A Note on Maxcliques Covered by Another Maxcliques in Regular Graphs

著者	SAKAI Koukichi
journal or	鹿児島大学理学部紀要=Reports of the Faculty of
publication title	Science, Kagoshima University
volume	33
page range	35-38
URL	http://hdl.handle.net/10232/00003951

Rep. Fac. Sci., Kagoshima Univ., No. 33, pp. $35 \sim 38$ (2000)

A Note on Maxcliques Covered by Another Maxcliques in Regular Graphs

Koukichi SAKAI *

(Received August 14, 2000)

Abstract

Let G be a graph with the edge set E(G), let $\theta_m(G)$ be the number of maxcliques in G, and $\theta_1(G)$ be the minimum number of maxcliques of G by which E(G) is covered. We say that a maxclique Q of G is *non-proper* if for every edge e of Q there is at least one another maxclique Q' such that $e \in E(Q')$. If G contains at least one non-proper maxclique, then $\theta_1(G) < \theta_m(G)$.

In this note we determine the structure of non-proper maxcliques order r-1 in r-regular graphs, and characterize any r-regular graphs G with $\theta_1(G) < \theta_m(G)$ for r = 4 and 5.

Key words: regular graph, maxclique, edge maxclique cover.

1 Introduction

In this note the terminology and notion concerning graphs follow Chartrand and Lesniak [1] unless otherwise stated, and any graphs are always finite and simple. For any graph G we denote by V(G) and E(G) the vertex set and the edge set respectively. For any $u \in V(G)$ we denote by N(u) the neighborhood of u. A complete subgraph Q of G is called a *clique*, and especially it is called a *maxclique* if it is not properly contained in another cliques. A family \mathbf{F} of distinct maxcliques of G is called an *edge maxclique cover* of a subgraph H if $E(H) \subseteq \bigcup \{E(Q); Q \in \mathbf{F}\}$.

An edge e of G is said to be *proper* if it is contained a unique maxclique. A maxclique Q is said to be *proper* if E(Q) contains at least one proper edge, otherwise is called *non-proper*.

Here we introduce the following numbers for G:

 $\theta_m(G)$ = the number of all maxcliques of G,

 $\theta_1(G) = \min \{ |\mathbf{F}|; \mathbf{F} \text{ is any edge maxclique cover of } G \}.$

As noted in [2], for any graph G, $\theta_1(G) = \theta_m(G)$ if and only if every maxclique of G is proper. Any graphs with this property are studied in Wallis et al. [4] and called maximal clique irreducible graphs.

The aim of this note is to study on edge maxclique covers of non-proper maxcliques of order r-1 in any connected *r*-regular graphs, and is to characterize any *r*-regular graphs G with $\theta_1 G$ $< \theta_m(G)$ for r = 4 and 5.

For any positive integers m, n with $m \le n$ we use the following notation: $[m, n] = \{m, m + 1, m + 2, \dots, n - 1, n\}$ and [n] = [1, n].

^{*} Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan.

2 Non-proper maxcliques of order r-1 in r-regular graphs

Let G be any connected r-regular graph with $r \geq 3$, and Q and Q_1 be any maxcliques in G with $E(Q) \cap E(Q_1) \neq \emptyset$. Then we note that

(2.1)
$$|V(Q)| + |N(u) \setminus V(Q)| = r + 1$$
 for any $u \in V(Q)$,

 $(2.2) \quad |V(Q)| + |V(Q_1) \setminus V(Q)| \le r + 1,$

For the sake of brevity we use freely the following notation for Q:

$$N_Q(z) = N(z) \cap V(Q) \text{ for any } z \in V(G),$$

$$Z(Q) = \{z \in V(G) \setminus V(Q); |N_Q(z)| \ge 2\},$$

$$E(Q, u) = \{e \in E(Q); e \text{ is incident with } u\} \text{ for } u \in V(Q).$$

For any maxclique Q' we write as $Q' = \langle W_1, W_2, \dots, W_k \rangle_c$ if V(Q') is partitioned into subsets $\{W_j; j \in [k]\}$. Under these notations we have

Lemma 2.1. If Q is non-proper, then for any distinct $u, v \in V(Q)$ there is a $z \in Z(Q)$ for which N(z) contains both u and v.

The above is an immediate consequence of non-properness of Q. Here we prove

Theorem 2.2. Any maxclique Q of order r in any connected r-regular graph G is proper. **Proof.** Suppose Q is non-proper, and let $u \in V(Q)$. Since $N(u) \setminus V(Q)$ is a singleton $\{z\}$, it follows from Lemma 2.1 that V(Q) = N(z). Hence $\langle z, N(z) \rangle_c$ is a clique containing properly Q. But this contradicts to the maximality of Q.

By the above theorem any triangles in 3-regular graphs are proper. Hence we have

Corollary 2.3. $\theta_1(G) = \theta_m(G)$ for any connected 3-regular graphs G.

In what follows let Q be non-proper. Any maxclique Q_1 with $E(Q) \cap E(Q_1) \neq \emptyset$ is characterized by the next lemma, which is seen easily from the maximality of Q_1 .

Lemma 2.4. Let Q_1 be given in the form: $Q_1 = \langle Z_1, W_1 \rangle_c$, where $Z_1 = V(Q_1) \setminus V(Q)$ and $W_1 = V(Q) \cap V(Q_1)$. Then we have the following two cases (a) and (b):

(a) $W_1 = N_Q(z_1)$ for some $z_1 \in Z_1$ and $Z_1 = \{z \in Z(Q); z \in N(z_1) \text{ and } N_Q(z) = W_1\},\$

(b) $W_1 = \bigcap \{ N_Q(z); z \in Z_1 \}$, and Z_1 is the maxclique in $\{ z \in Z(Q); W_1 \subset N_Q(z) \}$.

Conversely for any $Z_1 \subset Z(Q)$ and $W_1 \subset V(Q)$ with $2 \leq |W_1| < |V(Q)|$ if they satisfy the conditions (a) or (b), then $\langle Z_1, W_1 \rangle_c$ is a maxclique containing some edges of Q. \Box

If $Q_1 = \langle Z_1, W_1 \rangle_c$ satisfy the conditions (b) in the above. Then it is covered by the family of cliques $\{\langle z, N_Q(z) \rangle_c; z \in Z_1\}$, and hence it covered by the maxcliques with the conditions (a). So we may assume that any non-proper maxclique Q is covered by maxcliques with (a).

In Z(Q) define an equivalence relation (*) as follows: for any z and z' in Z(Q), z(*)z' if $N_Q(z) = N_Q(z')$ and z and z' are adjacent. For any $z \in Z(Q)$ we denote [z] by the equivalence class belonging to z. Then from Lemma 2.4 any maxcliques Q(z) covering some edges of Q is given in the form: $Q(z) := \langle [z], N_Q(z) \rangle_c$ for some $z \in Z(Q)$. For any $u \in V(Q)$ we put

 $Z(Q, u) = N(u) \cap Z(Q),$

d(Q, u) = the number of distinct (*)-equivalence classes [z] for $z \in Z(Q, u)$.

If Z(Q, u) consists of a single (*)-equivalent class [z] for some $u \in V(Q)$, then $V(Q) = N_Q(z)$ by Lemma 2.1 and the maxclique $\langle [z], N_Q(z) \rangle_c$ contains properly Q, which contradicts to the maximality of Q. So for any $u \in V(Q)$ we have

 $(2.3) \quad d(Q,u) \ge 2,$

(2.4) E(Q, u) is covered by the family $\{\langle [z], N_Q(z) \rangle_c; z \in Z(Q, u)\}$ of maxcliques.

Theorem 2.5. Suppose that d(Q, u) = 2 for all $u \in V(Q)$. Then

- (1) Z(Q) consists of three (*)-equivalent classes $\{[z_i]; j \in [3]\},\$
- (2) Q is covered by the three maxcliques $\langle [z_j], N_Q(z_j) \rangle_c, j \in [3]$
- (3) V(Q) is partitioned into three subsets $\{W_j; j \in [3]\}$ as follows:

 $N_Q(z_1) = W_1 \cup W_3, N_Q(z_2) = W_2 \cup W_3 \text{ and } N_Q(z_3) = W_1 \cup W_2.$

Proof. Let $u \in V(Q)$. By the hypothesis E(Q, u) is covered by $Q_j = \langle [z_j], N_Q(z_j) \rangle, j = 1, 2$, where $Z(Q, u) = \{[z_1], [z_2]\}$. Here we put $W_3 = N_Q(z_1) \cap N_Q(z_2), W_1 = N_Q(z_1) \setminus V(Q_2)$ and $W_2 = N_Q(z_2) \setminus V(Q_1)$. Then $\{W_j; j \in [3]\}$ is a 3-partition of V(Q). Let $v \in W_1$ and $w \in W_2$. By the hypothesis $Z(Q, v) = \{[z_1], [z_3]\}$ for some $z_3 \in Z(Q)$ and Z(Q, v) is covered by Q_1 and $Q_3 = \langle [z_3], N_Q(z_3) \rangle_c$. So $W_2 \subset N_Q(z_3)$ and $Z(Q, w) = \{[z_2], [z_3]\}$. Since Z(Q, w) is covered by Q_2 and $Q_3, W_1 \subset N_Q(z_3)$. Moreover as E(Q, u') is covered by Q_1 and Q_2 for any $u' \in W_3$, we have $N_Q(z_3) = W_1 \cup W_2$. This completes the proof. \Box

Theorem 2.6. Let Q be any maxclique of order r-1 in any connected r-regular graph G. Then Q is non-proper if and only if V(Q) has a 3-partition $\{W_j; j \in [3]\}$ and there is a 3-set $\{z_j; j \in [3]\}$ in Z(Q) such that Q has an edge maxclique cover $\{Q_j; j \in [3]\}$ given in the form: $Q_i = \langle z_i, W_j, W_k \rangle_c$ for any distinct $i, j, k \in [3]$.

Proof. Let Q be non-proper. Since $d(Q, u) = |Z(Q, u)| = |N(u) \setminus V(Q)| = 2$ for all $u \in V(Q)$, it follows from (2.4) that E(Q, u) is covered by exact two maxcliques. Hence under the notation in Theorem 2.5, $[z_j]$ is a singleton $\{z_j\}$ for $j \in [3]$. The maximality of Q_j 's is obvious. This completes the proof. \Box

3 *r*-Regular graphs containing non-proper maxcliques

In this section for $r \in [4, 5]$ we consider r-regular graphs G with $\theta_1(G) < \theta_m(G)$. By virtue of theorem 2.6, we can determine explicitly any non-proper maxcliques of order r-1 for $r \in [4, 5]$. In order to state the following theorems, we introduce the notion of quasi-induced subgraphs following [3]. For two disjoint subsets V_1 and V_2 of V(G), we define a subgraph H of G as follows: $V(H) = V_1 \cup V_2$ and E(H) consists of all edges uv in G such that $u \in V_1$ and $v \in V_1 \cup V_2$. This H is called a *quasi-induced subgraph*, and V_1 and V_2 are called the base set and the neighborhood set respectively. In Figs. 1-2 any vertices in the base [resp. neighborhood] set are denoted by black circles \bullet [resp. circles \circ], the base set induces a non-proper maxclique.

Theorem 3.1. For any 4-regular graph G, $\theta_1(G) < \theta_m(G)$ if and only if G contains at least one quasi-induced subgraph isomorphic to the graph in Fig.1.

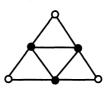


Fig.1

Any non-proper maxcliques of order 3 in 5-regular graphs are shown in Fig. 2(b)-(c).

Theorem 3.2. For any connected 5-regular graph G, $\theta_1(G) < \theta_m(G)$ if and only if G contains at least one quasi-induced subgraphs isomorphic to the graphs in Fig.2 (a)-(c).

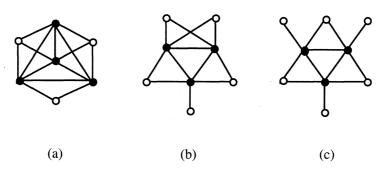


Fig.2

References

- [1] L. Chartrand and L. Lesniak: Graphs & Digraphs, Chapman & Hall, 1996.
- [2] K. Sakai: On set representations and intersection numbers of some graphs, Rep. Fac. Sci. Kagoshima Univ. **33**(2000), 39-46.
- [3] M.Tsuchiya: On antichain intersection numbers, total cliques covers and regular graphs, Discrete Math.127 (1994), 305-318.
- [4] W.D. Wallis and Guo-Hui Zhang: On maximal clique irreducible graphs, J.Combin. Math. Combin. Comput., 8(1990), 187-193.