(学位第3号様式)

学位論文要旨	
氏 名	Trieu Thanh Tuan
題目	Cytochrome P450 family 1, acetylcholinesterase, and antioxidant enzymes in Javanese medaka <i>Oryzias javanicus</i> as biomarkers potential against environmental pollutions (ジャワメダカ <i>Oryzias javanicus</i> のシトクロム P450 ファミリー1, アセチルコリンエステラーゼ, および 抗酸化酵素群の環境指標としての有用性に関する研究)
Expression of detoxification and antioxidant enzymes at the genetic and protein levels can reveal the potential cellular and physiological effects of pollutants and can further increase the sensitivity of environmental	
cytochrome P450 1 (CYP1) family, AChE, and antioxidant enzymes with respect to environmental conditions.	
acids, and 2601 bp encoding 525 amino acids, respectively. The determined sequences of the cDNAs were deposited in the GenBank/EMBL database with accession numbers of KJ689303, KJ689304, and KJ689305,	
respectively. Specific PCR primers for each of the CYP1 genes were successfully designed from the sequences. Feeding the fish with heavy fuel oil-contaminated food for 24 hours induced the CYP1 genes, showing highest	
levels of the transcripts in intestine and lowest levels in liver. When the fish were exposed to water- accommodated fraction of heavy fuel oil for 24 hours, highest levels of expression of CYP1A were found in gills	
liver and intestine were similarly lower than in gills. CYP1C1 showed an induction pattern different from those of other CYP1s <i>i.a.</i> with highest expression in liver and down-regulation in gills and intestine. Expression of the	
CYP1 genes in embryos (10-day post-fertilization) kept in heavy oil-polluted seawater for 48 hours indicated that CYP1A was expressed higher in bioremediation treatment than in the control, while CYP1B1 and -1C1	
expressions were down-regulated in all the treatments. The fish exposed to various concentrations of chlorovrifos (0.01-0.5 mg/l) showed induction of CVP1 genes with various expression patterns among the	
organs examined, liver, gills, and intestine, and highest induction observed was more than 40-fold. Chlorpyrifos	
exposure time, resulting in long-term inhibition at higher concentrations of the insecticide. The genes of antioxidant enzymes, CAT, G6PD, GPx, GR, GST, SOD, and UB, showed relatively short-term inductions in liver, gills, and intestine of the fish exposed to various concentrations of chlorpyrifos (0.01-0.5 mg/L). Effect of salinity shock was studied additionally by transferring the fish from seawater to freshwater and keeping them for 24 hours. Salinity stress caused CYP1A, -1B1, and -1C1 inductions highest in gills, suggesting physiological	
function of CYP1s in acclimation to salinity changes. When the fish was starved for 1 week, CYP1A, -1B1, and - 1C1 expressions in the checked tissues tended to be down-regulated. These findings suggest usefulness of the induction of the genes studied in environmental assessment and provide sensitive multi-biomarkers to characterize toxicological impacts in monitoring aquatic environments.	