Effects of Enhanced Level of CO₂ on Photosynthesis, Nitrogen Content and Productivity of Mungbean (Vigna radiata L. WILCZEK)

Razia Sultana CHOWDHURY¹, Md. Abdul KARIM^{1,2}, M. Moynul HAQUE¹, Abdul HAMID¹ and HIDAKA Tetsushi³

1: Bangabandhu Agricultural University, Salna, Gazipur-1706, Bangladesh 3: Research Center for the Pacific Islands, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan

Abstract

Enhanced level of CO₂ increases overall growth of crop plants, especially of C₃ species. This study was, however, initiated to quantify the effect of elevated CO₂ on changes in photosynthesis and N uptake, and their association in biomass accumulation pattern at different growth stages in mungbean (*Vigna radiata* L. WILCZEK). Mungbean (var. BUmug 1) plants were grown in pots under i) open top chamber (OTC) with 570 \pm 50 ppm CO₂, ii) OTC + ambient CO₂ which was about 370 ppm and iii) open field (about 370 ppm CO₂) conditions. Elevated CO₂ increased stomatal density in leaf. Photosynthetic rate (Pn) was faster due to elevated CO₂. The difference in Pn among the treatments was very large at flowering than that during pod maturation. N content in leaf as well as in whole plant, at different growth stages, was lower with elevated CO₂. Moreover, the content was higher at vegetative stage than that at reproductive stage, irrespective of levels of CO₂. Leaf and stem dry weights were conspicuously higher with elevated CO₂; consequently, above ground biomass was also maximum in that treatment. Yield components were favored dramatically by elevated CO₂. As a result the yield advantage with elevated CO₂ was 119 and 29% of that under field and OTC + ambient CO₂ conditions, respectively. **Key words**: carbon dioxide, gas exchange, mungbean productivity

Introduction

The current trend of increasing atmospheric CO₂ indicates that the level might be doubled from the present level, around 350 ppm, by the middle of this century (WATSON *et al.*, 1990; HOUGHTON *et al.*, 1996). The global mean temperature will also rise to $3 - 4^{\circ}$ C with doubling of the CO₂ concentration (REDDY *et al.*, 1995). Such a change of the atmosphere will obviously bring a shift in overall agriculture globally.

Enhanced level of CO₂ increases productivity, from 10 to 40%, of different food crops (KIMBALL 1983; MITCHELL *et al.*, 1993; WEIGEL *et al.*, 1994; HAMID *et al.*, 2003). The variation in the range of productivity among the crop species attributed to differences in

Received Sept. 19, 2004

Accepted Jan. 10, 2005

2: Corresponding author, email: akarim1506@yahoo.com

photosynthetic performance and sink strength. C₃ species responds more to high level of CO_2 than C₄ species. This is largely because the oxygenase activity of CO_2 fixing enzyme, ribulose biphosphate carboxylase/oxygenase (Rubisco), of C₃ plants reduced at a high level of CO₂. Whereas, the CO₂ fixing process of C₄ plants does not competitively inhibited by CO₂ (PEARCY and BJÖRKMAN 1983).

Mungbean (*Vigna radiata* L. WILCZEK) is a tropical legume, extensively grown in diverse agro-climatic conditions of Asia and Australia. As a C₃ legume, mungbean also responded positively to enhanced CO₂ (UPRETY *et al.*, 1996). The positive response of mungbean was related to high water use efficiency, greater photosynthesis and higher nutrient use efficiency. However, insufficient information exists on a stage dependent pattern of biomass accumulation and gas exchange activities. To develop a practical crop performance model of mungbean, under changing atmospheric CO₂ conditions, more precise information on each plant character is required. The present study was designed to quantify the pattern of biomass accumulation, nitrogen uptake and gas exchange activities at different growth stages of mungbean, exposed to long term enhanced level of CO₂.

Materials and Methods

The experiment was conducted at the farm of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Bangladesh during March- May, 2003. The soil used in this experiment was loamy in texture, with pH 7.10 and 0.12% total nitrogen. The amount of available phosphorus and exchangeable potassium was 0.10 and 0.30mg 100⁻¹g dry soil, respectively.

Mungbean (var. BUmug 1) plants were grown in pots of 24cm in diameter and 27cm in height filled up with 12kg air-dried soils. Three growing conditions were created, viz. i) open top chamber (OTC) with elevated CO₂ (570 \pm 50 ppm), ii) OTC with ambient CO₂ (about 370 ppm) and iii) open field (about 370 ppm) near the OTC.

Details of the construction and operation of open top chamber (OTC) can be found elsewhere (LEADLEY and DRAKE 1993; UPRETY 1998). It is made of an iron frame of 3m in diameter and 3m in height. It was installed on the ground and covered with transparent polyvinyl chloride sheet. The top of the chamber was open to ensure near natural conditions. The CO_2 gas was supplied to the chamber from gas cylinder using a manifold, gas regulator, pressure gauge and underground pipeline for using natural air with the help of a blower. The air blower, 30cm diameter, thoroughly mixed the supplied CO_2 gas with atmospheric air and blew to the chamber.

A fertilizer dose of 90kg urea, 130kg triple super phosphate (TSP) and 70kg muriate of potash (MP) per hectare (recommended dose in Bangladesh) corresponding to 540mg urea, 780mg TSP and 420mg MP per pot were used. Entire amount of TSP and MP, and one half of urea were mixed into soil before sowing. The other half of urea was applied 3 weeks after sowing. Seeds were soaked in water for six hours and then four bold seeds were sown in each pot. Thinning was done at appearance of the 1st trifoliate leaf to keep two uniform

and healthy plants in each pot. Weeding and other plant protection measures were done as and when those were necessary.

Stomatal density was measured at flowering stage from fully expanded uppermost leaf. In a preliminary study we noticed that number of stomata in abaxial side of leaf was higher but well correlated with that in adaxial side. Therefore, we measured the stomatal frequency only from the adaxial side. Cover slips of slide were attached to leaf with super glue for getting stomatal impression. After 15 minutes, the cover slips were removed. The number of stomatal impressions was counted from 20 microscopic fields per genotype per treatment under 40X magnification. Since the photosynthesis at reproductive stage (current photosynthesis) influences greatly on grain yield, we measured leaf photosynthetic rate (Pn) during flowering and pod maturation at 11:00 am in clear days with a portable photosynthesis system (LICOR 6200, Lincoln, Nebraska). Pn was measured from the uppermost fully developed leaves of four plants from each growing condition. N content at different growth stages were estimated by colorimetric method following LINDER (1944).

Plants were sampled at vegetative (four weeks after sowing), flowering and maturity to determine matter partitioning into different components of mungbean plant. Reproductive organs were considered during measurement of above ground biomass. Yield and yield components were recorded from six plants per treatment.

The data recorded on different parameters were statistically analyzed with help of "MSTAT" program. Differences between the treatment means were compared by least significant difference (LSD) test at 5% level of significance after performing ANOVA.

Results and Discussion

Elevated CO₂ increased stomatal density to a great extent (Table 1). Leaves developed under elevated CO_2 had 41 and 32% more stomata than those developed under OTC + ambient and field conditions. During microscopic study, it was noticed that epidermal cells of the leaves under elevated CO₂ were smaller but grater in number than those under field and OTC + ambient CO₂ conditions. High stomatal frequency with elevated CO₂ could be due to higher number of cells but smaller in size, although cell size was not recorded in this study. In general photosynthetic rate (Pn) was faster during flowering than that during pod maturation, under both OTC conditions (Table 1). The Pn was, however, not changed much under field conditions. During flowering stage, the Pn at elevated CO₂ was 46 and 104% higher, while that during pod maturation was 23 and 14 % higher than that measured at $OTC + ambient CO_2$ and field conditions, respectively. Thus, the difference in the Pn, among the treatments, was much higher at flowering than that at later stage. Higher Pn under elevated CO₂ in C₃ plants was also reported by ZISKA and TERAMURA (1992), and UPRETY and MAHALAXMI (2000). According to PEARCY and BJÖRKMAN (1983), the increase in Pn in C₃ plants under elevated CO₂ was related to CO₂ induced reduction in oxygenase activity of Rubisco, the primarily CO₂ fixing enzyme in C₃ species. Higher photosynthesis during flowering and the subsequent decline during pod maturation could be related to sink demand for photosynthates. At flowering stage, the demand for photosynthates increases due to onset of pod formation as well as continuation of vegetative growth. During pod maturation, however, the demand decreases due to slow down of growth processes, and the Pn may decline due to feed back effect (DELGADO *et al.*, 1994). The higher number of stomata under elevated CO_2 might have also contributed for higher Pn under such conditions, as stomata regulates gas exchange activity in plants.

Irrespective of levels of CO_2 , higher leaf N was observed at vegetative stage and the minimum at final harvest. N in leaf, under elevated CO_2 , was 14, 26 and 12% lower at vegetative, flowering and maturity, respectively from that under field conditions. The corresponding reduction under OTC + ambient CO_2 was 18, 26 and 17%, respectively. Therefore, the difference in leaf N among the treatments was much higher at flowering. The effect of elevated CO_2 on total N content in plant was more or less similar to that measured in leaf. Perhaps, the low percentage of N under elevated CO_2 was due to dilution effect for high N use efficiency under such conditions (high biomass per unit N). *Brassica* plants also showed reduction in N content by 30% due to enhanced CO_2 (UPRETY and MAHALAXMI 2000). According to HOCKING and MAYER (1990) elevated CO_2 could cause increased biomass per unit uptake of N, even N is limiting in the substrate.

Table 1. Effects of elevated CO ₂ of sconatal frequency and photosynthesis in fruingbean.							
Treatments	No. of stomata	Photo synthesis ($\mu \mod m^{-2}s^{-1}$)					
	mm ⁻²	Flowering	Pod maturation				
OTC + elevated CO ₂	20.8	30.0	17.6				
OTC + ambient CO ₂	14.8	20.5	14.3				
Field conditions	15.8	14.7	15.5				
LSD (0.05)	1.96	2.95	1.59				
CV (%)	5.93	6.59	5.86				

Table 1. Effects of elevated CO2 on stomatal frequency and photosynthesis in mungbean

Notes: Elevated CO₂ level was 570±50 ppm; CO₂ under OTC + ambient and field conditions was about 370 ppm.

Table 2. Effects of elevated CO_2 on leaf N and total N at various growth stages in mungbean.

Treatment	Leaf N (%)			Total N (%)			
	Vegetative	Flowering	Maturity	Vegetative	Flowering	Maturity	
OTC+elevated	3.1	2.3	1.5	2.3	1.4	0.8	
CO_2							
OTC+ambient	3.8	3.1	1.8	2.6	2.4	1.0	
CO_2							
Field conditions	3.6	3.1	1.7	2.5	2.1	0.9	
LSD (0.05)	0.11	0.10	0.11	0.08	0.20	0.08	
CV (%)	5.7	5.9	6.6	6.3	5.3	3.4	

Notes: Elevated CO₂ level was 570 \pm 50 ppm; CO₂ under OTC + ambient and field conditions was about 370 ppm.

Leaf dry matter increased with ontogeny (Table 3). Elevated CO₂ increased leaf dry mass by 74, 40 and 50% compared to that under field conditions, at vegetative, reproductive and maturity stages, respectively. The corresponding increase was 51, 16 and 14%, respectively under OTC + ambient CO₂ conditions. Similarly, stem dry mass under elevated CO₂ was 91, 11 and 14% higher at vegetative, flowering and maturity, respectively than that

under field conditions. The corresponding stem biomass was 62, 7 and 7% higher than that under OTC + ambient CO₂ conditions, respectively. Above ground biomass also showed a similar response to leaf and stem mass. The large difference in biomass accumulation among different growth stages was largely due to a very fast growth of plants at early stage, brought about by elevated CO₂. The higher Pn due elevated CO₂ presumably contributed for higher biomass production under such conditions. According to PAL *et al.*, (1997) higher dry matter accumulation in stem and leaves under elevated CO₂ was caused by higher photosynthesis under such conditions. Elevated CO₂ induced increase in biomass was also observed in cotton and soybean (KIMBALL 1983).

Table 3. Effects of elevated CO₂ on weights of leaf, stem and above ground biomass at different growth stages in mungbean.

Treatments	Leaf dry weight (g plant ⁻¹)		Stem dry weight (g plant ⁻¹)			Above ground biomass (g plant ⁻¹)			
	Vegetative	Flowering	Maturity	Vegetative	Flowering	Maturity	Vegetative	Flowering	Maturity
OTC+elevated	1.22	3.53	4.24	0.42	1.18	5.40	1.64	5.75	23.80
$\rm CO_2$									
OTC+ambient	0.81	3.04	3.71	0.26	1.10	5.03	1.07	5.14	20.08
CO_2									
Field	0.07	2.52	2.82	0.22	1.06	4.75	0.92	4.49	15.10
conditions									
LSD (0.05)	0.15	0.22	0.33	0.08	2.07	NS	0.174	0.272	1.637
CV (%)	3.5	4.32	3.52	5.69	5.36	8.69	10.81	4.45	6.71

Notes: Elevated CO₂ level was 570 \pm 50 ppm; CO₂ under OTC + ambient and field conditions was about 370 ppm.

Table 4. Effects of elevated CO₂ on plant height, yield components and grain yield of mungbean.

Treatments	Plant height	Pods	Sæds	100-seed	Yield plant ⁻¹
	(cm)	plant ¹	pod ⁻¹	weight (g)	(g)
OTC + elevated CO ₂	65.6	26.9	9.00	5.32	11.96
OTC + ambient CO ₂	58.3	24.3	8.10	4.85	9.26
Field conditions	52.5	20.5	5.90	3.66	5.45
LSD (0.05)	5.68	2.1	0.85	0.45	1.27
CV (%)	6.8	6.13	6.3	4.64	7.93

Notes: Elevated CO₂ level was 570 \pm 50 ppm; CO₂ under OTC + ambient and field conditions was about 370 ppm.

Elevated CO₂ increased plant height by 13 and 25% compared to that under OTC + ambient CO₂ and field conditions, respectively (Table 4). Number of pods per plant was much higher under elevated CO₂ than that observed under OTC + ambient CO₂ (11%) and field conditions (31%). Elevated CO₂ also increased number of seeds per pod and seed size (100- grain weight) by 53 and 45%, respectively compared to those measured under field conditions. The corresponding increase was 11 and 10%, respectively compared to that under OTC + ambient CO₂ conditions. Naturally the better off yield components in plants with elevated CO₂ increased the grain yield conspicuously by 119 and 29% compared to that under field, and OTC + ambient CO₂ conditions, respectively. The faster rate of current photosynthesis (photosynthesis at reproductive stage) under elevated CO₂ might have contributed appreciably for higher grain yield. However, the large difference in Pn among

treatments during flowering might have contributed mostly to the difference in grain yield of mungbean under different growing conditions.

In conclusion, elevated CO_2 enhanced greatly the mungbean productivity. The better performance of mungbean plant due to high level of CO_2 was supported by the faster rate of photosynthesis, especially at flowering stage. Elevated CO_2 also increased the productivity of mungbean per unit amount of N. Perhaps the vigorous growth of mungbean plant caused by elevated CO_2 demands for more nitrogen application than that recommended for field conditions in Bangladesh.

References

- DELGADO, E., MITCHELL, A.R.C., PARRY, M.A.J., DRISCOLL, S.P., MITCHELL, V. J. and LAWLOR, D. W. 1994. Interacting effects of CO₂ concentration, temperature and nitrogen supply on the photosynthesis and composition of winter wheat leaves. Plant Cell Environ., 17: 1205-1213.
- HAMID, A., HAQUE, M. M., KHANAM, M., HOSSAIN, A. M., KARIM, M. A., KHALIQ, Q. A., BISWAS, D. K., GOMOSTA, A. R., CHOWDHURY, A. M. and UPRETY, D. C. 2003. Photosynthesis, growth and productivity of rice under elevated CO₂. Indian J. Plant Physiol., 8: 253-258.
- HOCKING, P. J. and MAYER, C. P. 1991. Effects of CO₂ enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize. Aus. J. Plant Physiol., 18: 339-356.
- HOUGHTON, J. T., MEIRA, F. V. G., CALLANDER, B. A., HARRIS, N., UTTENBERG, A. and MASKELL, K. 1996. Climate Change 1995. In: The Science of Climate Change. Cambridge Univ. Press, Cambridge, UK.
- KIMBALL, B. A. 1983. Carbon dioxide and agricultural yield: Assemblage and analysis of 430 prior observations. Agron. J., 75: 779-788.
- LEADLEY, P. W. and DRAKE, B. G. 1993. Open top chambers for exposing plantcanopies to elevated CO₂ concentration and for measuring net gas exchange. Vegetatio., 104/ 105: 3-15.
- LINDER, R. C. 1944. Rapid analytical method for some of the more common inorganic constituents of the plant tissues. Plant Physiol., 19: 76-89.
- MITCHELL, R. A. C., MITCHELL, V. J., DRISCOLL, S. P., FRANKLIN, J. and LAWLOR, D. W. 1993. Effects of increased CO₂ concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant Cell Environ., 26: 521-529.
- PAL, M., JAIN, V., and SENGUPTA, U.K. 1997. Effect of CO₂ enrichment on growth and nutritional quality of berseem. Indian J. Plant Physiol., 2: 300-303.
- PEARCY, R. W. and BJÖRKMAN, O. 1983. The response of plant to rising level of atmospheric CO₂. In: CO₂ and Plants. (Ed. L_{EMON}, E.R.) 84: 65-105. Westview Press Inc. AAAS selected symposium.
- REDDY, V. R., REDDY, K.R. and ACOCK, B. 1995. Carbondioxide and temperature

interactions on stem extension, node initiation, and fruiting in cotton. Agric. Ecosys. Environ., 55: 17-28.

- UPRETY, D.C. 1998. Carbon dioxide enrichment technology, open top chamber: A new tool for global climate research. J. Sci. Ind. Res., 57: 266-270.
- UPRETY, D. C., ABROL, Y.P., BANSAL, A.K. and MISHRA, R.S. 1996. Comparative study on the effect of elevated CO₂ in mungbean and maize cultivars. Proc. Indian Nat. Sci. Aca. Biol. Sci., 62: 31-38.
- UPRETY, D. C. and MAHALAXMI, V. 2000. Effects of elevated CO₂ and nitrogen nutrition on photosynthesis, growth and carbon-nitrogen balance in *Brassica juncea*. J. Agron. Crop Sci. 184: 271-276.
- WATSON, R. T., RODHE, H., OESCHGER, H. and SIEGENTHALER, U. 1990. Greenhouse gases and aerosols. In: Climate Change. (Ed. J.T. HOUGHTON, JENKINS, G.J. and EPHRAUMS, J.J.), 1-40. The IPCC Scientific Assessment, Camb. Univ. Press. UK.
- WEIGEL, H. J., MANDERACHEID, R., JAGER, H.J. and MAJER, G.J. 1994. Effects of seasonlong CO₂ enrichment on cereals. I. Growth performance and yield. Agric. Ecosys. Environ. 48: 231-240.
- ZISKA, L. H. and TERAMURA, A.W. 1992. CO₂ enhancement of growth and photosynthesis in rice (*Oryza sativa*). Plant Physiol., 99: 473-481.