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1. Introduction

Suppose we have an observation x, which may be a scalar or a vector, and we know
apriori that it should have come from either of two populations 7, and 7, which have the
probability density functions fi(x) and f,(x) respectively and apriori probabilities ¢, and g,
respectively. We assume that the losses due to two kinds of misclassification are same,
where one misclassification is that if the observation is actually from 7z, we classify it as
coming from 7, and the other is that if the observation is actually from 7, we classify it as
coming from ;. Then according to the Bayes procedure, if

¢ i (%) > 72 T3 (%)
i (%) + ¢ (%) = ¢ fi(x) + g1, (%)

then we decide that the observation has come from =, and otherwise we decide that the
observation has come from z,. Equivalently if

D (x)=q, 1, (¥) — g5 (x) = 0

then we decide that it has come from 7z, and otherwise we decide that it has come from
Ty,

The purpose of this paper is to discuss the statistical properties of the estimate of D(x)
constructed by Wolverton and Wagner [6] by using the results in Yamato [7].

Let X}, X}, X},.... and X2, X2, XZ,.... be sequences of independent, identically
distributed m-dimensicnal random vectors in the m-dimensional Euclidian space E,,, which
have the probability density functions f,(x) and fy(x) respectively. Let py, oy, p3-... bea
sequence of independent identically distributed random variables with

Pr (pi=1)=¢, and Pr (p;=0)=gq, (i=1,2,3,....).

We assume that X1, X?, p, are mutually independent for all v=1, 2,...., j=1, 2,.... and
k=1, 2,.... In this paper we consider a sequential estimation of D(x) with a scheme
that we observe X! when p,=1 and X2 when p,=0. Wolverton and Wagner [6] considered
an estimate of D(x) under the same sampling scheme given by

D,,(.x:):%j:f:1 [p;%K(x—ijU—(l __pj)i’;K<x;iX}")]
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and showed that under a certain condition on £i(x), fy(x), &, k()

[ 1D, -D®zax

Em
converges to 0 in probability (with probability 1) and then Pp,(e) converges to Pp(e) in
probability (with probability 1), where P4(e) denote the probability of misclassification by
using a discriminant function d(x).

In the following sections we shall discuss the asymptotic unbiasedness, asymptotically
uniform unbiasedness, consistency, uniform consistency and asymptotic normality of D, (x)
by using Yamato[7]. Concerning its asymptotically uniform unbiasedness, Wolverton and
Wagner[6] proved it in Lemma 2 under the assumption that fy(x) and f,(x) are uniformly
continuous. In section 2 we shall, however, generalize it for continuous probability density
functions fi(x) and f,(x) and moreover at the continuous point x of £i(x) and fy(x).

In section 3 we shall treat the limits of the variance and the mean square error of D, (x)
and the limit of nh* Var [D,(x)].

In section 4 we shall treat the uniform consistency of D, (x).

In section 5 we shall treat the limit distribution of D,(x).

The author expresses his hearty thanks to Professor A. Kudo of Kyushu University
for his kind encouragements and advices, and also to Professor 8. Kano of Kyushu
University for his kind suggestions. The author also expresses his hearty thanks to
Professor M. Okamoto of Osaka University for his kind comments.

2. Asymtotic unbiasedness

Theorem 1. We suppose that the probability density functions fy(x) and fy(x) are
continuous and that {(h,} is a sequence of monotone decreasing positive numbers such that

2.1) lim %, =0

n—ro0

Let K(y) be a measurable function satisfying

(2.2) Sup |K (y)| < oo

(2.3) | Kwav=1
Em

(2:4) [ 1IE@dy<eo
Em

where E,, denotes the m-dimensional Euclidian space and let {X'}, (X2}, {p;} be mutually in-
dependent sequences of random variables and vectors as described in section 1. Then

_il [Pi’k—l;n_K<x—;LX; )—(1 —pj)le,;K(%X’z)]

j j i

©5)  Dy@)=—
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s an asymplotically unbiased estimate of D(x).

The following corollary can be found in Wolverton and Wagner [6], which we need to
prove Theorem 5. In the following corollary, we assume the uniform continuity of the
probability density function, which is satisfied when a population characteristic function is
absolutely integrable.

Corollary 1. If we assume the uniform continuity of the probability density functions
fi(x) and fy(x) in Theorem 1, then we have

(2.6) lim sup | D, (x) — D (x)|=0

n—>0 x€

Theorem 2. We suppose that {h,} is a sequence of monotone decreasing positive numbers
satisfying (2. 1) and that the measurable function K(y) satisfies (2.2), (2.3), (2.4) and

(2.7) lim |y|™|K (y)|=0
y—rc0
Let {X!}, (X2}, {pi} be mutually independent sequences of random variables and wvectors as

described in section 1. Then D, (x) is asymptotically unbiased at the point x such that both
fi(x) and fy(x) are continuous.

By applying Theorem 1, Corollary 1 and Theorem 2 in Yamato[7] on an inequality
(2.8) |ED, (x) — D (x)|
<qlEfy(x)—fi(x)[+ | E fy (x) — £, (%)

we can easily obtain Theorem 1, Corollary 1 and Theorem 2, where

) 1 » 1 x — X!
2.9 f _— el j

2 1 » 1 x — X!
2.1 _ j
(2.10) Fa(x) n j=1 h? K< h; )

3. Consistency

Theorem 3. We suppose that the probability density functions fy(x) and fy(x) are con-

tinuous and that {h,} is a sequence of monotone decreasing positive numbers satisfying (2.1)
and

(3.1) m nh? = oo.
Let the measurable function K(y) satisfy (2.2) and (2.4) and let (X1}, (X2}, {pi} be mutually
independent sequences of random vectors and variables as described in section 1. Then we
have

(3.2) lim Var[D, (x)]=0 at all points x € E,,.

Nn—»00
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Furthermore if K(y) satisfy (2.3), then we have
(3.3) lim E|D, (x)— D (x)|2=0.

Proof. We shall note at first that
(3.4) Var[D , (x)]
=FED+EI3+E12+ E13—-2EL]1,

where
Lty LrgxmX *— Xy
WL 0k (6(P5 ) (T35
1 = 1 x — X!
. i j
(3.5)

We can show easily that
ET? — g, Var [f, (x)]

2

) 1
56 EIZ__<_.7q1q2nf1||{jEm|K<y>|dy]

E 12 = g, Var [f, (x)]

2

B s pplin)l|| 1K@idy].

Em

where ||f,|| =max fy(x) and || f,|| =max f,(x), whose existence is secured by the continuity
of fi(x) and fy(x). By applying (3.6) and the Schwarz’s inequality on (3.4), we have

(3.7) Var [D, (x)] = g, Var [f; (%)] + g, Var [f, (x)] + 0 (—b '

Theorem 3 in Yamato[7] implies that the right side of (3.7) tends to zero as n tends to
oo. Thus (3.2) was established.
Next, it is obvious that

(3.8) EID, (x) — D ()|* = Var [D,, (x)] + |E D, (x) — D (x)|?.
The combination of (3.2), (3.8) and Theorem 1 leads us to (3.3), thus proving the theorem,
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This theorem furnishes a sufficient condition for D,(x) to be consistent. In Theorem
3, if we assume furthermore that K(y) satisfies (2.7), then we have that both Var[D,(x)]
and E|D,(x)—D(x)|? converge to zero at all points x at which both probability density
funcions fy(x) and f,(x) are continuous.

Theorem 4. We suppose that the probability density functions fy(x) and fy(x) are con-
tinuous and that for the sequence of monotone decreasing positive numbers {h,} satisfying (2.1)
there exists a limat with

(3.9) lim L 3 ¥

n—oo N j=1 hm

O<a=<l).

Let the measurable function K(y) satisfy (2.2) and (2.4) and let (X!}, (X2}, {p:;} be
mutually independent sequences of random variables and vectors as described in section 1. Then
for D,(x) defined by (2.5) we have

(3.10) lim n A} Var[D, (x)]

Nn=*00

—a{nhi® +ah®) 1K@)?Rd.

Em
Proof. It follows from (3.7) that

(3.11) nhy Var[D, (x)] = q;-n by Var [£1 ()]
+ gam b Var [, (x)] + 0 ().

Hence by applying Theorem 4 in Yamato[7] on (3.11) we have (3.10). Thus the theorem
is proved.

4. Uniform consistency

Theorem 5. We suppose that the probability density functions fy(x) and fy(x) are uni-

formly continuous and that a sequence of monotone decreasing postive numbers {h,} satisfy
(2.1) and

4.1) Lim nl2ht = oo .

n—r0

Let the measurable function K(y) satisfy (2.3) and (2.4), its Fourier transform

(4.2) um={ ¢y K (y)d y

Em
be absolutely integrable and k(u) be nondecreasing in negative part and nonincreasing in positive
part for each argument.

Let {X1}, (X2}, {p:} be mutually independent sequences of random variables and vectors
as descrebed in section 1. Then for D,(x) defined by (2.5) we have
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(4.3) sup | D, (x) — D (x)|—=>0 '

where (4.2) denotes that sup|D,(x)—D(x)| converges to zero in probability as n tends to oo.

Proof. In terms of k(u), the Fourier transform of K(y), we have

(44) D, (x)—ED,(x)

g | b Bl - o @0 by w]e-ine du

Em TV =1

1
— —(2711'7——J. [ E [(1—-10]) ezux — @, (U )]k(kju)]e—iu’xdu

Em 7=1

where @,(#) and @,(u) are the characteristic functions of fi(x) and fy(x) respectively.
Therefore we have

(4.5) sup|D,(x) — ED,(x) |

1
éﬂﬂj\—zmwxﬂmxm u)|du
1
+ @”W.Lmjfgﬂﬂ—PﬂWX'—%%()kWNMdW

By applying the Schwartz’s inequality on (4.5)

(4.6) Esup|D,(x)— ED,(x)|

1 _1__ S u’ 1 2 v
< g |l EEl0e —am@n k] du
1/2
b | L S Bl = ) %) — gy @)1 k()17 du
(2 7t)m Em ,nz =1 ] ] 2 F2 7 .
Since E|pjen'x; —q ()21,

E|(1—p)ewx — gy ()P <1,
{hx)} is the sequence of monotone decreasing positive numbers and k(u) is nondecreasing in
negative part and nonincreasing in positive part for each argument, by (4.5) we have

(4.6) Esup|D, (x) — ED, (x)|

1 1/2

g—(mjs [nlk (Py u)|2] du
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1/2
1 /

— 2
+ @n)"n Lm [nlk(k,, u)| } du
2
T JEm]k(u)ldu.
By applying (4.1) on (4.6), we have
4.7) lim Esup|D,(x) —ED,(x)|=0.

It follows from (4.7) and Markov’s inequality that
(4.8) sup|D, (x) — ED, ()| 2 0.

Finally we remark the inequality
(4.9) sup|D,,(x)—D(x)]|

<sup|D,(x)—ED,(x)|+sup|ED,(x)—D(x)| .

By applying Corollay 1 and (4.8) on (4.9), we have (4.3). Thus the theorem is proved.

5. Asymptotic normality

Theorem 6. We suppose that the probability density functions fi(x) and fy(x) are con-
tinwous and that for the sequence of momotone decreasing positive numbers {h,} satisfying (2.1)
and (3.1) there exists a non zero limt with (3.9). Let the measurable function K(y) satisfy (2.2)
and (2.4) and let {X}}, (X2}, {p;} be mutually independent sequences of random variables and
vectors as described in section 1. Then for D,(x) defined by (2.5) the distribution function of

D, (x)—ED,(x)
v/'Var[D,(x)]

converges to the standardized normal distribution function at all points x.

(5.1)

h, = 1/n"I" (0<r<1/2) and A, = 1/(log n)!/™ are examples of sequences of monotone decreas-

ing positive numbers satisfying (2.1), (3.1), (4.1) and (3.9) with a =1/(r + 1) and a =1
respectively.

Proof. If we put for any fixed x

L gAY - .
(5.2)
a_ 1 x—Xj y —
Vie 2 E(Z5) (G=123, )
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then {o;V}—(1—p;)V?} (j=1, 2, 3,....) is a sequence of independent random variables and
we have

D,(x)—ED,(x)

(5.3)
v/ Var[D,(x)]

]Z=1 iV} —(—p)V?—q EV} +q, EV})

JVar[& 07— V]
Therefore by virtue of Lyapunov’s condition it is enough to show that

3 BloVi—(1=p) Vi—0u BV} + g BV
(5.4) lm . ” =0.
(Var [ 3 (60, V3 —(1=p) V1))

From Theorem 4 we have

k,’,” n 1 2 —1
(5.5) A Var I X, eV —(1=p) V3
= nk,’,” Var [Dn(x)]

— ¢ @AE+RAE) | K¥p)dy(—co).
Em

On the other hand, by an inequality

(5.6) (@+b+c+d)® <16 (a®+b3+c3+d3) for a,b,¢,d =0
~ we have

< :2=1E{ 10;(VE—EVY)| +1(pj—q) EV|

+1(1=p) (V; = EV}) | +1(1—pj—g) BV 1}

<16 [qlfz E|Vi—EV) +¢,3, E|V:—EV?3
j=1 7=1

+414:2(¢1+48) (]ZzlE(V} 13+;§1E’| V?|3)} '

By (5.6) and (5.9) in Yamato[7], it turns out that the right hand side of (5.7) is smaller
than



(1]
[2]
(3]
[4]
(5]
(6]

(7]

(5.9) hm =
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6Ll Fill +0all Bl ) - [ 1K (2)1%d

3
+oin(gyl| A1+ 1 5110 [ 1K(2)1d]

3

+160,ga (g2 +ad)n- (1113 11F 119 [[ | 1K()1d2]

Hence we have

n

__1E|ij]2—(1—pj)Vf —EV+qEV} |3

n—>00 3/2

(var [El oV — (=) 73} ])
1
Var| jé o Vi — (1 —p) V])

3/2

n

1
X (64 @l Al + @l 1)~ e | 1K @)1z

(nhypyriz )
3m/2 3
+ 64 =l A+ gall £ 11°) {jE K (3)|d7]
3m/2 3

I
1600 (@ +ad) " IAI1P+I1RIB]] 1E@1dd ).

Em

By applying (2.1), (2.2), (2.4), (3.1) and (5.5) on (5.9) we have (5.4), which leads us
to the completion of the theorem.

Thus we have obtained the asymptotic normality of D,(x). We considered its property
under the assumption that for {4,} there exists a non zero limit with (3.9) and the auther
wishes to develop the asymptotic normality of D,(x) without this assumption on another
occasion.
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