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Abstract. This paper newly designs the recursive least-squares (RLS) fixed-lag
smoother and filter using the covariance information in linear continuous-time stochastic
systems. It is assumed that the signal is observed with additive white observation noise
and is uncorrelated with the signal. The estimators require the covariance information of
the signal and the variance of the observation noise. The auto-covariance function of the
signal is expressed in semi-degenerate kernel form.
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1. Introduction

The estimation problem given in covariance information has been seen as an
important research avenue in the area of detection and estimation problems [1] for
communication systems. In [2-4], it is assumed that the auto-covariance function of the
signal is expressed in the semi-degenerate kernel form. A semi-degenerate kernel is the
function suitable for expressing a general kind of auto-covariance function by a finite
sum of nonrandom functions. In a fixed-lag smoother [5], the auto-covariance function of
the signal is expressed in a degenerate kernel form, not in the semi-degenerate kernel
form. The degenerate kernel function cannot express the auto-covariance functions of
general kinds of stochastic processes. Hence, the fixed-lag smoother using an auto-
covariance function in the form of a degenerate kernel is not appropriate for estimating
general kinds of stationary or non-stationary signal processes. The expression in the
degenerate kernel form of the auto-covariance function is obtained through
approximating the auto-covariance function by a Fourier series transformation. Hence, its
approximation error causes degradation in the estimation accuracy of the fixed-lag
smoother. The recursive least-squares (RLS) Wiener fixed-point smoother [6] and filter
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[7] using the covariance information are designed in linear discrete-time stochastic
systems. The estimators require the information of the observation matrix, the system
matrix for the state variable, related with the signal, and the cross-variance function of the
state variable with the observed value. The information can be obtained from the
covariance function of the signal [6]. Also, it is assumed that the variance of the white
observation noise is known. From this respect, in [7], [8], the fixed-lag smoothing and
filtering algorithms are designed using the covariance information in linear discrete-time
stochastic systems. The estimators require the information of the factorized auto-
covariance function of the signal. Also, it is assumed that the variance of the white
observation noise is known.

The fixed-lag smoothing algorithms in [7], [8] are sub-optimal since the impulse
response function for the fixed-lag smoothing estimate is approximately obtained. The
advantageous property of the semi-degenerate kernel expression of the auto-covariance
function of the signal lies in the following point. It can express the auto-covariance
function of general stationary or non-stationary stochastic signal processes by a finite sum
of nonrandom functions without formulating the state-space model generating the signal
from available data. In continuous-time stochastic systems, the RLS prediction, filtering,
fixed-point smoothing and fixed-interval smoothing algorithms are shown [9] by
expressing the auto-covariance function of the signal in the semi-degenerate kernel form.
However, the RLS algorithm for the fixed-lag smoothing estimate remains not derived.
From this respect, this paper newly designs the RLS fixed-lag smoother using the
covariance information of the signal in the semi-degenerate kernel form. It is assumed that
the signal is observed with additive white observation noise and the signal is uncorrelated
with the signal. The algorithms are derived based on the invariant imbedding method [6].

2. Fixed-lag smoothing problem
Let an observation equation be given by

y(t) =z(H) +v(1), (D
in linear continuous-time stochastic systems, where z(¢) is an mx1 signal vector and

v(t) is a white observation noise. It is assumed that the signal and the observation noise

are mutually independent stochastic processes with zero means. Let the auto-covariance
function of v(¢) be given by

E[v(V ()] = R(E)S(t—s), R(t)>0. 2)

Here, 6(-) denotes the Dirac & function.
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Let K (t,5) represent the auto-covariance function of the signal and let K (7, s) be

expressed in the semi-degenerate kernel form of

A(H)B" 0<s<t
K,(g)=1 08 () D32h G)
B()A (s), 0<t<s.
Here, A(t) and B(s) are bounded »nxm matrices.
Let a fixed-lag smoothing estimate Z(# — L,t) of z(¢— L) be given by
Z(t—-L,t)= J-Oth(t, s)y(s)ds 4)

as a linear transformation of the innovations {y(s), 0<s<¢}, where A(t,s) and L are

referred to be an impulse response function and the fixed Lag.
The impulse response function which minimizes the mean-square value of the fixed-
lag smoothing error z(t—L)—z(t— L. t),

J=E[||z(t—L)-2(t - L,0)|*], (%)
satisfies
K.(t-L,s)= jo h(t,7)K (7, 5)dT 6)

by an orthogonal projection lemma [10], [11]:

z()—z(t—L,t) L y(s), 0<s<t. (7)

Here, © 1’ denotes the notation of the orthogonality. From (4) and (6), the impulse response
function satisfies

H(t,5)R(s) = K, (1~ L.5)~ [ h(e. 1)K (z.5)dr 8)

3. Fixed-lag smoothing and filtering algorithms
The fixed-lag smoothing problem starting with (8) has been considered to be difficult
in deriving the least-squares fixed-lag estimation equations. In this paper, for the values of

t and s, we separate the impulse response function A(z,s) into A, (z,s) and A, (¢,s) as

h(—-L,s), 0<s<t-1L,

P )
(t-L,s), t—L<s.

h(t,s)= {

From (4) and (9), the fixed-lag smoothing estimate is written as



32 BIREBRAHEAMOELE BABER  H57% (2006)

e-Lay= [ k(- Lo)y(s)ds+ [\ (- Ls)y(s)ds. (10)

The first term on the right hand side of (10) is the filtering estimate Z(z— L,?#— L) of the
signal z(t—L) . The second term is the correction term in calculating the fixed-lag
smoothing estimate zZ(¢—L,t) of z(t—L).

For 0<s<f-L, it is seen that the impulse response function /4 (z,s) for the

filtering problem satisfies

h(t,5)R(s) = K, (t,5) - jo'hl(z, 1)K, (z,5)dr . (11)

From (3), by K_(t,5) = A()B" (s), 0<s<t, (11)is written as

h(t,5)R(s)= ADB (5)- [ h(L. DK, (z,5)d7 (12)

Introducing an auxiliary function J,(7,s) satisfying

J.(t,5)R(s) = B' (5) - jo J(t,D)K (1,5)dr , (13)

we obtain, from (12) and (13), the impulse response function

h(t,5) = A()J,(1,5) . (14)
Differentiating (13) with respect to 7, we have

B ps) == (10K, (09~ [ LD & (1,50 1s)

From (3), (13) and (15), we obtain

2 a(; S) (6,0 A()] (t.5). (16)

From (13) with (3), the function J,(#,7) satisfies

Ji(t,OR@) =B (1)~ [ J,(t.0)B(2)dz A" (1) 17)
Introducing a function

n(0)=[ J(t.0)B(D)dr, (18)

we obtain the equation for J,(¢,1) as
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Ji(t.n=(B"(O)~rO4 ()R (1). (19)
Differentiating (18) with respect to ¢, we have
d’; @D _ s .0B@0) + etz 4 (’ (1) perydr. (20)

Substituting (16) and (18) into (20), we obtain
¢g” J,(t,0)(B(&) — A (1)) @1)

The initial condition on the differential equation (21) at # =0 is #(0) =0 from (18).
From (10), the filtering estimate Z(z—L,t— L) of z(t—L) is expressed as

-L
Z(t-L,t—-L)= L: h(t—L,s)y(s)ds . The filtering estimate Z(¢,¢) is formulated as

2.0 = [ (. 5)y(s)ds. 22)
Substituting (14) into (22), we have

2(t.0)= AW J,(t.5)y(s)ds 23)
Introducing a function

e,(0)= [ H(t.5)y(s)ds, 24)
we obtain

2.0 = A)e,(F) . ©5)

Differentiating (24) with respect to ¢ and using (16) and (24), we obtain

B, 6.00:0 - A)e, ). @6)
The initial condition on e, (¢) at =0 is ¢,(0) =0 from (24).

Now, let us consider the impulse response function A, (¢#—L,s), t—L <s. From (11),
h,(t—L,s) satisfies

hy(t-Ls)R(s)= K. (t=L.9)~ [ ht-LoOK,(r.9d7~ [ h(t- LK (z,8)dr.
(27)
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From (3) and (14) and (18), (27) is written as

h(t—L,s)R(s)=B(t— L)A" (s) - A(t - L)jo”‘ J (1= L,7)B(r)dr A" (s) -

J.tt—[, hz(t——L, T)KZ(T,S)dT

= (B(t—L) = A(t= Lyt LNA"(s)= [ h(t-L.0)K (z,5)dr

28
Introducing an auxiliary function satisfying -
L(t-LOREs)= A" ()= [ J,(t-LOK (z,9)dz, (29)
we obtain
hy(t—L,s)=(B(@t—-L)—-A(t—-L)n(t-L))J,(t—L,s). (30)
Differentiating (29) with respect to ¢ and using (3), we have
WR@) =-J,t-LOK (t,s)+J,(t-L,t—L)K (t—L,s)-
I:_L 8, L,7) (ta_t L.7) K (z,s)dt
=-J,(t—L,H)A()B" (s)+J,(t—L,t— L)B(t— L)A" (s) - J;'_L%(—;——L’T—)Kz(r, s)dr .
(31)
Introducing an auxiliary function satisfying
Jy(t-LR(s)=B"(s)- [ Jy(t- LK, (z.5)dr, (32)
and using (29), we obtain a partial-differential equation
_‘W_z(%:t]:ﬁ ==J,(t=L,1)A(@t)J,(t-L,s)+J,(t—L,t—L)B(t—L)J,(t—L,s) (33)

for J,(t—L,s).

The function J,(¢—L,?) in (33) is obtained as follows. Putting s =¢ in (29) and

using (3), we have
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L~ LORW) = A0~ J,(t- LO)B)drd (7). (34)
Introducing a function
(1) = L J,(t-L,7)B(r)dz , 35)
we obtain '

(36)

J,(t—-L,t)y=(A"(0)-rOA )R (@).
The function J,(¢—L,¢— L) in (33) is obtained as follows. Putting s =¢ in (29) and

using (3), we have

J(t-LOR@~L)= A (t-L)- [, J,(t- L) A()dzB (i~ L). 37)
Introducing a function

r(t) = L J,(t- L, 1) A(r)dr, 38)
we obtain

J,(t-Lt—L)y=(4"(t-L)-r,&)B" (t—-L)R"'(t-L). (39)

Next, differentiating (35) with respect to ¢ and using (33), we have

dré’gt) =J,(t—L,)B(1)-J,(t—L,t=L)B(t— L)~

J,(t - L, 1) A(t) jL J,(t-L,7)B(r)dr+J,(t—L,t—L)B(t-L) jL J,(t—L,7)B(r)dr.

(40)
Introducing a function
t
r, () = L_L J,(t-L,7)B(r)dr, @1)
we obtain a differential equation
dr, ()
=J,(t-Lt)B(t)-J,(t—L,t—L)B(t—L)-
” 2 )B(1) = J,( )B(t-L) “2)

J,@t—L,OyA@Or,(t)+J,(t—L,t—L)B(t— L)r,(?)
for 7,(¢). The initial condition on the differential equation (42) at =0 is 7,(0) =0 from

(35).
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Next, differentiating (38) with respect to # and using (33), we have
%"52 =J,t-LOAW) - J,(t—L,t—L)A(t-L)-J,(t—L, t)A(t)J‘tt_L Jy(t—L,7)A(r)dr +

J,(t—L,t—L)B(t—L) jL J,(t—L,7)A(z)dr . 43)
Using (38) and introducing a function
r(f) = jL J,(t-L,7)A(r)dr | (44)
we obtain
dr(t)

—==J (t-L,t)A(t)-J,(t—L,t—L)A(t-L)—

o 2= L) A(t) = J, (¢ - Lt - L)A(t- L) 45)

J,(t = L)) A@)ry(t)+ J (¢ — L,t— L)B(t - L)1 (2).

The initial condition on the differential equation (21) at 1 =0 is #,(0) =0 from (38).

Differentiating (32) with respect to ¢, we have

a‘]f;(ta_t L’S) R(S) = _J3(t_L> t)Kz (tb S)+J3 (t—Lﬁt_L)Kz(t_L’S) o
.[t 8J3(t—L, T)
t-L ot

=-J,(t—L,0)A(t)B" (s)+J,(t—L,t —L)B(t— L) A" (s) -

K (r,s)dr

J‘t oJ,(t—L,7)
L o

From (29) and (32), we obtain a partial-differential equation

ost-L,s) 3(t6—tL,S) = ~Jy(t= LA, (¢~ L,5) +Jy (1~ L,t = L)B(t— L)J, (t - L.5)

for J,(¢t—L,s).
Differentiating (41) with respect to # and using (35), (41) and (47), we obtain
d’; 5’) = J,(t-L,)B() - J,(t— L,t— L)B(t— L)+ I:_LQJL(ta:tL’—T)B(T)dT

46
K, (z,s)dr. o

(47)

=J;t-L,t)B(t)-J,(t—L,t—L)B(t—L)-
J,(t—L, 1) At) jL Jy(t=L,7)B(r)dr+J,(t—L,t— L)B(t - L) jL J,(t=L,7)B(r)dr
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=J,(t—-L,0)B@t)-J,(t—L,t—L)B(t—L)—J,(t=L,HA@)r,(t) + J;(t = L,t = L)B(t - L)r, (7).
(48)

The initial condition on the differential equation (48) at # =0 is 7,(0) =0 from (41).

The function J,(¢—L,?) in (48) is obtained as follows. Putting s =¢ in (32) and

using (3) and (41), we have
J,(t- LOR(E) = B () - jL J,(t- L,0)K (z,0)dr

- B'(f)- jL Jy(t—L,7)B(r)dr A" (1)

=B (0)-r, (4" (2). (49)
Hence,

Jy(t=L,0)=(B" ()~ r, (A" (OR(®). (50)

The function J,(¢—L,t—L) in (48) is obtained as follows. Putting s =# in (32) and

using (3) and (44), we obtain
J,(t—L,t—- L)R() = B" (1) - j:.L J,(t- L,0)K (r,t— L)dr

- B"(f)- jL Jy(t=L,0)A(r)drB" (1-L).

=B"(H)-r,(t)B" (t-L). (51)
Hence,
J,(t=L,t—L)y=(B"(t)-r,()B" (t—L)R'(2). (52)
Differentiating (44) with respect to ¢ and using (38), (44) and (47), we obtain

dr;(’) T (t=LAW@) - J,(— Lt~ L)A(t— L)+ I:_L?%L’—T)A(r)dr

= J,(t— L)) A(t) - J,(¢t— L,1—L)A(t— L) -
J,(t- L) A(f) jL J,(t—L,0)A(t)dr+J,(t—L,1—L)B(t - L) jL J,(t-L,7)A(r)dr
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=J,(t-LOA@®) - J;(t—L,t—=L)A(t - L)~ J;(t = L,y A()r; () + J,(t — Lt — L) B(t — L)r, (¢).
(53)
The 1nitial condition on the differential equation (53) at # =0 is 75(0) =0 from (44).
From (10), (25) and (30), we have
2(t-L.t)y=A(t-L)e(t—L)+(B(t-L)— A(t— L)r,(t - L))J.:_L J,(t—L,s)y(s)ds .

(54)
Introducing a function

e,(t)= J';L J,(t=L,s)y(s)ds, (55)

we obtain an equation for the fixed-lag smoothing estimate

Z(t—L,t)y=A(t—L)e,(t—L)+(B(@t—L)— A(t— L)r,(t - L))e,(¢). (56)
Differentiating (55) with respect to ¢ and using (33) and (55), we have

~d—e-2—(—tl:Jz(t—L,t)y(t)—Jz(t—L,t—L)y(t—L)—

T (t=LOAW®| J,(t=L.s)y(s)ds+J,(t~ Lt~ L)B(t~ L) [ St Ls)y(s)ds
= J,(t~ L)y (O~ J,(t = Lt = L)y(t ~ L) -

J,(t— L A®) jL J,(t—L,$)y(s)ds+J,(t - L,t— L)B(t— L)e, (t). C7)
Introducing a function
e,(1) = jL J,(t-L,s)y(s)ds (58)
and using (55), we obtain a differential equation
de,(t)

2= = 3= Ly =T, (- L= D)yt~ 1)~ 59)
J,(t =L, t) A(Dey(t)+ J,(t— L,t — L)B(t - L)e, (?).

The initial condition on the differential equation (59) at =0 is e,(0) =0 from (55).

Differentiating (58) with respect to ¢ and using (47), (55) and (58), we obtain
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de;t(t) =J,(t-L,O)y(t)—J,(t— L,t=L)y(t—L)—

J(t=LOAWD | Tt -L.)y(s)ds+Jy(t-Li-L)B@-L)[ J,(t—L,5)y(s)ds

=J3(t=L.Oy) = J5(t~L,t=L)y(t— L)~

(60)
J,(t— L) A(f)ey (1) + J,(t— Lt — L)B(t— L)e, ().

The initial condition on the differential equation (60) at £ =0 is e,(0) =0 from (58).

Now, let us summarize the above results for the fixed-lag smoothing estimate and the
filtering estimate in [Theorem 1].

[Theorem 1] Let the auto-covariance function K _(#,s) of the signal z(#) be expressed in

the semi-degenerate kernel form of (3). Let the variance R(k) of the white observation
noise v(k) for the observation equation (1) be given. Then the RLS fixed-lag smoothing

and filtering equations consist of (61)-(75) in linear continuous-time stochastic systems.
Fixed-lag smoothing estimate of the signal z(¢—L) in terms of the observed value

{y(5),0<s<t}: Z(t—L,1)
Z(t—L,t)=A(t—L)e,(t—L)+(B(t—L)— A(t—L)r,(t— L))e,(t) (61)

de;_t(t)z J,(t=L,O)y(t)-J,(t—=L,t—L)y(t-L)—

(62)‘
J,(t—L,)A(t)e;(t)+J,(t—L,t—L)B(t—L)e,(t), e,(0)=0
de,(t) B 3 . oy
b J;(t—-L,)y(t)-J,(t—L,t—=L)y(t—L) 63)
Jy(t—L,t)A(t)e; (1) +J;(t—L,t—L)B(t— L)e,(t), e;(0)=0
dr,(t) _ _ _ T 4 —I)—
P J,(t-L,t)B(t)-J,(t—L,t—L)B(t—L) 64)

J,(t=LOAWDOr,(t)+J,(t—L,t—L)B{t - L)r,(t), 7(0)=0
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an(® _ . T T 4 7y

=St LA = Jy(t= L= D) At~ 1) )
J, =LA@ +J,(t—L,t - L)B(t—L)r(1), r(0)=0
@ _ (t—L,6)B(t)-J,(t—L,t—L)B(t— L) — J,(t - L,H) A()r,(¢) +

dt } ’ ; ’ ? ’ ! (66)
J,(t—L,t—L)B(t—L)r,(t), r,(0)=0
) _, (t—LOAW)-J,(t—L,t—L)A(t—L)-J,(t - L) A({t)r,(t) +

dt 3 > 3 2 3 > 5 (67)
Jy(t-L,t—L)B(t-L)r,(t), r(0)=0
L(t=L.ty=(4"(0)-r,() A" ()R () (68)
J,(t—Lt—Ly=(A"(t-L)-r,()B" (t—L))R'(t-L) (69)
L(t-Lty=(B" O)-r,)A" O)R'(t) (70)
Jy(t—L,t—L)=(B"(t)-r;()B" (1= L)) R (1) (71)

Filtering estimate of the signal z(¢—L) in terms of the observed value
{((5),0<s<t-L}: z(t—L,t—-L)

z(t,t) = A(t)e,(¢) (72)
D 000 - 4D 0. &©0)=0 73)
A — J,6.0B0O - 407 @), 7(©)=0 (74)
J(t,0)= (B () -n (O 4" O)R™ (1) (75)

Let P(t—L,t— L) represent the filtering error variance function of the signal

P(t—Lt—L)=E[(z(t— L)~ 5(t = L.t = L)) (z(t= L) = 5(t = L,t = L))" ].
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Let P(t—L,t) represent the fixed-lag smoothing error variance function of the signal.
From the un-correlation properties between z(f—L)—Z(t—L,t—L) and zZ(t—L,t—L)

and between z(f—L)—Z(t—L,t—L) and e,(¢) from (55), we have
Pt—L,t)=E[(z(t—L)-2(t—L,O))z(t—L)-2(t—L,1))"]

= El(z(t= L) 2(t = L,t= L) = (B(t— L) — A(t = L)1,(t - L))e, (1))
(z(t=L)=2(t=L,t=L)—=(B(t—L) - A(t— L)r,(t = L))e, ()" ]

=E[(z(t—L)-2(t-L,t—LY(z(t-L)-2(t—L,t—L))"]-
E[(B(t—L)—A(t—L)r(t—L))e,())(B(t— L)~ A(t— L)r,(t— L))e, (1)) ]

=K, (t—-L,t—L)-E[2(t—L,t—L)2(t—L,t—L)"]-
(B(t—L)— A(t—L)r(t— L)) Ele,(t)e, (D(B(t— L)~ A(t— L)r,(t - L))" ].

(76)
From (72), by putting
5= Ele, (e (1], (77)
the variance of the filtering estimate Z(¢—L,t— L) is
P,(t—L,t—L)=A(t-L)f,(t—-L)A" (t-L). (78)

Differentiating (77) with respect to t and using (18) and (24), we obtain
dggt) =2J,(1, f)RflT(t, H+J,(t,0)A@)r (1) +"1(1)AT(1)J1T 0.1), £(0)=0. (79)

J,(®) is calculated recursively by (79) together with (74) and (75).

If we put
£,(8) = Ele,()e; (], (80)

P(t—L,t) is represented as
P(t-Lt)=K (t—L,t—L)-A({t-L)f,(t—L)A" (t-L)-

(B(t—L)- At~ L)r(t~ L)) f,(1)(B(t ~ L)~ At~ L) (¢~ L))" e
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Since the auto-variance K_(#—L,f— L) of the signal z(¢f— L), the filtering error variance
K,(t—L,t—L)y-A(t-L)f(t- I)A" (t—L) of z(t—L), the fixed-lag smoothing error

variance P(t—L,t) and f,(¢) of (80) are positive semi-definite matrices,

O0<P-Lt)<P(t-L,t—L) (82)
is valid. This indicates that the fixed-lag smoother might be superior in estimation accuracy
to the filter.

Similarly to the derivation of (79), by introducing the functions

r(f) = L J,(t—L,s)R(s)JL (t - L,s)ds,
r(f) = t ) jL J,(t-L,5)K,(s,s")J7 (1 L,s")ds'ds

r(t) = L J,(t—L,s)R(s)JL (t- L, s)ds

r(0)= [ Js(t=LR(s)J] (1~ L,5)ds
ro@® =] Jy(t-Ls)g] (t,5)ds

(@)= Jy(t-Ls)g (t,5)ds

=] J,(t- L) (t,5)ds

(1.5)=[ J,(t-L,s)K (5", )ds’

b,(t.5)= [ J(t—L.s)K,(s',5)ds",

£,(#) is calculated recursively in terms of (64)-(71) and (83)-(92) recursively.

% =2J,(t—L,OR(t)J (t—L,H)+J,(t— L)) A(t)r; (1) -

2J,(t—L,t—L)R(t—L)J! (=Lt —L)—J,(t— L.t —L)B(t— L)r{ ()~
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J,(t= LA, = J,(t = LOr (6)+ (.= Lt = L)B(t — L) £, () +
r, (A" ()J) (t—L,t)—r,()B" (t—L)J, (t—L,t—L)—
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(A" (O (- Lt)—r (L (t-L.+ £ @B (t-L)J, (t—-L,t-L), fz(O) 0

(83)

d’%g’) =J,(t—=LORWJIL (¢ —L,0)—J,(t—L,t—L)R(t—L)J; (t—L,t —L)—

J,(t—L,yAWr,(t)+J,(t—L,t—L)B(t— L)r,(1) - (84)
r(OA @OJL(t-LO+r0B (t-L)J, (t-L,t—L), r(0)=0
dr,(t)

dt
J, &=L, )A@W)r,(t)+J,(t—L,t—L)B(t— L)n, () + (85)

r,(OA" (I (t—L,O)-r,()B" (t—L)J, (t—L,t—L) -
r (A" (T (t-L,O)y+r B (t—L)J, (t—L,t—L), r,(0)=0

D - T - Lo (t,0)-T,(t—L,t—L)g (t,t—L)—

drggt) = J,(t= LORWJT (t— L1y~ J,(t ~ L,t— LYR(t— L)J] (1~ Lt~ L)~

J,(t =L O)A@)r, () + J,(t — L.t — L)B(t— L)r, () - (86)
rL (A" ()T (t- L) +r,()B" (t—L)JL (t—L.t—L), 7,(0)=0

d’j’) = J,(t=L.OR®JL (t=L,t) = Jy(t = Lt~ LYRG = L)JL (¢~ L 1~ L) -

J, &=L, t)A@®)r,(t)+J,(t—L,t—L)B(t - L)r,(t) - | (87)
(A" @I (t-L)+r,(0)B" (t—L)J; (t—L,t—L), r(0)=0

dn, () _ _ T - —L,t— (tt=L)-
T E =gy (t=Log! (60Tt~ Lt =) (1= 1) (88)

T, (= Ly A@)r, (1) + J, (¢~ Lt = LYB(t = Ly (1), 10(0)=0

dr, () B T _ —Li—I (t.t—L)—
L= =Sy = g (60— T = L= L)g (6= 1) (89)

Tyt = Ly AR, () + Jy(t = Lt = D) Bt~ Lyry (0), 5,(0)=0
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%: J,(t—L,0Og; (t,6)-J,(t—L,t—L)¢! (t,t—L)-

(90)
Tyt = L) A@)r, (6)+ J, (¢~ Lt = L)B(t = L)1, (1), 1,(0)=0
g(t.0)=r,0OA4 ®), #t-L)=rB (t-L) 1)
60 =r)A4 1), #t-L)=r®B (t-L) (92)

In section 4, the estimation characteristic of the proposed RLS fixed-lag smoother is
shown.

4. A numerical simulation example
Let a scalar observation equation be given by

y(t)=z(t)+v(1). (93)
Let the observation noise v(¢) be a zero-mean white Gaussian process with the variance
R, N(0,R). Let the autocovariance function of the signal z(f) be given by

K (t,5)=Ae " a=0.4861, A=9. (94)
From (94), the functions A(¢) and B(s) in (3) are expressed as follows:
A(t)y=Ae™™, B(s)=e”. (95)

If we substitute (95) into the fixed-lag smoothing algorithm of [Theorem 1], we can
calculate the fixed-lag smoothing estimate and the filtering estimate recursively.
Fig.1 illustrates the signal z(f) and the fixed-lag smoothing estimate

2(t—0.005,¢) for the white Gaussian observation noise N(0,0.5) by the RLS fixed-

lag smoother in [Theorem 1]. Fig.2 illustrates the mean-square values (MSVs) of the
fixed-lag smoothing and filtering errors by the RLS estimators in [Theorem 1] for the

observation noises N(0,0.3*), N(0,0.5%), N(0,0.7*) and N(0,1) vs. the fixed-lag
L,0<L<10. For L=0, the MSV of the filtering error is shown. The MSVs of the

fixed-lag smoothing and filtering eITors are evaluated by

300 300
D (z(Ai) - 2(Ai, Ai+ L))* /(300) and Y (z2(Ai) — £(Ai, Ai))* /300, A=0.001. Here,

i=1 i=1



MSVs of filtering and fixed-lag smoothing errors by the RLS estimator

Signal and fixed-lag smoothing estimates
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— Signal

—— Fixed-lag smoothing estimate

1 I 1 ! )
0 0.05 0.1 0.15 0.2 0.25

time t

Fig.1 Signal z(f) and the fixed-lag smoothing estimate Z(¢—0.005,¢) by the RLS fixed-

lag smoother in [Theorem 1] vs. ¢ for the white Gaussian observation noise N(0,0.5%).

0.25 T T T T T T T T T
(d}
0.2 N
0.151 ]
(c)
0.1 -
(b)
0.05[ Ml‘
(a)
o 1 1 | 1 1 Il 1 1 I
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
L

Fig.2 Mean-square values of the filtering and fixed-lag smoothing errors by the RLS
fixed-lag smoother in [Theorem 1] for the observation noises N(0,0.3%), N(0,0.5%),

N(0,0.7%) and N(0,1) vs. L, 0<L<10.
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for the numerical integration of the differential equations, the fourth-order Runge-Kutta
method is used.
For references, the state-space model, which generate the signal, is given by

dz(t) =—az(t)+w(t), E[w(t)w(s)]=2aAé(t-3s). (96)

5. Conclusions

In this paper, the RLS fixed-lag smoother using the covariance information of the signal in
the form of the semi-degenerate kernel has been devised in linear continuous-time system. The
simulation results have shown that the fixed-lag smoothing algorithm is feasible. As the value
of the observation noise variance becomes small, the estimation accuracy of the fixed-lag

smoother is improved.
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