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Abstract

Let d and n be any positive integers. A positive integer a is said to be (n.d)-generative
if a has at least one n-partition {p;,p2,--,pn} with the following property:

(*) every number z,.d < & < a — d, is expressed by sum of some p; ’s.
By G(n,d) denote the set of all (n,d)-generative numbers. The purpose of this paper is
to determine any members in G(n,d) and in a special subset SG(n, d)(see Definition 1) of
G(n,d). :

Key words: generative number, strongly generative number, partition of nurnber.

1 Introduction

The author has met the following interesting exercise in A.Tucker’s book [1, p.422]:

(A) Show that any set of 16 positive integers (not all distinct) summing to 30 has a subset
summing to k, for k =1,2,3,...,29.

This exercise suggests a problem:

(B) For any given positive integer n, find all numbers a. a > n, such that any set of n positive
numbers (not all distinct) summing to a has a subset summing to k, for k =1,2,3,...,a - 1.
Furthermore we propose a problem in connection with (A) and (B):

(C) For any given positive integer n, find all numbers a, a > n, with the following property:
there exists at least one set of n positive numbers (not all distinct) summing to a which has a

subset summaing to k, for k =1,2,3,...,a — 1.

In this paper we shall consider some problems including (B) and (C) as special cases. To
state the problems we prepare some notations used in the paper. Since we deal with only positive
integers, "number” means always ”positive integer” and any variables n,d, j,... named by small
letters express positive integers unless otherwise noted. For any m,n with m < n, we use the
following notation:

[m,n] ={m,m+1,---,n—1,n}, and [m] = [1,m].

The cardinal number of any finite set A is denoted by |A|. By n-set we mean a collection
of n numbers which are not all distinct. So for any n-set P and m-set @, the union P U Q is
understood as the (n+4 m)-set of all numbers in P or Q, e.g., {1,1,2,3}U{2,3} = {1,1,2,2,3,3}.

* Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University, Kagoshima
890-0065, Japan.
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Let P = {p1,p2,---,pn} be any n-set. Unless otherwise noted, we assume always p1 < p2 <
p3 < -+ < p, and if a number p appears exactly s times in £, this is shortly denoted by P,
e.g., {1,2,2,2,4,4} = {1,200 4} For any n-set P> we use the following notation:

sum(P) = the sum of all numbers in P,

ps(P) = the set of sum(Q) for all proper subsets Q of P.
For any fixed number d, an n-set P is called a (n,d)-set if p > d for all p € P. For any given
number a, a (n,d)-partition of a is a (n,d)-set P with a = sum(P). A (n,d)-set P is said to
be d-generative if ps(P) = [d,a — d], where a = sum(P). For example, it is seen easily that
{1,2,22,23,...,2""1} is a 1-generative (n,1)-partition of 2" — 1, and {2,3,22,23,24,...,2" "1} is
a 2-generative (n,2)-partition of 2" 4 1.

In what follows let n and d be any fixed numbers with n > d. Then any d-generative
(n,d)-set P contains the following (d + 1,d)-sets A1(d) or As(d):

Ay(d) = [d,2d],  Aa(d):= {dP}u[d+1,2d - 1].
Note that A;(d) and Ay(d) are d-generative. For the sake of brevity, any (n,d)-set is said to be
d-admissible if it contains A,(d) or Ay(d). When n > d+1, any d-admissible (n,d)-set P is writ-
ten in the form: P = A(d)UQy, where k = n—d—1,Qy is a (k,d)-set and A(d) is A;(d) or Az(d).

Definition 1. (1) A number a is said to be (n,d)-generative if a has at least one d-
generative (n,d)-partition. It is denoted by G(n,d) the set of all (n,d)-generative numbers.

(2) A number a is said to be strongly (n, d)-generative if every d-admissible (n, d)-partition
of a is d-generative. It is denoted by SG(n,d) the set of all strongly (n,d)-generative numbers.

Under the above definition, the exercise (A) asserts that 30 € SG(16,1), and the problems
(B) and (C) are one to find any numbers in SG(n,1) and G(n,1) respectively.

The aim of this paper is to determine explicitly any numbers in G(n,d) and SG(n,d) for
any n,d with n > d > 1. In section 2 we prepare some lemmas used in our aim. G(n,d) and
SG(n.d) are given in sections 3-4 and 5 respectively.

Remark 1. By the definition we have
G(d+1,d) = SG'(([ +1,d) = {52,51},
where s; = sum(A1(d)) = 2d(d + 1) and s; = sum(Ay(d)) = 1d(3d + 1).

Remark 2. G(n,d) and SG(n,d) are defined for n > d. But even if n < d, the following
cases have meaningful:

G(1,1) = SG(1,1) = {1}, G(2,d) = SG(2,d) = {2d,2d + 1} for any d.

2 Lemmas

In this section we prepare some lemmas concerning with d-generativity. Throughout the
section let n > d.

Lemma 2.1. Let P = {p1,p2, - -,pn} be any d-generative (n,d)-set, and assume that
p;j = pj41 for some j € [n—1]. Then Q = {p1.p2,---.P;+2Dj Pj+2. " »Pn}. Obtained from P
replacing p, 41 by 2p;, is d-generative.
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Proof. Put p = p;, a = sum(P), and P' = P\ {p,,p,+1}. Since P is d-generative, Q is d-
admissible and [d.d+p] C ps(Q). Let z € [d+p+1,a+p—d]. Thenx—p € [d+1,a—d] C ps(P)
and ¥ —p is expressed in the form: & —p = ap+Gp+q, where a and 3 are in {0, 1}, and g € ps(P’).
If (a,3) = (1,1) then @ = p+ 2p + ¢. If (,3) = (1,0) or (0,1) then @ = 2p + ¢. Finally If
(o, 3) = (0,0) then = p+ ¢q. Therefore in any cases = € ps(()). This completes the proof. O

By the same method in the proof of the above, we see

Lemma 2.2. Let P = Ay(d) U P be any (n,d)-set with a = sum(P), where P, =
{p1,p2,-++,pr}. Moreover put Qr = {p1,p2, ", Pr—1,Pk + d} and consider the (n,d)-partition
Q = A(d)U Qy of a. If Q is d-generative then so is P. a

The next lemma plays the most essential roles in our discussion.

Lemma 2.3. Let P be a d-generative (n,d)-set P with a =sum(P), ¢ be any number with
¢ > d, and consider a (n+ 1,d)-set @ = P U {c}. Then we have:

(1) when d =1, Q is 1-generative if and only if ¢ < a + 1.
(2) when d = 2, Q) is 2-generative if and only if c < a—3 orc=a— 1.

(3) when d > 3, Q is d-generative if and only if ¢ < a —2d + 1.

Proof. Let ¢ € [d,a — d]. Then ps(Q) = [d,a — d]U [d + ¢,a — d + ¢|]. Hence ps(Q) =
[d.a+c—1]ifandonlyifd+c<a-d+1,ie,c<a—-2d+ 1. Nextlet a —d < c. Then
ps(Q) =[d,a—dlU{a}U{c}U[d+c.a+c—d]. Ifd>3, then ps(Q) does not contain either
c+lore—1accordingtoc=a—-d+1ora—-d+ 1< ¢ Sowe have (3). If d = 2, then
ps(Q) =[2,a+c—2]ifand only if ¢ = a« — 1. If d = 1, we see that ps(Q) = [a + ¢ — 1] if and
only if c = aor ¢ =a+ 1. Hence we have (1) and (2). g

Under the notations in Lemma 2.3, if ¢ > « = 2d + 1 and d > 3, @ is not d-generative. But
ifa-2d+1<c<a—d+1 then we can make a d-generative (n + m,d)-set PU{c} U R for some
(m — 1,¢)-set R, where m is at most d. For example let d = 4, P be a 4-generative (n,4)-set
with @ = sum(P), and let ¢ = a — 5. Consider the following sets:

Pi=Pu{c}, P, =P,U{a—-3}and P = P,U{a-2}.

Then Py and P, are not 4-generative and P5 is 4-generative.

Lemma 2.4. Let d > 3, and P be a d-generative (n,d)-set P with a = sum(P). For any
m we put c(m) =a—-2d+1+m, Py, = PU{c(m)} and Qn, = P, U R(m), where R(m) is any
set of distinct numbers greater than ¢(m). Then we have:

(1) if m <d-1 and Q,, ts d-generative, then I, = [a —d + 1,a — d + m] C R(m) and the
(n4+ m+ 1,d)-set Py, U I, is d-generative.
(2) if m = d and Q4 is d-generative, then [y = [a—d+2,a—1] C R(d) and the (n+d—1,d)-set
P, U Iy is d-generative.
(3) if m > d then Q,, is not d-generative for any R(m).
Proof. Let m > d. Then ¢ — d + 1 < ¢(m), and a — d + 1 does not belong to both

ps(Pr) and ps(Q). So Q. is not d-generative for any R(m). This proves (3). Next assume
that @, is d-generative and m < d. Then ps(Pp,) = [d,a — dJU [d + ¢(m),a — d + ¢(m)] =
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[dya—dlula—d+m+1,2a-3d+m+ 1] or ps(Pp) = [d,a—d+1]U[a,2a¢—2d + 1] according to
m<d-lorm=d Ifm<d-1then [, Ops(P,) = empty, [;n Cps(Qm). So Im C ps(R(m)).
Moreover every number in [, is not expressed as a sum of distinct numbers in R(m). Hence
I, C R(m). Similarly R(d) contains [, if m = d. Thus we get the first assertions in (1) and (2).
The others are seen easily. u

Lemma 2.5. Let m(n,d) and sm(n,d) be the smallest number in G(n,d) and in SG(n,d)
respectively. Then we have

m(n,d) = sm(n,d) = %d('&d +1)+(n—d-1)d= %d(d + 2n —1).

Proof. For n = d 4 1 it is obvious from Remark 1. Let n > d 4+ 1, P = A,(d) U {d(»~4~V)}
and s = sum(P). Evidently s is the smallest number with d-admissible (n, d)-partition, and P
is only one d-admissible (n,d)-partition of s. Moreover by Lemma 2.3, P is d-generative. Hence
m(n,d) = sm(n,d) = s. O

3 G(n,1) and G(n,2)

Let us denote the maximum number in G(n,d) by M(n,d). The determination of M(n,d) is
the most important works for our aim. From the fact that |P|is at most 2" — 2 for any (n,d)-set
P, we can get easily M(n,d) for the cases d < 2. So in this section we shall characterize any
numbers in G(n, 1) and G(n,2).

Lemma 3.1. M(n,1) =2" -1 and M(n,2) =2" + L.

Proof. It is noted in introduction that 2* — 1 € G(n,1) and 2" + 1 € G(n,2). For any
d-generative (n,d)-set P with a = sum(P), |ps(P)] = a—2d+1 < 2" —2. Hence a < 2" +2d-3.
Especially M(n,1) < 2" —1 and M(n,2) < 2" + 1. This completes the proof. a

Notice that M(n,1) admits a unique l-generative (n, 1)-partition {1,2,2%,23 ... 2" — 1}
and M(n,2) admits a unique 2-generative (n,?2)-partition {2,3,2%,2% ... 2" — 1}. From this
fact we have

Lemma 3.2. 2" ¢ G(n,2) for any n > 2.

Proof. For n = 3, the assertion is true(see Remark 1). So we suppose that 2" has a
2-generative (n,2)-partition P = {p;,p;, - ,pn} for some n > 4. If a number p appears at least
twice in P then 2" 4+ p € G(n,2) by Lemma 2.1. This is a contradiction: M(n,2) = 2"+ 1 <
2" 4+ p. Hence p1 = 2,p; = 3,p3 = 4 < pg < -+ < pp_y < Pn, and p,_; < 277! — 1. Since
[ps(P)| = 2™ =3, for every z € [2,2" — 2] except 2 = 2"~ ! there exists a unique subset P(z) of P
with z = sum(P(z)). Especially [2,2"7! 1] C ps(P,—1), where P,_; = P\{p.}. Hence P,_; =
{2,3,2%2,2% ... 2772 sum(Pr_1) = 2" 4+1 € G(n—1,2), and p, = 2" —sum(Pp_) =21~ 1.
As pn, = sum(Pr_1)— 2, P is not 2-generative by Lemma 2.3(2), which is a contradiction. This
completes the proof. o

Lemma 3.3.

(1) [a+1,2a 4+ 1] C G(n+ 1,1) for any a € G(n, 1).
(2) [a+2,2a - 3]U{2a - 1} C G(n + 1,2) for any a € G(n,2).
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Proof. Each assertion is an immediate consequence from Lemma 2.3.
Theorem A.

(1) G(n,1)=[n,2" = 1] (n > 1).

(2) G(n,2)=[2n+1,2" — LJU {2 + 1} (n > 2).

Proof. From Lemmas 3.1-3.3 and Lemma 2.5, the assertion is shown easily by the induction

on n. a

4 G(n,d)

In this section let d > 3 and n > d.

Lemma 4.1. G(d +2,d) = [3d(d + 1),3d* + d + 1].

Proof. Recall from Remark 1 that G(d + 1,d) = {sz,s1}, where s; = 2d(d + 1) and
sy = 3d(3d+1). Let a € G(d+2,d). Then a has a d-generative (d+2,d)-partition P = A(d)U{c}
for some ¢ > d, where A(d) is A;(d) or Ay(d). By Lemma 2.3(3), d < ¢ < sum(A(d)) — 2d + 1,
and hence a € [s+d,2s—2d+ 1] where s = sy or s = s3. As (2s3—2d+1)—(s1+d) = s2+1 >0,
we have G(d + 2,d) = [s2 + d,2s1 — 2d + 1] = [2d(d + 1),3d* + d + 1]. a

We prepare some lemmas in order to determine the maximum number M(n,d) in G(n,d).

Lemma 4.2. Let {M,(d)}(n > d+1) be the sequence defined by My41(d) = %d(aH- 1) and
the recurrence relations: M, y1(d) = 2M,(d) —2d + 1 for any n > d. Then we have:

(1) M(n.d) = Mp(d) forn=d+ 1,d+ 2.
(2) M,(d) € G(n,d).
(3) My(d) = (3d> —d +2)2742% 4 2d — 1.
Proof. (1) is obvious from Remark 1 and Lemma 4.1. Lemma 2.3(3) teaches us that

2a —2d+ 1 € G(n + 1,d) for any a € G(n,d). Using repeatedly this fact, we have (2). (3) is

seen by the induction on n. O

Let n > d+2,k=n—-d—12>2andlet P = A;(d)UQy be a d-generative (n,d)-partition of
M(n,d). By Lemma 2.1 Q4 consists of distinct k numbers greater then 2d. Let h,0 < h < k-1,
be the maximal number among |Q|, where @ is any proper subset of @ such that A;(d)U Q
is d-generative. We understand as h = 0 if such Q does not exist. Let Qp with |Qn| = h be a
proper subset of @ such that P, = A;(d) U @} is d-generative. When h = 0, let Qo = empty.
Here we put:

a(h) = sum(Py)
c(Qr) = Qr \ @

c(h) = the smallest number in ¢(Q})

c(h,m) = a(h) —2d + m + 1 for any m with 1 < m < d.
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Under the these notations the next is derived from Lemma 2.4 and the maximality of A.

Lemma 4.3. Let 0 < h < k — 2. Then we have the following cases depending on m with
m < d:

(a) whenm < d—1

k=h+m+landk—-d<h

c(h) = c(h,m)

c(Qr) = {c(h)} U la(h) —d + 1,a(h) — d + m]
M(n,d) = (m+ 2)(a(h) — d + 3(m + 1)).

(b) whenm =d

k=h+d-1

c(h) =c(h,d) =a(h)—d+1

o(@n) = alh) — d+ 1,a(h) — 1]

M(n,d) = d(a(h) — 3(d - 1)). o

Theorem B. M(n,d) = M,(d) for any d > 3 and n > d, where M,(d) is in Lemma 4.2.

Proof. We use freely the above notations concerning M(n,d) and in Lemma 4.3. We prove
the assertion by the induction on n. It is true forn = d + 1,d + 2. Let n > d + 2, t.e., k > 2.
Note that M,(d) < M(n,d) by Lemma 4.2. Now suppose h < k — 2. Then from Lemma 4.3 and
the inductive hypothesis it follows: M(n,d) < R(h,m,d), where

R(h.m.d) = (m+2)(Myy14n(d) —d+ %(m +1)) when m<d-1
Ul d(Mggq4n(d) — %(d - 1)) when m = d.

But it is seen that R(h,m,d) < M,(d) for each case, which is a contradiction. Hence h = k — 1
and M(n,d) = alk = 1)+ c(k — 1) < M,_1(d) + (M—1(d) — 2d + 1 = M,(d). Therefore
M(n,d) = M,(d) and c(k - 1) = M(n —1,d) — 2d + 1. u

Corollary B-1. Letd>3 andn >d+ 1.

(1) M(n,d) has a unique d-generative (n,d)-partition A;(d) U {q1,q2, "+, qx},where k =
n—d—-1and g = M(d+j,d)—2d+ 1 for j € [k].

(2) M(n+1,d) =2M(n,d) — 2d + 1. a

Theorem C. G(n,d) = [m(n,d), M(n,d)] for any d > 3 and n > d + 2, where
m(n,d) = 3d(d + 2n - 1),
M(n,d) = (3d* —d +2)2"~ 42 4 2d — 1.

Proof. Lemma 2.3(3) teaches us that [a + d,2a —2d + 1] C G(n + 1,d) for any a € G(n,d).
From this fact, Lemma 2.5, Theorem B and Colloraly B-1, the assertion is obtained by the
induction on n. g
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5 SG(n,d)
Theorem D. SG(n.d) is given as follows:

(1) SG(n,1)=[n,2n—1] (n>1)
(2) SG(n,2) =[2n+1,4n = 5]U{4n -3} (n>2,n #5)
(3) SG(5,2) = [11,15]
(4) SG(d +1,d) = {3d(3d + 1), 3d(d + 1)}
(5) SG(n,d) = [sm(n,d),s(n,d)] (n>d+1,d > 2), where
sm(n,d) =d(d +2n - 1)/2,
s(n,d) = d*+ (2n — 5)d + 1. a

The proof of the above theorem is divided into some lemmas. From Lemma 2.2 it follows
that any member in SG(n,d) is characterized as follows.

Lemma 5.1. a € SG(n,d) if and only if every (n,d)-partition of a containing Aq(d) is

d-generative. a

As SG(d + 1,d) is known in Remark 1, let n > d + 2, and introduce the following numbers

depending on n and d:

k=n-d-1

s(d) = sum(Ay(d)) = 3d(3d + 1)

s(n,1)=2n-1

s(n,d) = 2s(d) +2(k—2)d+1=d>+(2n-5)d+1 (d>2)

mi(l) =s(1)+j=7+2

m;(d) =s(d)+ (j-3)d+1 (d>2).
Recall from Lemma 2.5 that the smallest number sm(n,d) in SG(n,d) is given in the form:
sm(n,d) = s(d) + kd. Let s € SG(n,d) and put ¢ = s — sm(n — 1,d). Then we get the
(n,d)-partition Pp(s) = Pn_1 U {c} of s where P, = Ay(d) U {d™ 42}, Since Py is
d-generative, P,(a) is d-generative if and only if ¢ satisfies the condition in Lemma 2.3 for
a=sum(P,_1) =sm(n - 1,d). So we get

Lemma 5.2. Let s € SG(n,d).

(1) whend =1, s < s(n,1).
(2) whend =2,s<s(n,2)=4n —5or s =4n — 3, and s # 4n — 4.
(3) whend >3, s < s(n,d). a

Lemma 5.3. Let Qr = {q1,92, ,qx} be any (k,d)-set and let P, = Ay(d) U Q. Here
consider the following condition depending on d:
- (S4) ¢ < my(d) for any j € [k].
If Q. satisfies (Sq) then Py is d-generative.
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Proof. Let d > 2. For any j € [k — 1] put Q; = {q1,q2,---,¢;} and P; = 43(d) U Q;. We
prove by the induction on j € [k]. By Lemma 2.3 Py is d-generative if ¢1 < s(d)—-2d+1 = m,(d).
Suppose that P; is d-generative, and put a; = sum(FP;). Then a; > s(d) + jd and m;;,(d) =
s(d)+(J—2)d+1<q; —2d+ 1. Soif gj41 < mjpa(d) it follows from Lemma 2.3 that Py, is
d-generative. The assertion in the case of d = 1 is proved by the same way. O

Lemma 5.4. Let a € [sm(n,d),s(n,d)] and P = Ay(d)U {q1,92, -, qx} be any (n,d)-
partition of a. Then q; < m;(d) for any j € [k]. Moreover ifd =2, a = s(n,2) +2 = 4n — 3 and
n > 6, then ¢; < m;(2) for any j € [k — 1].

Proof. We prove for the case d > 2. It suffices to prove for a = s(n, d). Suppose ¢; > m;(d)
for some j € [k]. Then we have the following contradiction:

sum(P)—a > s(d)+(j—1)d+(k—j+ 1)(mj(d)+1)—a = (k—j)(s(d)+(j - 5)d+2)+1>0.
a

From Lemmas 5.2-5.4, it follows that SG(n,d) = [sm(n,d), s(n,d)] for any n > d+ 1 except
d =2, [sm(n,2),s(n,2)] C SG(n,2) and 4n — 4 ¢ SG(n,2). So by Lemma 5.2(2) it remains to
see whether 4n — 3 € SG(n,2) or not.

Lemma 5.5.

(1) 4n — 3 € SG(n,2) for any n > 6.
(2) 13 € SG(4,2) and 17 ¢ SG(5,2).

Proof. Put f(n) = 4n—-3. Let n > 6 and P = A3(2)U{q1.q2, -+, qx} be any (n,2)-partition
of f(n). If gp < mg(2), then P is 2-generative by Lemmas 5.3-5.4(2).The other partitions P are
A3(2)U 2009 my(2) + 2} or Ay(2)U {2(*=5) 3, mi(2) + 1}. These are 2-generative by Lemma
2.3. Hence we have (1). Note f(4) = 13 and f(5) = 17. 13 € SG(4,2) is seen easily. A (5,2)-

partition P = {2,2,3,5,5} of 17 is not 2-generative, because 6 ¢ ps(P). Hence 17 ¢ SG(5,2).
O

Theorem D follows from Lemmas 5.2-5.5.
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