On Graphs Having Exact Two Vertices with the Same Degr ee

著者	SAKAI Kouki chi
journal or publ i cat i on titl e	鹿児島大学理学部紀要＝Reports of the Faculty of Sci ence，Kagoshi ma Uni ver si ty
vol une	30
page range	$1-5$
URL	ht $\mathrm{p}: / /$ hdl. handl e．net $/ 10232 / 00003947$

On Graphs Having Exact Two Vertices with the Same Degree

Koukichi Sakai *

(Received August 19, 1997)

Abstract

As well known, every graph has at least two vertices with the same degree. The purpose of this note is to determine the graphs having exact two vertices with the same degree and to state some properties of these graphs. Especially we show that for every integer $n \geq 2$ there exists exactly one connected graph of order n having exact two vertices with the same degree.

Key words: Graph, Graph having exact two vertices with the same degree, Degree sequence, Graphical sequence.

1 Degree sequences

In this note we use freely the terminology and notation concerning graphs in G.Chartrand and L.Lesniak [1]. For any positive integer n and non-negative integer m with $m<n$, we use the following notation:

$$
[n]:=\{1,2,3, \ldots, n\} \quad[m, n]:=\{m, m+1, \ldots, n\}
$$

A sequence $s: s_{1}, s_{2}, \ldots, s_{n}$ of nonnegative integers is said to be graphical if there exists a graph $G, V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, of order n whose degree sequence is s, that is, $\operatorname{deg} v_{j}=s_{j}$ for all $j \in[n]$.

In this section, for any integer $n \geq 2$ we shall determine the graphical sequences s : $s_{1}, s_{2}, \ldots, s_{n}$ with the following property:
(1.1) $n-1 \geq s_{1}>s_{2}>\ldots>s_{k-1}>s_{k}=s_{k+1}>s_{k+2}>\ldots>s_{n} \geq 0$ for some $k \in[n-1]$.

For the sake of brevity any sequence $s: s_{1}, s_{2}, \ldots, s_{n}$ of non-negative integers with the property (1.1) is said to be ($n, 2$)-admissible. Let $s: s_{1}, s_{2}, \ldots, s_{n}$ be ($n, 2$)-admissible. If $s_{1}=n-2$ then $s_{n}=0$. Moreover if s is graphical and $s_{1}=n-1$ then s_{n} must be equal to 1 . So to our aim it suffices to consider the following two types of ($n, 2$)-admissible sequences:
(1.2) $n-1, n-2, \ldots, k+1, k, k, k-1, \ldots, 2,1$ for some $k \in[n-1]$,
(1.3) $n-2, n-3, \ldots, k+1, k, k, k-1, \ldots, 1,0$ for some $k \in[0, n-2]$.

We denote by $s_{n}(n-1 ; k)$ and $s_{n}(n-2 ; k)$ the ($n, 2$-admissible sequence given in the form (1.2) and (1.3) respectively. The next lemma, noted in [1] and [2], plays the essential role in our

[^0]discussion.
Lemma 1.1 A sequence $s: s_{1}, s_{2}, \ldots, s_{n}$ of non-negative integer with $s_{1} \geq s_{2} \geq \ldots \geq$ $s_{n}, n \geq 2, s_{1} \geq 1$, is graphical if and only if the following sequence $h(s)$ with $n-1$ terms is graphical:
$$
h(s): s_{2}-1, s_{3}-1, \ldots, s_{t+1}-1, s_{t+2}, s_{t+3}, \ldots, s_{n}
$$
where $t=s_{1}$.
In general for any sequence $s: s_{1}, s_{2}, \ldots, s_{n}$ of integers with n terms, $n \geq 2$, we define the following four kinds of sequences $c(s)$ with n terms, $h(s)$ with $n-1$ terms, $p(s)$ and $z(s)$ with $n+1$ terms respectively:
\[

$$
\begin{aligned}
& c(s): n-1-s_{n}, n-1-s_{n-1}, \ldots, n-1-s_{2}, n-1-s_{1} \\
& h(s): s_{2}-1, s_{3}-1, \ldots, s_{n}-1 \\
& p(s): n, s_{1}+1, s_{2}+1, \ldots, s_{n}+1 \\
& z(s): s_{1}, s_{2}, \ldots, s_{n}, 0 .
\end{aligned}
$$
\]

Lemma 1.2

(1) Any $(n, 2)$-admissible sequence s is graphical if and only if so is $c(s)$.
(2) $s_{n}(n-1 ; k)$ is graphical if and only if so is $s_{n}(n-2 ; n-1-k)$.
(3) A sequence $s: s_{1}, s_{2}, \ldots, s_{n}$ of positive integers is graphical if and only if so is $z(s)$.
(4) $s_{n}(n-1 ; k+1)=p\left(s_{n-1}(n-3 ; k)\right)$ for any $k \in[0, n-3]$.
(5) $s_{n}(n-2 ; k)=z\left(s_{n-1}(n-2 ; k)\right)$ for any $k \in[n-2]$.

Proof (1) follows from the fact that if s is a degree sequence of a graph G of order n then $c(s)$ is the degree sequence of the complement graph of G. Since $c\left(s_{n}(n-1 ; k)\right)=s_{n}(n-2 ; n-1-k)$, (2) is obvious from (1). (3) is a consequence of the fact that any vertex with degree 0 of a graph is isolated. (4) and (5) are obvious.

Lemma 1.3 For any integer $n \geq 3$, we have
(1). $s_{n}(n-1 ; n-1)$ is not graphical.
(2) $s_{n}(n-2 ; 0)$ is not graphical.
(3) $s=s_{n}(n-1 ; k), k \in[n-2]$, is graphical if and only if $h(s)=s_{n-1}(n-3 ; k-1)$ is graphical.
(4) $s=s_{n-1}(n-2 ; k), k \in[n-3]$ is graphical if and only if so is $z(s)=s_{n}(n-2 ; k)$.

Proof (1) $h\left(s_{n}(n-1 ; n-1)\right)=(n-2, n-3, \ldots, 2,1,0)$ is not graphical, because any finite sequence consisting of mutually distinct non-negative integers is not graphical. So (1) follows from Lemma 1.1. Since $s_{n}(n-2 ; 0)=c\left(s_{n}(n-1 ; n-1)\right)$, (2) is obvious from (1) and Lemma 1.2 (2). (3) and (4) follows immediately from Lemma 1.1 and Lemma $1.2(3)$ respectively.

Now we denote by $G S(n, 2)$ the set of all graphical ($n, 2$)-admissible sequences, and $G S_{n}(n-$ 1) and $G S_{n}(n-2)$ be the set of all graphical sequences in $\left\{s_{n}(n-1 ; k) ; k \in[n-1]\right\}$ and $\left\{s_{n}(n-2 ; k) ; k \in[0, n-2]\right\}$ respectively. Then we have
$G S(n, 2)=G S_{n}(n-1) \cup G S_{n}(n-2)$
$G S_{n}(n-2)=\left\{c(s) ; s \in G S_{n}(n-1)\right\}$.
Combining Lemmas 1.2 and 1.3, we have

Lemma 1.4 For any integer $n \geq 3, G S(n, 2)$ is completely determined from $G S(n-1,2)$ in the following way:
(1) $G S_{n}(n-1)=\left\{p(s) ; s \in G S_{n-1}(n-3)\right\}$.
(2) $\quad G S_{n}(n-2)=\left\{z(s) ; s \in G S_{n-1}(n-2)\right\}$.

The next is seen easily.
Lemma 1.5 $G S(2,2)$ is given as follows:
(1) $G S_{2}(1)$ and $G S_{2}(0)$ consists of only one sequence $s(2)=(1,1)$ and $c(s(2))=(0,0)$ respectively.
(2) The complete graph K_{2} of order 2 is the only one graph with degree sequence $s(2)$.

From Lemmas 1.4 and 1.5 , we can obtain explicitly sequences in $G S(n, 2)$.
Theorem 1.6 For any integer $n \geq 2, G S(n, 2)$ consists of two sequences $s(n)=s_{n}(n-1 ; m)$ and $c(s(n))=s_{n}(n-2 ; n-m-1)$, where $m=$ the floor of $\frac{n}{2}$,i.e.,

$$
s(n)= \begin{cases}(2 m, 2 m-1,2 m-2, \ldots, m+1, m, m, m-1, \ldots, 1) & \text { for } n=2 m+1 \\ (2 m-1,2 m-2, \ldots, m+1, m, m, m-1, \ldots, 1) & \text { for } n=2 m\end{cases}
$$

Remark 1.7 $G S(3,2)$ consists of the following two sequences:
$s(3)=p(c(s(2))=(2,1,1) \quad c(s(3))=z(s(2))=(1,1,0)$.
We note that the path P_{3} of order 3 is the only one graph whose degree sequence is $s(3)$.

Remark 1.8 Let $n \geq 4$. From Lemma 1.4 and Theorem 1.6 we have

$$
\begin{equation*}
s(n)=p(z(s(n-2))) \tag{1.4}
\end{equation*}
$$

2 Graphs corresponding to $s(n)$

In this section let n be any integer with $n \geq 2$ and we construct the graphs whose degree sequence is $s(n)$ given in Theorem 1.6. At first we note that this graph is uniquely determined by $s(n)$. Let $s(n): s_{1}, s_{2}, \ldots, s_{n}$ and let G and H be any graphs with degree sequence $s(n)$. The vertex sets $V(G)=\left\{v_{k} ; k \in[n]\right\}$ and $V(H)=\left\{u_{k} ; k \in[n]\right\}$ are labeled as $s_{k}=\operatorname{deg} v_{k}$ $=\operatorname{deg} u_{k}$ for all $k \in[n]$. We define the degree preserving map ϕ_{n} from $V(G)$ onto $V(H)$ by $\phi_{n}\left(v_{k}\right)=u_{k}, k \in[n]$. Then we have

Lemma $2.1 \quad \phi_{n}$ is an isomorphism from G to H.
Proof We show by the induction on n. As noted in Lemma 1.5 and Remark 1.7, ϕ_{2} and ϕ_{3} are isomorphic. Let $n \geq 4$. From (1.4) we see that the subgraphs $G^{\prime}=\left(G-v_{1}\right)-v_{n}$ and $H^{\prime}=\left(H-u_{1}\right)-u_{n}$ admit the degree sequence $s(n-2)$. Moreover the restriction of ϕ_{n} to $V\left(G^{\prime}\right)$ is identical with ϕ_{n-2}. By the inductive hypothesis ϕ_{n-2} is an isomorphism from G^{\prime} to H^{\prime}. Since $\operatorname{deg} v_{1}=\operatorname{deg} u_{1}=n-1$, and v_{1} and u_{1} are adjacent to all the other vertices in G and H respectively, we conclude that ϕ_{n} is isomorphic.

Theorem 2.2 For every integer $n \geq 2$ there exists exactly one graph G whose degree sequence is $s(n)$. Namely the graphs of order n admitting exact two vertices with the same degree are G and its complement.

We denote by G_{n} the graph with degree sequence $s(n)$. For any graphical sequence $s: s_{1}, s_{2}, \ldots, s_{n}$ let G be a graph of order n whose degree sequence is s. Then the union $G \cup N_{1}$ of G and the empty graph N_{1} of order 1 has the degree sequence $z(s)$, and the join $G+N_{1}$ of G and N_{1} has the degree sequence $p(s)$. Hence by virtue of (1.4) and Theorem $2.2, G_{n}$ is constructed inductively in the following way.

Theorem 2.3

(1) $G_{2}=K_{2}$ and $G_{3}=P_{3}$.
(2) $G_{n}=\left(G_{n-2} \cup N_{1}\right)+N_{1}$ for every integer $n \geq 4$.
(3) The complement graph of G_{n} is $G_{n-1}+N_{1}$ for every integer $n \geq 3$.

Theorem 2.4 G_{n} is a connected graph and its size $q\left(G_{n}\right)$ is
$q\left(G_{n}\right)=\frac{1}{2}\left(\frac{n(n-1)}{2}+m\right)$, i.e.,
$q\left(G_{2 m}\right)=m^{2}, \quad q\left(G_{2 m+1}\right)=m^{2}+m$.

In what follows let the vertex set $V\left(G_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{m},, v_{m+1}, \ldots, v_{n}\right\}$ be labeled as:

$$
\operatorname{deg} v_{k}= \begin{cases}k & \text { for } k \in[m] \\ k-1 & \text { for } k \in[m+1, n]\end{cases}
$$

where m is the floor of $\frac{n}{2}$. Then from Theorem 2.3 we have
Theorem 2.5 The adjacency matrix $A\left(G_{n}\right)=\left(a_{i j}\right)$ of G_{n} is given as follows:

$$
a_{i j}= \begin{cases}0 & \text { for } i=j \in[n] \\ 0 & \text { for } 1 \leq j \leq n-i, i \in[n] \\ 1 & \text { for } n-i<j \leq n, j \neq i, i \in[n]\end{cases}
$$

Remark 2.6 Two vertices v_{m}, v_{m+1} of degree m are adjacent if and only if n is even.

Example $A\left(G_{n}\right)$, for $n=6$ and 7 , are given in the following form:

$$
A\left(G_{6}\right)=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0
\end{array}\right), \quad A\left(G_{7}\right)=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

3 Properties of G_{n}

In this section we state some properties of G_{n} without proof, which are obtained from Theorem 2.3. Throughout this section let n be any integer with $n \geq 2$, and m be the floor of
$\frac{n}{2}$. We denote by $K\left(v ; u_{1}, u_{2}, \ldots, u_{n}\right)$ the star graph $K_{1, n}$ with the center vertex v and the end vertices $u_{1}, u_{2}, \ldots, u_{n}$, and by $N(V)$ the empty graph with the vertex set V.

3.1 Subgraphs

The maximal complete subgraph of G_{n} is K_{m+1}. So G_{n} is planar if and only if $n \leq 7 . G_{n}$ contains the star $K\left(v_{n} ; v_{1}, v_{2}, \ldots, v_{n-1}\right)$ and the path P_{n} as its spanning trees. Moreover G_{n} is decomposed into mutually edge-disjoint spanning subgraphs $F_{1}, F_{2}, \ldots, F_{m}$ defined by

$$
F_{k}=K\left(v_{n+1-k} ; v_{k}, v_{k+1}, \ldots, v_{n-k}\right) \cup N\left(v_{1}, v_{n}, v_{2}, v_{n-1}, \ldots, v_{k-1}, v_{n+2-k}\right)
$$

for $k \in[m]$.
The center of $G_{n}=N\left(v_{n}\right)$, and the periphery of G_{n} is the union of G_{n-2} and $N\left(v_{1}\right)$, which is the complement of G_{n-1}. We see that the radius of G_{n} is equal to 1 and the diameter of G_{n} is equal to 2 .

3.2 Colorings

The chromatic number χ and the edge chromatic number χ_{1} of G_{n} are given by $\chi\left(G_{n}\right)=m+1$ and $\chi_{1}\left(G_{n}\right)=n-1$.
The chromatic polynomial $P\left(G_{n}, k\right)$ is given in the following form:
$P\left(G_{2 m}, k\right)=k((k-1)(k-2) \times \ldots \times(k-m+1))^{2}(k-m)$,
$P\left(G_{2 m+1}, k\right)=k((k-1)(k-2) \times \ldots \times(k-m+1)(k-m))^{2}$.

3.3 Coverings

The vertex covering number α and the independence number β of G_{n} are given by $\alpha\left(G_{n}\right)=m \quad$ and $\beta\left(G_{2 m}\right)=m, \quad \beta\left(G_{2 m+1}\right)=m+1$.
The edge covering number α_{1} and the edge independence number β_{1} of G_{n} are given by $\alpha_{1}\left(G_{2 m}\right)=m, \quad \alpha_{1}\left(G_{2 m+1}\right)=m+1 \quad$ and $\beta_{1}\left(G_{n}\right)=m$.
Especially $G_{2 m}$ contains a 1-factor.

3.4 Characteristic polynomial of $A\left(G_{n}\right)$

We put $P_{n}(\lambda)=\operatorname{det}\left(\lambda E-A\left(G_{n}\right)\right)$. Then we have
$P_{2}(\lambda)=\lambda^{2}-1$ and $P_{3}(\lambda)=\lambda^{3}-2 \lambda$,
$P_{4}(\lambda)=\lambda^{4}-4 \lambda^{2}-2 \lambda+1$,
$P_{5}(\lambda)=\lambda^{5}-6 \lambda^{3}-4 \lambda^{2}+2 \lambda$.
In general we have the following recurrence formula:

$$
P_{n}(\lambda)=\left(2 \lambda^{2}+2 \lambda-1\right) P_{n-2}(\lambda)-\lambda^{2}(\lambda+1)^{2} P_{n-4}(\lambda) \text { for } n \geq 6 .
$$

We see that $\lambda=-1$ [resp. $\lambda=0$] is a proper value of $A\left(G_{n}\right)$ for even [resp. odd] n.

References

[1] C.Chartrand and L. Lesniak: Graphs \& Digraphs, Chapman \& Hall, London, 1996.
[2] N.Hartsfield and G. Ringel: Pearls in graph theory, Academic Press, 1990.

[^0]: * Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan.

