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Abstract

As well known, every graph has at least two vertices with the same degree. The purpose
of this note is to determine the graphs having exact two vertices with the same degree and
to state some properties of these graphs. Especially we show that for every integer n > 2
there exists exactly one connected graph of order n having exact two vertices with the same
degree.
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1 Degree sequences

In this note we use freely the terminology and notation concerning graphs in G.Chartrand
and L.Lesniak [1]. For any positive integer n and non-negative integer m with m < n, we use
the following notation:

[n] :={1,2,3,...,n} [m,n]:={m,m+1,..,n}

A sequence s : s1, 89, ..., S, of nonnegative integers is said to be graphical if there exists a graph
G,V(G) = {v1,v2,...,v,}, of order n whose degree sequence is s, that is, deg v; = s; for all
J € [n]. v

In this section, for any integer n > 2 we shall determine the graphical sequences s :
81,89, ..., Sp with the following property:

(1.1) n—=12>51>8>..> 81> Sk = Sktl > Sk42 > ... > §p >0
for some k € [n — 1].

For the sake of brevity any sequence s : si,S$2,...,5, of non-negative integers with the
property (1.1) is said to be (n,2)-admissible. Let s : s1, S92, ..., S, be (n,2)-admissible. If s = n—2
then s, = 0. Moreover if s is graphical and s; = n — 1 then s, must be equal to 1. So to our
aim it suffices to consider the following two types of (n,2)-admissible sequences:

(1.2) n—-1,n-2,..k+1,kkk—1,..,21 for some k € [n — 1],

(1.3) n—2n-3,.,k+1,kkk—1,..,1,0 for some k € [0,n — 2].

We denote by s,(n— 1; k) and s,(n— 2; k) the (n,2)-admissible sequence given in the form (1.2)
and (1.3) respectively. The next lemma, noted in [1] and [2], plays the essential role in our
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discussion.

Lemma 1.1 A sequence s : s1,S92,...,5, of non-negative integer with s1 > sz > ... >
Snym > 2,51 > 1, is graphical if and only if the following sequence h(s) with n — 1 terms is
graphical:

h(s):s2—1,83—1,...;8t+1 — 1, 5142, S14+3, -+, Sn
where t = 7.

In general for any sequence s : $1, 2, ..., S, of integers with n terms, n > 2, we define the
following four kinds of sequences c(s) with n terms, h(s) with n — 1 terms, p(s) and z(s) with
n + 1 terms respectively:

c(s)in—1—sp,,n—1—sp_1,...n—1—89,n—1—35]

h(s):s29—1,83—1,....,8, — 1 .

p(s):m,s1+1,s9+1,..,8, +1

z(8) : 81,82, ..., 8n, 0.

Lemma 1.2

(1) Any (n,2)-admissible sequence s is graphical if and only if so is c(s).

(2) sn(n — 1;k) is graphical if and only if so is sp(n — 2;n — 1 — k).

(3) A sequence s : s1,53,...,Sn of positive integers is graphical if and only if so is z(s).

(4) sp(n—1;k+1) =p(sp—1(n—3;k)) for any k € [0,n — 3].

(5) sn(n —2;k) = z(sp—1(n — 2;k)) for any k € [n — 2].

Proof (1) follows from the fact that if s is a degree sequence of a graph G of order n then c(s)
is the degree sequence of the complement graph of G. Since ¢(s,(n—1;k)) = sp,(n—2;n—1—k),
(2) is obvious from (1). (3) is a consequence of the fact that any vertex with degree 0 of a graph
is isolated. (4) and (5) are obvious. O

Lemma 1.3 For any integer n > 3, we have

(1) sp(n —1;n — 1) is not graphical.

(2) sp(n —2;0) is not graphical.

(3) s = sp(n—1;k),k € [n — 2], is graphical if and only iof h(s) = s,—1(n — 3;k — 1) is
graphical.

(4) s = sp—1(n—2;k), k € [n — 3] is graphical if and only if so is z2(s) = s,(n — 2; k).

Proof (1) h(s,(n—1;n—1)) =(n—2,n—3,...,2,1,0) is not graphical, because any finite
sequence consisting of mutually distinct non-negative integers is not graphical. So (1) follows
from Lemma 1.1. Since s,(n — 2;0) = ¢(sn(n — 1;n — 1)), (2) is obvious from (1) and Lemma
1.2 (2). (3) and (4) follows immediately from Lemma 1.1 and Lemma 1.2(3) respectively. O

Now we denote by GS(n, 2) the set of all graphical (n,2)-admissible sequences, and GS,, (n—
1) and GS,(n — 2) be the set of all graphical sequences in {s,(n — 1;k);k € [n — 1]} and
{sn(n —2;k);k € [0,n — 2]} respectively. Then we have
GS(n,2) =GS,(n—1)UGS,(n—2)
GS,(n—2) ={c(s);s € GSp(n—1)}.

Combining Lemmas 1.2 and 1.3, we have
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Lemma 1.4 For any integer n > 3,GS(n,2) is completely determined from GS(n — 1,2)
in the following way :

(1) GSp(n—1)={p(s);s € GSp—1(n — 3)}.

(2) GSp(n—2)={z(s);s € GSp—1(n —2)}.

The next is seen eagily.

Lemma 1.5 GS(2,2) is given as follows:

(1) GS9(1) and GS5(0) consists of only one sequence s(2) = (1,1) and ¢(s(2)) = (0,0)
respectively.

(2) The complete graph Ko of order 2 is the only one graph with degree sequence s(2).

From Lemmas 1.4 and 1.5, we can obtain explicitly sequences in GS(n,2).

Theorem 1.6 For any integern > 2, GS(n, 2) consists of two sequences s(n) = s,(n—1;m)
and c(s(n)) = sn(n —2;n —m — 1), where m = the floor of 5 ji.e.,

s(n) = @2m,2m—-1,2m—-2,..m+1,mmm—1,...1) forn = 2m +1
]l @m-1,2m—-2,...m+1,mmm—1,..,1) for n. = 2m.

Remark 1.7 GS(3,2) consists of the following two sequences:

s(3) =p(c(s(2)) = (2,1,1)  ¢(s(3)) = 2(s(2)) = (1,1,0).
We note that the path P3 of order 3 is the only one graph whose degree sequence is s(3).

Remark 1.8 Let n > 4. From Lemma 1.4 and Theorem 1.6 we have
(1.4)  s(n) = p(a(s(n - 2))).

2  Graphs corresponding to s(n)

In this section let » be any integer with n > 2 and we construct the graphs whose degree
sequence is s(n) given in Theorem 1.6. At first we note that this graph is uniquely determined
by s(n). Let s(n) : s1,59,...,5, and let G and H be any graphs with degree sequence s(n).
The vertex sets V(G) = {vk;k € [n]} and V(H) = {ur;k € [n]} are labeled as s; = deg vy
= deg wuy for all k € [n]. We define the degree preserving map ¢, from V(G) onto V(H) by
én(vg) = ug, k € [n]. Then we have

Lemma 2.1 ¢, is an isomorphism from G to H.

Proof We show by the induction on n. As noted in Lemma 1.5 and Remark 1.7,¢2 and
¢3 are isomorphic. Let n > 4. From (1.4) we see that the subgraphs G’ = (G — v;) — v, and
H = (H — u1) — u, admit the degree sequence s(n — 2). Moreover the restriction of ¢, to
V(@) is identical with ¢,_o. By the inductive hypothesis ¢,_o is an isomorphism from G’ to
H'. Since deg v1= deg u1 = n— 1, and v; and u are adjacent to all the other vertices in G and
H respectively, we conclude that ¢, is isomorphic. ]
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Theorem 2.2  For every integer n > 2 there exists exactly one graph G whose degree se-
quence is s(n). Namely the graphs of order n admitting exact two vertices with the same degree
are G and its complement.

We denote by G, the graph with degree sequence s(n). For any graphical sequence
5:81,82,..., 5, let G be a graph of order n whose degree sequence is s. Then the union G U Ny
of G and the empty graph N; of order 1 has the degree sequence z(s), and the join G + N
of G and N; has the degree sequence p(s). Hence by virtue of (1.4) and Theorem 2.2, G, is
constructed inductively in the following way.

Theorem 2.3

(1) GQ = K2 and G3 = P3.

(2) G, = (Gn—2 U Ny) + Ny for every integer n > 4.

(3) The complement graph of Gy, is Gn—1 + Ny for every integer n > 3.

Theorem 2.4 G, is a connected graph and its size q(G,) is
9(Gp) = 32N 4 m) e,
Q(GZm) = m27 Q(GQm—I—l) =m? +m.

In what follows let the vertex set V(G,) = {v1,v2, ..., Um, , Um+1, -.., Un } be labeled as:

de |k for k € [m)]
8% =) k-1 forke[m+1,n]

where m is the floor of % Then from Theorem 2.3 we have

Theorem 2.5 The adjacency matriz A(Gr) = (ai;) of G, ts given as follows:
0 fori=j€]|n]
aij =% 0 forl1<j<n-—i,4€n]
1 forn—i<j<n,j#1,1€[n]

Remark 2.6 Two vertices v, vm+1 of degree m are adjacent if and only if n is even.

Example A(G,), for n = 6 and 7, are given in the following form:

0 000 O0O0OT1

8 8 8 8 (1) i 0 000O0T11
0001 1 1 0 000111

A(Gg) = ., AGyH=l0000 111
001011 00110

11 1 110 0111101
1111110

3 Properties of G,

In this section we state some properties of G, without proof, which are obtained from
Theorem 2.3. Throughout this section let » be any integer with n > 2, and m be the floor of
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5. We denote by K (v;u1,us,...,u,) the star graph K, with the center vertex v and the end
vertices uj,us, ..., un, and by N(V) the empty graph with the vertex set V.

3.1 Subgraphs

The maximal complete subgraph of G, is K,,41. So G, is planar if and only if n < 7. G,
contains the star K(vn;v1,v2,...,v,-1) and the path P, as its spanning trees. Moreover G, is
decomposed into mutually edge-disjoint spanning subgraphs Fy, Fo, ..., Fy,, defined by

Fi = K (Ung1—k; Uk, Vk 415 o Un—k) U N (V1,Un, 02, Un—1, -+, Vk—1, Un42—k)
for k € [m)].

The center of G,, = N(v,), and the periphery of G,, is the union of G,,_2 and N (v1), which
is the complement of G, 1. We see that the radius of G, is equal to 1 and the diameter of G,
is equal to 2.

3.2 Colorings

The chromatic number x and the edge chromatic number x; of G, are given by
X(Gn)=m+1and x1(G,) =n—1.
The chromatic polynomial P(G,,k) is given in the following form:
P(Gom, k) =k((k—1)(k=2) x ... x (k —m+1))%(k —m),
P(Gomy1,k) = k((k = 1)(k —2) X ... x (k—m+1)(k—m))%

3.3 Coverings

The vertex covering number « and the independence number 3 of G, are given by
a(Gp) =m and B(Gom) =m, [(Goms1) =m+ 1.

The edge covering number a; and the edge independence number 31 of G, are given by
a1(Gom) =m, a1(Gomy1) =m+1 and f1(Gn) =m.

Especially Go,, contains a 1-factor.

3.4 Characteristic polynomial of A(G,)
We put P,(\) = det (\E — A(G,,)). Then we have
Py(\) = A2 —1 and P3(\) = A% — 21,
Py(\) = M —4X2 —2) + 1,
Ps(A) = X5 — 63 —4)2 + 2.
In general we have the following recurrence formula:
Py(\) = (2X2 42X = 1)Pya(X) = A2(A +1)2P,_4()) for n > 6.
We see that A = —1 [resp. A = 0] is a proper value of A(G,) for even [resp. odd] n.
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