54 (2013) 2309-2312.
- 23) T. Kakimoto, J. Goto, S. Fujii, K. Koyama and S. Ishida: Mater. Trans. 55 (2014) 1878–1884.