
A Platform Independent Tool for Evaluating Performance
of Computing Equipment for a Computer Laboratory

Takashi Yamanoue
Kagoshima University

Korimoto, Kagoshima 890-0034, Japan
+81-99-285-7187

yayamnoue@cc.kagoshima-u.ac.jp

ABSTRACT
Designing computing equipment for a computer laboratory is not
easy. In a class in a computer laboratory, it is not unusual that all
students do the same thing simultaneously. Tremendous traffic is
on the network and heavy load is on the file server or the web
server at that time. In order to design the equipment, it is useful if
we can have performance data which is acquired in a real class.
And it is more useful if we can compare the performance data of
various kind of equipment which is acquired by doing the same
operations in a real class. In order to acquire such kind of data, we
are developing a benchmark test tool for distributed systems. This
tool records real operations by users on computing equipment and
it acquires its performance data. The tool can replay the same
operations on different computing equipment. The tool can also
let every computer doing the same thing simultaneously. In order
to compare the performance data of various kind of computing
equipment, this tool is in Java. So it is platform independent. We
show the structure of the tool and the experiment of the usage of
the tool.

Categories and Subject Descriptors
K.6.2 [Installation Management]: Benchmarks, Computer
selection, Performance and usage management

General Terms
Measurement, Performance, Human Factors, Experimentation,
Verification, Design, Reliability

Keywords
Benchmark Test, P2P (Peer to Peer), Distributed Systems, Java

1. INTRODUCTION
Purchasing equipment for computer laboratories or University's
information infrastructures is one of the most important jobs for a
university's computing service organization. We have to make the
requirement specification which satisfies most of the teachers' and

students' requests. Then, we have to design the equipment which
can satisfy the requirement. These are very hard work and time
consuming[1][2][4]. We have to think of money and the requests.
We also have to think of "does it really work?" Most of today’s
equipment for computer laboratories is a distributed system which
consists of many computers and a network. It is easy to see the
performance of each element of the distributed system. However,
it is hard to see the total performance of the distributed system.

In a class in a computer laboratory, it is not unusual that all
students do the same thing simultaneously. Tremendous traffic is
on the network and heavy load is on the file server or the web
server at that time. So we'd like to write such like "the Web server
must return the web page to every client at least in 3 sec. when
200 clients access the web page in 0.5 sec." in the requirement
specification. And we'd like to know which kind of web server
can satisfy the requirement. In order to make the requirement
specification, it is useful if we can have performance data which is
acquired in a real class. And it is more useful if we can compare
the performance data of various kind of equipment which is
acquired by doing the same operations in a real class. In order to
acquire such kind of data, we are developing a benchmark test
tool for distributed systems, which is called DSR (Distributed
System Recorder). DSR records real operations by users on
computing equipment and it acquires its performance data. DSR
can replay the same operations on different computing equipment.
DSR also can let every computer doing the same thing
simultaneously.

 In order to compare the performance data of various kind of
computing equipment, DSR is in Java. So it is platform
independent. We show the structure of the tool and an experiment
of the usage of the tool.

2. DSR, a Benchmark Test Tool for
Distributed Systems
DSR (Distributed System Recorder) is a benchmark test tool
which records real operations on a distributed system and
measures the performance of the distributed system. This tool
acquires the performance data of the equipment by replaying the
recorded operations. This tool can replay the same operations on
different computing equipment. The tool also can let every
computer doing the same thing simultaneously. In order to
compare the performance data of various kind of computing
equipment, this tool is in Java. So it is platform independent.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
SIGUCCS’04, October 10–13, 2004, Baltimore Maryland, USA.
Copyright 2004 ACM 1-58113-869-5/04/0010...$5.00.

241

group

teacher 's node syst em

st udent' s node
system

group mamanger

st udent' s node
system

st udent' s node
system

st udent' s node
system

st udent' s node
system

st udent' s node
system

Figure 1. Structure of DSR

2.1 Structure of DSR
DSR consists of three kinds of program. These are the teacher's
node system, the student's node system and the group manager.
Figure 1 shows the structure of DSR.

2.1.1 Teacher’s Node System
The teacher's node system is corresponding to the teacher in a
computer laboratory. This node system records the teacher's
operation, replay the operation and record the performance data
on his/her computer terminal. This node system also can direct the
every student’s node system to do the same operation as the
teacher's, simultaneously. This is realized by broadcasting the
commands which are corresponding to the teacher's operation,
from the teacher's node system to students' node systems

2.1.2 Student’s Node System.
The student's node system is corresponding to a student in a
computer laboratory. This node system records the student's
operation, replay the operation, and record the performance data
on his/her computer terminal. This node system also can interpret
and execute the commands which are sent from the teacher's node
system.

2.1.3 Group Manager
The group manager manages the group of the teacher's node
system and students' node systems. When the teacher's node
system broadcasts the commands, every student's node system
must receive the commands in short time without errors. In order
to realize this, DSR adopts a kind of P2P technology. Every node
system in the group has at least one TCP connection to another
node system.
If one node system receives a command from one TCP
connection, the node system sends the command to another/other
node(s) by using TCP connection(s) if the system has the
connection(s). The node system interprets and executes the
received command after that. The node systems and the
connections form a complete binary tree. The teacher's node
system is the root node on the binary tree.

If every connection in the group can pass data simultaneously, the
time complexity of receiving a command by all students' node
systems is)(log NO where N is the number of the node
systems in the group[3]. In order to form the binary tree, the
group manager directs a node system where to connect when the
node system is becoming a member of the group. Please note that
the teacher's node system doesn't need to be the root node.

2.2 Node system
The teacher's node system or a student's node system consists of
the main controller, applications, the event recorder/player and
the command transceiver (Figure 2).

Main Controller Event Recorder/ Player

Web browser
Programming Environment

Draw

Network

Applicat ions

Node System

Writ er' s Assist ant

Text Editor

Command Tranceiver

Figure 2. Node system

2.2.1 Main Controller
The main controller is a kind of dispatcher. All applications and
the command recorder/player are spawned from this controller.
Figure 3 shows the GUI of the main controller.

Figure 3. Main Controller

242

2.2.2 Applications and Commands
A node system has applications such as a draw, a text editor, a
web browser, a simple programming environment and a writer's
assistant[7]. When a user uses an application of the system,
commands are generated. These commands are corresponding to
the event which is fired by user operation. A command of them is
such like "Move the mouse cursor to (x,y) on the draw window"
or "Click the button No. x on the programming environment". In
order to generate and interpret such kind of commands, An
application of the DSR is made of controlled GUI parts. Each of
these parts generates commands when the user operates the part.
Each of these parts is controlled by interpreting the corresponding
command (Figure 4).

Event Recorder/ Player

Network

cont rolled but ton cont rolled but ton

Command Tranceiver

click
ent er
exit
...

click
ent er
exit
...

move to (x,y)
drag t o (x,y)
click at (x,y)
...

Applicat ion

Controlled Parts

cont rolled area

Figure 4. Controlled parts

2.2.3 Event Recorder/Player
The event recorder/player can record commands, which are
received from another node system such like the teacher's node
system, or commands which are generated by it self, with the
recorded time (Figure 5).
In order to record the time, the event recorder/player has a timer.
The time of this timer is synchronized with timers of other node
systems in the group. This synchronization is realized by
exchanging messages between nodes in some interval.
A node system can replay the operation by interpreting the
recorded commands. The command recorder/player also records
messages of applications. The message includes information such
like the start/end time of loading the application, start/end time of
loading html file from a Web server and start/end time of saving a
file to a file server. These messages are in CSV format. We can
analyze the recorded message easily by using software such like
the Excel.

2.2.4 Command Transceiver
The command transceiver transmits and receives the commands
between other node systems. The command transceiver also
interprets the commands.

Figure 5. Event recorder/player and recorded commands

2.2.5 State of Node Systems
The teacher's node system has the special application which can
control the operation state of student's node systems. The
operation state includes the state of local operation (SLO) and the
state of receiving commands (SCO). SLO is used for performing
independent operations by node systems. SCO is used for
performing the same operations by all node systems
simultaneously.

2.3 Applications
DSR is equipped with applications by it self. The user of DSR
doesn’t need to purchase other applications for the benchmark test.
The user can compare computer laboratories’ equipment using the
same applications. In order to realize the similar situation in a
class, we are building simple but frequently used applications.
Figure 6 shows the draw and the programming environment. A
geometrical figure is drawn on the draw by the program on the
programming environment. A picture is also drawn on the draw.
Figure 7 shows the Web browser and the writer’s assistant. This
writer’s assistant assists the user to write English sentences by
showing frequencies of phrases in the inputted sentence
graphically. A search engine is used for getting the frequencies.

243

Figure 6. Draw and programming environment

Figure 7. Web Browser and Writer’s Assistant

3. EXPERIMENTS
DSR can let different kinds of distributed systems to do the same
operation. DSR also can let the many terminal computers to do
the same operation simultaneously. In order to verify these
functions of DSR, We did the following experiment.
This experiment compares the performance of six kinds of
distributed system by doing the same operations using DSR. This
experiment is executed in the following steps.
1. Record operations on a computer using DSR. These

operations are reading and writing data between client
computers and a file server.

2. Play the recorded operations on 6 kinds of distributed
system. Four of them have more than one client computer.
In the case of these multiple client environment, the
operations are executed simultaneously on these client

computers. We couldn’t find out any delay of the operation
by the sight.

The recorded operations are the followings. These are executed in
this order.

1. Read a 7KB GIF picture from the one file, on the draw of
DSR.

2. Read a 16KB JPG picture from the one file, on the draw.

3. Read a 37KB JPG picture from the one file, on the draw.

4. Read a 3KB text which represent a figure from the one file,
on the draw

5. Write the 3KB text to each user file, on the draw.

6. Read the 3KB text from the each user file, on the draw.

7. Read a 10KB text which represent a figure from the one file,
on the draw

8. Write the 10KB text to each user file, on the draw.

9. Read the 10KB text from the each user file, on the draw

The six kinds of distributed system are the followings

PC-1: One laptop computer. This computer did the role of not
only the client computer but also the file server.

PC-2: One desktop computer and one laptop computer. The
desktop computer did the role of the file server and the role of
a client computer. The laptop computer did the role of a client
computer. Two computers were connected by a switch with
100Mbps full duplex connection.

Linux-1: One Linux thin client computer (one node) and a file
server machine. A Linux thin client computer is a terminal
computer which has no hard drive and its OS is Linux. They
are connected with a switching network. The client is
connected to a switch with 100Mbps full duplex connection.
The file server machine is connected with 1Gbps full duplex
connection.

Linux-2: Two Linux thin client computer (two nodes) and a file
server machine. They are connected as same as the Linux-1
environment.

Linux-10: 10 Linux thin client computer (10 nodes) and a file
server machine. They are connected as same as the Linux-1
environment.

Linux-75: 75 Linux thin client computer (75 nodes) and a file
server machine. They are connected as same as the Linux-1
environment.

A shot of the experiment of Linux-75 is shown in Figure 8. The
detail of each distributed system is shown in Figure 9.

The result of the experiment is shown on the Table 1. We could
let the different distributed system to do the same operation
whether the client computer’s OS was Windows or Linux. PC-1’s
performance was worse than PC-2. We think that it is because the
performance mainly depends on the performance of the hard drive
or the file server.

244

Figure 8. Experiment with 75 clients

The performance of Linux-75 is not so worse than Linux-10. We
think, it is because the cache memory of the file server machine
reduces the access time to the hard drive. We also measured the
latency of mouse moving. There was almost no delay in the mouse
moving.

4. RELATED WORKS
LoadRunner[5] is a similar test system to DSR in the sense of that

measures the performance of a distributed system by emulating
al-life user loads. LoadRunner can emulate hundreds or

Table 1. Performance of 6 kinds of distributed system by doing the same operations using DSR

 Time of the Performance of the Operation (sec.)

No. Operation PC-1 PC-2 Linux-1 Linux-2 Linux-10 Linux-75

1. Reading a 7KB GIF picture Max. 4.1 6.2 0 1 5.3 5.9

 from the same file. Min. 4.1 0.4 0 0.3 0 0

 Ave. 4.1 3.3 0 0.7 3.7 5.1

2. Reading a 16KB JPG picture Max. 11.6 10.2 11.8 11.4 9.1 9.5

 From the same file. Min. 11.6 0.7 11.8 9.2 0.7 0.1

 Ave. 11.6 5.5 11.8 10.3 8.1 8

3. Reading a 37KB JPG picture Max. 14.6 1.1 0.1 16.1 21 20.5

 from the same file Min. 14.6 1.2 0.1 0 0 0

 Ave. 14.6 1.2 0.1 8.1 14.3 13.5

4. Reading a 3KB text Max. 0.6 0.5 0.6 0.2 0.2 0.3

from the same file Min. 0.6 0.4 0.6 0.1 0 0

 Ave. 0.6 0.5 0.6 0.2 0.1 0.1

5. Writing the 3KB text Max. 0.9 0.9 0 0.2 0.3 0.4

 to each user file Min. 0.9 0.4 0 0.1 0.1 0

 Ave. 0.9 0.7 0 0.2 0.2 0.2

6. Reading the 3KB text Max. 0.2 0.1 0.2 0 0.2 0.2

 from each user file. Min. 0.2 0 0.2 0 0 0

 Ave. 0.2 0.1 0.2 0 0 0

7. Reading a 10KB text Max. 0.6 0.2 0 0 0.2 0.3

 from the same file. Min. 0.6 0 0 0 0 0

 Ave. 0.6 0.1 0 0 0 0.1

8. Writing the 10KB text Max. 1.7 1.4 2.3 1.6 2.4 2

 to each user file Min. 1.7 0.8 2.3 1.4 1.1 0.9

 Ave. 1.7 1.1 2.3 1.5 1.4 1.4

9. Reading the 10KB text Max. 0.2 0.2 0.2 0 0.2 0.3

 from each user file Min. 0.2 0 0.2 0 0 0

 Ave. 0.2 0.1 0.2 0 0.1 0.1

it
re

thousands of concurrent virtual users using minimal hardware
resources. On the other hand, DSR has to have real hardware
resources in order to measure the performance. However, DSR
can test the real system by replaying real users’ operations. When
a distributed system is tested, operations of users are reproduced
on the applications of DSR on the terminal computers of the
distributed system. DSR can also measure the performance of
client computers.

245

File Server, Client
 CPU: PentiumII,266Mhz
 OS: Windows98
 JDK: JDK 1.1.7a(Symant ec)

File Server, Client:
 CPU: Pent iumIII,800Mhz
 OS: Windows98
 JDK: JDK1.1.7a(Symant ec)

Client
 CPU: PentiumII,266Mhz
 OS: Windows98
 JDK: JDK 1.1.7a(Symant ec)

File Server(SPECsfs97:7612)
 CPU: Alpha
 OS: UNIX

Client
 CPU: Celeron 400Mhz
 OS: Linux 2.2.14
 JDK: Blackdown Java-
 Linux port of JDK 1.1.7

node
syst em

node
syst em node

syst em

node
syst em

node
syst em

node
syst em

PC- 1
(1node)

PC- 2
(2node)

Linux- 1(1node)
Linux- 2(2node)
Linux- 10(10node)
Linux- 75(75node)

Figure 9. Six kinds of Distributed System which are used in

this experiment

DBS (Distributed Benchmark System)[6] is also a similar test
system to DSR in the sense of that it can measure the performance
of a network from many points. DBS can measure the
performance of entire TCP functions where DSR can not.
However, DSR can measure the total system performance of a
distributed system.

5. CONCLUDING REMARKS
We show DSR, a Distributed System Recorder, with its structure
and an experiment. It records user operations on a distributed
system, replays the operations on other distributed systems and
shows the performance data. It also can let every computer doing
the same thing simultaneously. DSR can be used on various kinds
of distributed system because it is a platform independent.

One of the most drawbacks of DSR is that DSR can’t measure the
performance of a distributed system with using other applications
which are not equipped with DSR. However, this drawback makes
the DSR platform independent.

DSR doesn’t have a spreadsheet and a mail reader/writer now.
They should be equipped with DSR as its applications because
they are popular applications in a school and daily life.

DSR generates a simple sequence of commands. In order to
interact with Web CGI and other interactive applications on the
network by the application of DSR, the sequence of the
commands must be more intelligent.

There are many bugs in DSR. We are debugging and improving
DSR. We should have much more experiments with DSR.

6. ACKNOWLEDGMENTS
We thank to staff and students of Information Science Center,
Kyushu Institute of Technology and Computing and
Communications Center, Kagoshima University for their
suggestions and help. Part of this work is supported by the Grant-
in-Aid of the Ministry of Education, Science and Culture of
Japan(C)(2)(09680401).

7. REFERENCES
[1] Brown, D. G., Burg, J. J., Dominick, J. L. A Strategic Plan

for Ubiquitous Laptop Computing. Communications of the
ACM, Vol. 41, Issue 1, pp.25-35, Jan. 1998.

[2] Green, K. C. Campus Computing 2000: The National Survey
of Information Technology in U.S. Higher Education.
EDUCAUSE Information Resources Library, EDU0035,
2000.

[3] Hirahara, T., Yamanoue, T., Anzai, H., and Arita, I.
Sending an Image to a Large Number of Nodes in Short time
using TCP. In Proceedings of the ICME2000, IEEE
International Conference on Multimedia and Exp
(ICME2000), New York City, USA, July 30-Aug.2,pp.987-
990,2000.

[4] Kossuth, J. M. If I Could Only Start from Scratch: A Case
Study of Infrastructure Design at Olin College. EDUCAUSE
Information Resources Library, NCP0113, 2001.

[5] LoadRunner,
http://www.mercury.com/us/products/performance-
center/loadrunner/

[6] Maruyama, Y. DBS: a powerful tool for TCP performance
evaluations. In Proceedings of SPIE, Performance and
Control of Network Systems, Vol. 3231, Nov. 1997.

[7] Yamanoue, T., Minami, T., Ruxton, I., Sakurai, W. Learning
Usage of English KWICly with WebLEAP/DSR. In
Proceedings of the 2nd International Conference on
Information Technology and Applications (ICITA-2004), 14-
6, Harbin, China, 8-11, Jan. 2004.

246

	INTRODUCTION
	DSR, a Benchmark Test Tool for Distributed Systems
	Structure of DSR
	Teacher’s Node System
	Student’s Node System.
	Group Manager

	Node system
	Main Controller
	Applications and Commands
	Event Recorder/Player
	Command Transceiver
	State of Node Systems

	Applications

	EXPERIMENTS
	RELATED WORKS
	CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

