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Dedicated to Professor Shogi Tsubot on the occasion of his siztieth birthday

ABSTRACT. The bivariant theory was introduced by W. Fulton and R. MacPherson to unify
both covariant and contravariant theories. They posed the problem of unique existence of
a bivariant Chern class and J.-P. Brasselet showed the existence of a bivariant Chern class
in the category of analytic varieties with cellular morphisms. The uniqueness problem is
still open. In this paper, without assuming “cellularness” of morphisms, using resolution
of singularites, we construct a “quasi-bivariant” theory Fo, of constructible functions and
a “quasi-bivariant” homology theory H., and we show that there exists a unique “quasi-
Grothendieck” transformation ve : Foo — Heoo satisfying that y.. for morphisms to a point
becomes the Chern-Schwartz-MacPherson class transformation ¢y : F — H,.. We also show
that if a bivariant Chern class v : F — H exists, then y : F — H is “uniquely embedded”
Into Veo : Foo — Ho.

§1 INTRODUCTION

W. Fulton and R. MacPherson [FM] (also see [F]) introduced the notion of bivariant
theory and they conjectured the existence of a bivariant Chern class, i.e., a Grothendieck
transformation from the bivariant theory F of constructible functions to the bivariant
homology theory H satisfying that for a morphism from a nonsingular variety X to a point
the value of the characteristic function 1y of X is the Poincaré dual of the total Chern
class of X. If such a bivariant Chern class v : F — H exists, then restricted to morphisms
to a point the bivariant Chern class v : F — H becomes the Chern-Schwartz-MacPherson
transformation ¢, : F' — H, (see [BS], [Ke], [Kwl], [Ma], [Sal], [Scl, Sc2Jetc.). The
conjecture was solved by J.-P. Brasselet [B] for the category of complex analytic varieties
whose morphisms are assumed to be cellular. But the problem of whether “cellularness”
of morphisms can be dropped (note that it is a “folklore” that any analytic morphism is
perhaps celluar) and the problem of uniqueness have been unresolved since then.

In [Y1] we have showed that for a morphism with nonsingular target variety the
bivariant Chern class is uniquely determined and furthermore we have showed that the
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bivariant Chern class of a bivariant constructible function is expressed as the Chern-
Schwartz-MacPherson class of the bivariant constructible function followed by capping
with the pullback of the total Segre class of the nonsingular target variety. This “twisted”
Chern-Schwartz-MacPherson class is called the Ginzburg-Chern class, since this class
was already treated (implicitly) in Ginzburg’s paper [G1] (cf. [G2] also). Note that this
result of [Y1] generalizes the result (due to J. Zhou [Z1, Z2]) that for a morphism with a
traget variety being a nonsingular curve the bivariant Chern classes constructed by J.-P.
Brasselet [B] and C.Sabbah [Sa2] are both identical. Furthermore, in [Y2, Y3, Y4, Y5] we
have studied on Ginzburg-Chern classes, in particular the problem of whether Ginzburg-
Chern classes can be captured as a Grothendieck transformation. For the definition of the
Ginzburg-Chern class it is clearly essential and crucial that the target variety of a given
morphism is nonsingular, otherwise one cannot define such a class. In this paper, for a
morphism with a singular target variety, we use resolution of singularites and construct
“quasi-bivariant” Chern classes, which do not necessarily behave as in the usual bivariant
theory; that is why it is called “quasi-bivariant”.

82 BIVARIANT THEORIES

In this section we quickly recall some basic things of the Bivariant Theory which we
need in this paper.

A bivariant theory B on a category C with values in an abelian category is an assign-
ment to each morphism

which is equipped with the following three basic operations:
(Product operations): For morphisms f: X — Y and ¢: Y — Z, the product operation

o BX -LY)oBY L 2) 5 BX 2L 2)

is defined.
(Pushforward operations): For morphisms f: X — Y and g : Y — Z with f proper, the
pushforward operation

f BX 2L z) 5 BY % 2)

is defined.
(Pullback operations): For a fiber square

!

X 4 X

f'l lf

y" !/ ‘q_> ) ,'.‘
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the pullback operation

!

¢* BX L Y) > BX L v

is defined.
And these three operations are required to satisfy the seven axioms (see [FM, Part I,
§2.2] for details):
(B-1) product is associative,
(B-2) pushforward is functorial,
(B-3) pullback is functorial,
(B-4) product and pushforward commute,
(B-5) product and pullback commute,
(B-6) pushforward and pullback commute, and
(B-7) projection formula.
Let B, B’ be two bivariant theories on a category C. Then a Grothendieck transforma-
tion from B to B
~v:B— B

is a collection of homomorphisms
BX -Y)->B (X —=Y)

for a morphism X — Y in the category C, which preserves the above three basic opera-
tions:

(1) (e 3) =v(a)ew v(3).

(i) y(fxa) = fry(a), and

(iii)  v(g*a) = g*v(a).

Fulton-MacPherson’s bivariant theory F(X N Y') of constructible functions consists
of all the constructible functions on X which satisfy the local Euler condition with respect
to f. Here a constructible function o € F(X) is said to satisfy the local Euler condition
with respect to f if for any point x € X and for any local embedding (X, z) — (C¥, 0)
the equality a(x) = \((BE N f71(z); @) holds, where B, is a sufficiently small open ball
of the origin 0 with radius € and z is any point close to f(x) (cf. [B], [Sa2]). The three
operations on F are defined as follows:

(1) product operation:

o F(X L Yy)oRYy 4 2) - Fx 2L 7
is defined by c« @ 3 := o - *3,

(i1) the pushforward operation:

e FX 2L 2y s Ry % 2)

is the usual pushforward f,, ie., fy(a)(y) := I cxlalp-1(,)) and
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(ii1)the pullback operation: for a fiber square

!

X 4 4 x

r |4
v 2y,
the pullback operation
¢ FX -Lv) s Ry Ly

is the functional pullback ¢'*, i.e., g*(a)(2') := a(g'(2")).

Note that F(X dx, X)) consists of all locally constant functions and F(X — pt) =
F(X).

Let H be Fulton-MacPherson’s bivariant homology theory, constructed from the co-
homology theory. For a morphism f : X — Y, choose a morphism ¢ : X — R" such
that @ := (f,¢) : X = Y x R"is a closed embedding. Then the i-th bivariant homology

group H! (X S, Y') is defined by

H(X L5 7)) = B (Y xR" Y x R"\ Xy).

where Xy is defined to be the image of the morphism ® = (f,¢). The definition is
independent of the choice of ¢. Note that instead of taking the Euclidean space R™ we
can take a manifold M so that ¢ : X — M is a closed embedding and then consider the
graph embedding f x2: X — Y x M. See [FM, §3.1] for more details of H. In particular,
note that if ¥ is nonsingular, H(.X — Y7} is isomorphic to the homology group H,(X) of
the source variety X by the Alexander duality isomorphism.

§3 BIVARIANT CHERN CLASSES FOR MORPHISMS
WITH NONSINGULAR TARGET VARIETIES

In [FM] W. Fulton and R. MacPherson conjectured and later .J.-P. Brasselet [B] affir-

matively solved the following

Theorem (3.1). (J.-P. Brasselet) For the category of complex analytic varieties with
celluar morphisms, there exists a Grothendieck transformation

~v:F—H

such that for a morphism f : X — pt from a nonsingular variety X to a point pt and the
bivariant constructible function 1y := 1 x the following normalization condition holds:

v(1g) = ¢(TX)N[X].

In [Z 1, Z 2] J. Zhou showed that the bivariant Chern classes constructed by J.-P.
Brasselet [B] and by C. Sabbah [Sa 2] are identical in the case when the target variety is
a nonsingular curve. And the present author showed the following uniqueness theorem
of bivariant Chern classes for morphisms whose target varieties are nonsingular and of
any dimension:
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Theorem (3.2). ([Y1, Theorem (5.7)]) If there exists a bivariant Chern class v : F —
H, then it is unique when restricted to morphisms whose target varieties are nonsingu-
lar; explicitly, for a morphism f : X — Y with Y nonsingular and for any bivariant

constructible function o € F(X 7, Y') the biwvariant Chern class v(«) is expressed by
y(a) = fs(TY) Neo(a)

where s(TY') 1s the Segre class of the tangent bundle. [

The “twisted” Chern-Schwartz-MacPherson homology class f*s(TY) N ¢, is named

Ginzburg-Chern class [G1, G2] (also see [CG]). Let us denote f*s(TY) N ¢, simply by
Gin
A,

Thus, conversely, it is quite natural to ask if the correspondence defined by Ginzburg-

Chern class
f f

AR L Y) 5 HX -5 Y)
becomes a Grothendieck transformation.

In [Y3] we dealt with a very naive and more tractable situation where we consider
(smooth) morphisms of nonsingular varieties and in [Y4] we made our category much
broader and the morphisms which we consider are any morphisms with only being required
that the target varieties are nonsingular. Another requirement in [Y4] is that the pullback
homomorphisms are considered only for smooth morphisms, not for any morphism. In
[Y5] we dropped this extra requirement.

First we recall the following theorems:

Theorem (3.3). ([Y4] ) For a morphism f: X — Y with Y nonsingular, we define

GF(X L v)
to be the set of all constructible functions o € F(X) satisfying that for any fiber square

g

x -4y

AL

y! g }/'7

with Y also nonsingular and for any constructible function 3" € F(Y') the following
equality holds:

7(3iu (g*CY ° ﬂ/) — "/Gin(’g*(){) ° »«/‘Gin(’B[)

Then GF becomes a bivariant theory of constructible functions with the same operations as
in the bwariant theory F of constructible functions. Furthermore we have that GF(X —

pt) = F(X). Here it should be noted that the bivariant pullback is considered only for
morpshims of nonsingular varieties. [
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Theorem (3.4). (/Y4]) For morphisms whose target varieties are nonsingular,
":GF - H

is the unique Grothendieck transformation satisfying that Y5 for morphisms to a point
is the Chern-Schwartz-MacPherson class transformation ¢, : F — H,, except for that

¥~ = AGin gk for 4 smooth morphism ¢ of nonsingular varieties. O

With the bivariant theory GF, it is not clear at all whether g*~%in = ~4ing* }5]ds
for any morphism of nonsingular varieties. However, by taking into definition its com-
patibility with pullback homomorphism. we showed the following theorem.

Theorem (3.5). ([Y5]) For a morphism f : X — Y with Y nonsingular we define

@F(X —f~% Y') to be the set of all constructible functions o € F(X) satisfying the following
two conditions (1) and (b) : for any fiber square

’

X7 . x

7 E

v —L 5y,

with Y nonsingular
(1) the following equality holds for any constructible function 3' € F(Y'):

Gin(

gXae ) = g*a)en

v

!

Gm( Gin(ﬁl)
7

()

Gm( * . Gll’l(

g¥a)=g @).

Then GF becomes a bivariant theory with the same operations as in F and furthermore
the Ginzburg-Chern class
(ﬂn GIF S H

becomes the unique Grothendieck transformation satisfying that v for morphisms to a
pomt 18 the Chern-Schwartz-MacPherson class transformation cy : F' — H,. And also

GF(X — pt)=F(X). O
If we let us denote the set of all constructible functions a € F (X) satisfying the
condition (b) by F”(X) we have
GF(X - Y)=GF(X - Y)n F’(X).

To prove GF(X — pt) = F(X) and @F‘(X — pt) = F(X), we need the cross prod-
uct formula of the Chern-Schwartz-MacPherson classes due to M. Kwiecifiski [Kw2] (cf.

[KY]): ex(a x B3) = cula) x i(B).

Remark (5.6). It is easy to see that the inclusion F(X N Y) C GF(X EEIN Y) is
equivalent to the existence of the bivariant Chern class v : F — H. The Brasselet
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theorem [B] and the uniqueness theorem of the bivariant Chern class [Y1] imply that if

f: X — Y is cellular and Y is nonsingular, we have F(X 7, Y)C @E‘(X 7, Y).

Remark (3.7). In [Sch] Jorg Schiirmann has recently generalized our construction of the

bivariant theory GF and the bivariant Chern class v : GF — H.

Remark (3.8). In [E] L. Ernstrom considered the unique existence problem of an opera-
tional biwariant Chern class v°P : F — A, where A is the so-called bivariant intersection
theory or operational biwvariant theory of Chow homology groups (see [FM, §§8-9], and [F,
Chapter 17]). And his work [E] was modified and completed by [EY1] and [EY2].

§4 QUAS]—BIVARIANT CHERN CLASSES FOR ARBITRARY MORPHISMS

Theorem (3.4) is the bivariant Chern class theorem in the case of morphisms whose
target varieties are nonsingular. In this section, still using the Ginzburg-Chern classes,
we will try to treat the general case when target varieties are possibly singular.

For a morphism f: X — Y with ¥ being singular, consider a bivariant constructible

function o € F(X N Y). Let v : F — H be a bivariant Chern class. At the moment,
we do not know an explicit description of the bivariant Chern class v(«) of the bivariant
constructible function a. Let 7 : ¥ — ¥ be a resolution of singularities and consider the
following fiber square

Then 7*a = n%a € F(X 7, f) Since the target variety Y is nonsingular, it follows
from Theorem (3.1) that we have

*y(a) = y(n¥a) = f*a(T?) Ncx(Tar).

However, since the resolution of singularities is not unique, the above bivariant class

*

7*y(a) is not uniquely determined and it does depend on the choice of the resolution

7:Y =Y. Ouw original motivation of the present work was to try to view all the
different bivariant classes m*(a) constructed by using the resolutions of singularities as
“the same” or “equivalent” in some sense.

Let Y be a possibly singular variety and let Ry be the collection {(Y, ¢)} of resolution
of singularities ¢ : Y’ — Y of Y, where Y’ is nonsingular and Iy g=1(Vang) ¢+ Y\
g1 (Ysing) — Y\ Yiing is an isomorphism with Yiing denoting the singular set of Y. When
Y is nonsingular, Ry is defined to be just {(Y,idy)}. The reason for this requirermnent
is that otherwise Ry consists of all automorphisms of Y, which is not necessary for our
purpose.

For two elements ¢1 : Y7 — Y, g2 : ¥, = Y of Ry we define the order < as follows:
g1 < g2 if and only if there exists a morphism ¢q5 : Y5 — Y7 such that g2 = §1 0 g12.
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Proposition (4.1). For a possibly singular variety Y, the ordered set (Ry,<) is a
directed set.
Proof. Let g1 : Y1 = Y and ¢ : Y2 — Y be two resolution of singularities of Y. We want

to show that there exists a resolution of singularities g3 : Y3 — Y such that g; < g3 and
g2 < g3. Consider the fiber product

YixyY; —— Y,

T

Y, — Y.
91
Note that the fiber product Y7 xy Y3 is not necessarily nonsingular even if Y and Y3 are
nonsingular. So we consider a resolution of singularities of Y7 xy ¥3:

e —

Y Xy Yo = Y] xy V5.

Let us set Y3 to be Y] xy Y5, and we set g3 : Y3 — Y to be the composite
g3 :=¢10G2 0T = g3 0Gy OT.
Which means that ¢; < g3 and ¢go < g3. O
Let f : X — Y be a morphism of two possibly singular varieties. For a resolution of

singularities ¢ : Y’ — Y in Ry we consider the fiber square

!
JYI_g“‘_>X

and the bivariant group

F,(X L5 v) = GF(x' L5 v7).

Furthermore for any ordered pair ¢; < ¢» in Ry, i.e., the composite ¢, : ¥, 23 ¥; 25 v

we consider the fiber squares:

/

!
- gi12 g1 -~
AZ > .(Y]

— X
f/IJ/ f/J/ J/f
Y ' 1 » Y,

g12 g1

from which we get the homomorphism

g% GF(X; 15 1)) = GF(X. 5 v)),
which is denoted by

Fy, g0 Fo (X 5 V) 5 F,o (X L 1),

Then we have the following proposition:
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Proposition (4.2). For a morphism f : X — Y of possibly singular varieties, the
following system

- F oy
{]Fg (‘X — ¥ ,)7IF91792}
18 an nductive system of abelian groups.
Proof. This is nothing but the functoriality of the pullback homomorphism
* . mrov. v droy I
912 ¢ GIF()&] — }]) — GIF(.XQ — )g)
, 1.e.,, Axiom (B-3). O
We define

(X Lv)i= iy B Ly)= hy @Ry
(Y',g)ERy (Y',9)ERy

Similarly we define the corresponding homology version as follows:

HoX V)= lm H(XDHy)= 1y Bx Ly
(Y',9)€Ry (Y',g)ERYy

For any resolution of singularities 7 : ¥ — Y we have the fiber square

‘P‘

M)(__
%

M

~

de¢¥J%Y)ZGMX—LSUMMHAX—Lyw:Em%JkyyimmJWﬂm
definition of F, and H,, we have the canonical homomorphisms

FGF(X D7) 5 Fe(X Loy), X L) smax L),

which are defined, respectively, by F¥(a) := [a] the equivalence class of a and HY (%) :=
[z] the equivalence class of 7.

The above groups cannot in general become a bivariant theory in the sense of Fulton
and MacPherson. Indeed, the three basic bivariant operations of product, pushforward
and pullback are not always defined on Fo, and H,, . What we can say so far is that
(1) when they are restricted to morphisms with nonsingular target varieties they become
bivariant theories as stated in §3 and that (ii) they satisfy the seven axioms of Bivariant
Theory listed in §2 whenever these three operations are defined on them. In this sense we
shall call the above assignments Foo and Ho, the quasi-bivariant theory of constructible
functions and the quasi-bivariant homology theory respectively.

Now for each ¢ € Ry, consider the following

Gin L GR(X' = YY) - H(X' = Y7),
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which shall be denoted by
Gin . - oy v foy
Yy Fg (X — YY) = Hy (X — 1)

Then the inductive limit
Voo 1= hQ H/gGrin
gERY

of the Ginzburg-Chern classes is surely a transformation from F., to H... We can see
that v preserves the three operations whenever they are defined and in this sense
Yoo ! Foo — H shall be called a quasi-Grothendieck transformation. By definition it
is obvious that ~., for morphisms to a point is the Chern-Schwartz-MacPherson class
transformation ¢, : F — H,. And it follows from Theorem (3.4) that it becomes the
bivariant Chern class for morphisms whose target varieties are nonsingular. In this sense
Yoo : Foe — Hy shall be called a quasi-bivariant Chern class.

Also it follows from the definition of v, that ., is uniquely determined so that for
a morphism f : X — Y and any resolution of singularities v : Y — Y the following
diagram commutes:

Gin

GFX -Lv) 2 mxX L1

/| e

Foo (X L5 V) — 5 Ho(X L v).

Yeo

Therefore we obtain the following theorem:

Theorem (4.3). There exists a unique quasi-Grothendieck transformation
Yoo ¢ Foe = Huo,

satisfying (i) Yoo for morphisms to a point is the Chern-Schwartz-MacPherson class
transformation ¢, : F — H, and (i) for a morphism f : X — Y and any desinglarization
v:Y =Y the following diagram commutes:

— —~ ., Gin ~ ra ~
GFX Liy) 2 mx Ly
IFul lH"
Foo (X 55 V) — Ho(X L 1),
Yoo

Remark (4.4). It is not clear whether the condition (ii) in Theorem (4.3) can be dropped.
This is a “solution via Ginzburg-Chern classes” to the original existence and unique-
ness problem concerning the looked-for bivariant Chern class v : F — H. To attack this
original problem, we need another approach, which remains to be seen.
Furthermore we can show the following theorem concerning relationships between
v:F — H and ~o:
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Theorem (4.5). If there exists a bivariant Chern class v : F — H, then there exist
canonical transformations

GW:F%]FOO, GH:H—-)HOO
such that the following diagram commutes

F —— H

Foo —— H..
RS

Here ey : (X = Y) — Fo (X = Y) s injective for any morphism f: X =Y.

Proof. Let a € F. Then, for any g € Ry we have ¢¥« € F ¢ (X — YY), which induces the
canonical homomorphism ep : F(X — Y) = Fo (X — Y'), which is defined by

er(a) 1= [¢g¥a]

for g € Ry. Since [¢¥a] = [h*a] for g,h € Ry, ep is well-defined. Similarly eg : H(X —
V) = Hoo (X — Y) is defined by

em(w) := [g*u)].

Then the above diagram follows. It is straightforward that ey : F(X — Y) — Foo (X —
Y') is injective for any morphism f: X — Y . O

This theorem is an answer for how to view all the different bivariant classes 7*~(a)
constructed by using the resolutions of singularities as “the same” or “equivalent” in
some sense.
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