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1. Introduction.

We consider here the differetial equations
(L1) % +aw-+g(2)+ h(@)=e(t, 7, 7, 55)(a'o=_>

(1.2) z+ p()w+q(t)g(@) + h(x)=e(t,z,x,1) ,

where a is a positive constant and e,g,h’,p’, and q’ are continuous and real valued functions
for all  and ¢. ,
In [3] Swik considered the behavior as t—oo of solutions of the differential equations

(1.3) 7 +aw+g(z)s+h(z)=e(t)

(14) o+ p(t)a-+q(t)g(@) +h(a)—el?)
and he has shown that every solution of (1, 3) and (1.4) satisfies

(1.5) | 2(t)>0, (t)>0, z(t)—>0

as t—oo under some conditions and here in order to obtain the ultimate bondedness for
solutions of (1.3) and (1.4),
he required that the conditions

(1.6) j:le(s)ldngo for all 4,
It will be shown here that the condition (1.6) is replaced by the condition
le(t,z,y,2) | <&(t) for all t, and all (x,y,2)eR3, and
J :é(s)dsgoo for all t,

under which every solution of (1.1) and (1.2) satisfies (1.5) under the same conditions as in
K,E, Swick[3], [4]. The results of T. Hara [1], [2] and M. Yamamoro [5], [6] are interesting
for us.

I wish to express my hearty thanks to M, Tecr, T, Hara and Dr. M, Yamamoro for their
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invaluable suggestions and attentions.

2. Theorems.

The following result is well known, see [7].

Lemma 2.1.

Consider the system X=F(t,X)+G(t,X), where J;][G(s,X) || ds 4s bounded for all t
whenever X belongs to any compact subset of R". Suppose that there exists a nonnegative
Lyapunov function W(t,X) on IXQ, QCR", such that with respect to this system, W(t,X)=
-V(X), where V(x) s positive definite with respect to a closed set 2 in the space Q, Moreover
suppose F(t,X) 1s bounded and
(a) F(@,X)—H(X) for X € £ as t—o0,

F(t,X)—H(X) (uniformly) for X ¢ @ as to—oo,

where @ is any compact set in £,

(b) for each €0 and Y € 2, there exist 8(E,Y) and T (€, Y) such that if || X-Y || <3 (¢, Y)
—||F(¢X)-F@,Y)||<efor t =T (¢,Y).

Then every bounded. solution of X=F (t)+G(t,X) approaches the largest semi-invariant set
of the system X=H(X) contained in 2 as t—oo.

Theorem 1.

Assume that there exist positive constants b, ¢ and E,, and a positive function e (t) which
satisfy the following conditions,
(i) G@)a=b (@+0)
where G(X):j:g(u)du,
(i) A'(x)<c(for all x) and ab>c,
(i) A(x)sgn x>0 (z+0),
(iv) le(twy.z)|=é(t), (V(2y.2)eR?)
and E(t)=J:é(s)ds< +oo for all t.
Then every solution of (1.1) satisfies (1.5) as t—oo.

TuEOREM 2.

If there exist positive constants 8, 8,, a, b, ¢, K, L and E,, and positive function e (t)
which satisfy the conditions;
(1) h(@)z=3, (|z|=K),
(1) A(z)<c(for dll z,),
(i) g(y)/y=b(y=0),
(iv) 1=8=q(?) and ¢'(t)=0, (t=0),
(v) e=p)=L (t=0),
(vi) |e(ta,y,2) | <&(t), (for any (%,y,2,)ER3)
and E(t)zJ:é(s)ds§E0 (for t=0),
(vil) h(z) sgn x>0 (z=+0),
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and that there exist a and 8; satisfying
ble>a>1la and (1/2)p'(t)<€s=< (3,b-ac) for t=0.

Then every solution of (1.2) satisfies (1.5).
3. Proof of Theorem 1.

The equation (1.1) is equivalent to the system

T=y
(3.1) Yy=z—ay—G(x)
t=e(t,x,y,2—ay—G(x))—h(z) .
Let § be a constant such that b>pf>c/a, and we define the Lyapunov function W (¢, ,
Y, 2) as
2 W(ta,y,2)=e2EO[V(x,y,2) +k] ,
where V(z,y,2) =2aj:k(u)du+2ﬂI:G(u)du+ By*+2*+2h(x)y—2pxz, and k is a positive

constant to be determined later in the proof.

Lemma 3.1.
There exist continuous functions a(r), B(r) which satisfy the following conditions:
1) e(IXN=W(EX)=<p(IX]) (for all X and t=0)

where X=(x,y,2) and |X|=1/22+y2+22,
(i) a(r)=0 for r=0 and a(r)—co as r—oo,

Proor or Lemma 3.1.

From the condition (i) of Theorem, 1, we have
2] G(u)du=ba?
0
and thus

V(z,y,2)=2a h( Ydu +bpa? + By? + 22+ 2h(x)y —2px2

0
2 2
—bpar—2wz+2 +ﬂ(y+ ) ﬁj[ﬂ — I () ()
The first three terms can be written as

ﬁ(bwz——2wz+%zz)=ﬂ(a:,z)fl<§)
vy -1
where Az(_? 1/1/3_>

and since b>pf, the eigenvalues A, A, of 4 are both positive real constants.
If we define the constant d as
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d=min (Ap\s),
then
bfx2—2Prz+22=dp(x2+22) ,
so that

2 %

h X '
V(z,y,2) =dp(x?+22) + uy?+(— M)(y+ ﬁfl ) +2an la—ﬁ] h(u)du ,

where u is a constant satisfying
0<usp—7.
Then we have
V(x,y,2,=dp(x*+22)+p y? .
Setting l=min (df,u), we have
V(z,y,2)ZU(#*+y*+2*)=a(| X|) where |X|=v/z21,2122.

Now if we define the function A*(X)=max|k(€)|on (-0, +co0), then
—|X|=E=|X|
h*(0)=0, h(zx)<h*(z), and h*(x)<h*(y) for 0<2<y.

Likewise let we define g*(X)=max |g(§)|on (—o0,+o0), then
—|X|=E=|X]|

g*(0)=0, g(x)=g*(x), and g*(x)=<g*(y) for 0=z=y .

Thus we can define the continuous non-decreasing functions
r
H*(¢)=j h¥(s)ds ,
0

G*(¢)=I g*(s) ds for re[0,+00) .

0

Now setting Xo=(x,, y, 2) for (zy, y, 2) € R, we have

|yl SVa+12+22 =| X,
and

V(oy.2)<2a] k()| du+26[ 1G()|du+By+22+2 Mz |yl +2610] 12
0 0

=2aH*(|21)+266*(|2])+py*+2°+2h*(1z]) 1y} +26 2] |2|
<2aH*(|| X))+ 20G*(1 X 1) + (0-+ 1)(11 X 11%) + 2*(1 X ) | X |

=p(1X1) -
Thus the proof of Lemma 3.1 is completed.,
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LemMMa 3.2
Let (% (t), y (t), z (t) ) be any solution of (3.1), then along this solution
W(,;,l)(t,w,y,z)g—-26—2Eo(aﬁ—c)y2 for t=0.
Proor or LemmaA 3.2.
W (.0 (t::9,2) = —28(t)e2E OV (2,y,2) + K] +e~2E ) (2ah(2)%
+28G ()& + 2Py + 2% + 21" (x) Ly + 2h(x) Y —2 %2
—2pwt}
and from the assumptions of Theorem 1
2ah(z)E +2G(x) & + 2By + 222 +2h' (x) Ty + 2h(%) Y — 2 pd2—2 fat
<2{—(aB—c)y*—(G(2)—fz) b(x)+2(t) 12| +B2(t) || } .

Thus we have
W (5.0 (8,2,,2) = —28(8)e2E O (Va(t),y(2), () + k— | 2| — B ||}
—2¢2EM {(af—0c)y®+ (G (%) —pr)h(X)}

and
V(x(t),y(t),2(2)) +k— | 2| — B @] =dp(x*+2%) +k— |z| — B |z |
1 B
=ap(1al - 2d> +ap(11- 2dﬁ> +h— (4dﬁ 4d>

p 1 ing inequali
4aT1d ﬁ), we have the following inequality

W (5.0 (6:2:y,2) < —2¢2E O {(af—0)y>+ (G(2)— pa) (%)}
<—2e2EN)(af—c)y2=—W,(t,x,Y,2) .

Setting the constant k ;(

Q.E.D.

The function W,(t,x,y,z) is positive definite with respect to the closed set £ in the space
R3, where 2={(x,y,2)ER3; y=0}.
In the system (3.1), we set

Y 0
(3.2) F(t.X)=|2—ya—G(z) , G(¢X)=|0 ,
—h(z) e(t,x,y,2—ay—G(x))
and we take the function
0
(3.3) H(it,X)=2—G ()|,
—h(x)

then the condition (a) and (b) of Lemma 1,1 are satisfied and since F' (¢, X) is independent
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of t, and % (z), G (x) are continuous, it follows that |F(¢,X)| is bounded for all ¢ on any
compact subset of R3. Moreover from the assumptions of Theorem 1,

t
J [G(s,X)| ds is bounded for all ¢.
0

It follows from Lemma 1.1 that every solution of (3.1) approaches the largest semi-invari-
ant set of X=H(X) contained in 2 as t—oo. From (3.3), X=H(X) is the system

=0
§—2—G(a)

i=—h(x),
and therefore
‘T=C,

(t—ty)?
2

y=—h(c,) +05(t—to) —G(cy)(E—to) +c5

z2=—h(cy)(t—tg)+Cs .
To remain in £,
h(c,)=0; G(c;)=c, and ¢;=0,
and we have ¢,=0, ¢,=0 and ¢;=0.
From the assumption (ii) of Theorem 1, it follows that
z(t)—0, ©(t)—0, &(t)—0, as t—oo,
which completes the proof of Theorem 1.
4. Proof of Theorem 2.
The equation (1.2) is equivalent to the system
L=y,
(4.1) Y=z,

and we define the Lyapunov function
W(tx,yz)=eE¢) (V(txy,2)+k}
where
’ ’ 1 1
V(t,x,y,z)=I h(u)du+ aq(t)j g(u)du+ ah(x)y + 5 p(t)y2+§ az?+yz
0 0
and % is a positive constant to be determined later in the proof.

LEmMma 4.1

There exist continuous functions a (r) and b (r) with the properties;
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a(r)=0  for r=0,

b(r)=0  for r=0,
and

a(| XIN)=W(¢t,X) =b(| X])  for t=0,
where X=(z,y,2)eR3, |X|=1/z2 Fyita?
Proof of Lemma 4.1. If we set

y

H(z)= hw)du, 6(y)=| g(u)du,

0

V(69,9 =[H@)+4O0) + @yl + LpO)y + 5 az+yz,

the last three terms may be written as

1 1 _1 y
5 PO+ a2 +yz=—(y, z)A< a )

were A =<Pl(t) ;) .

And from the assumptions of Theorem 2, both of the eigenvalues of this matrix are positive
2a—1

real and greater than the constant 2L+atl)

therefore

1 1 ao—1
-2—p(t)y2+—2— az?+yz= 2L+a+1) (y2+2%) .

For the remainder terms, there exists a positive constant M such that

H(@)+ aq(t)6(y) + ah(aly ZH (z) + - abq(t)y*+ ah(aly

>H(z)+ %abslyh— ah(z)y

1 o * ah'(z)
= 2 —

> o (B +h(o) +jo[1 o Th(w)du
>1 502 M

)

for all (z,y,2) € R® and ¢=0,
where

ac

d=1— 55—
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hence
V(t,w:?/,z)zs(wz‘H/z +22) '—M

. raec —1 1
where §=min [m, -2—84] .

The remainder of the proof is likewise as the last half of the proof of Lemma 3.1.

LeMMma 4.2

Under the hyphothesis of Theorem 2, there exists a positive constant 8 such that along any
solution (x(t), y(t), 2(¢) ) of (4.1),
I./(4.1) (t,x,y,z)_g——s(yz +z2) + ae(t’w’yaz)z + e(t,w,y,z)y

Proor or LeEmMma 4.2.

I}(4.l) (t:way,z)
y
={1—p(®)}2*—{q(O)9(y)y—a k' (x)y*} +a q’(t)j g(w)du+ %p'(t)y% aze(t,z,y,2)
0
+ye(t,x,y,z) .

From the assumptions of Theorem 2,
q)g(y)y— ok’ (x)y? =q(t)by>—ah’ (z)y?
=4(t)by*— acy®
g(Sb_ ac)yz ’

—;—p’(t)yz— {q(t)g(y)y—k’(w)yz}é—;p'(t)yz—(slb_ ac)y?
=35y°
where 85=—%—83—(816—ac)>0,

therefor
y
Vg (6,7,y,2) <8622+ 85y + a(l'(t)_[ g(w)du+ oze(t,,y,2) +ye(t,,y,z)
0
< —8(y2+22) +ye(t,,y,2) + aze(t,x,y,2)

where 84=1—aa+1—ap(t) and 8=—max (3;,8;). Thus the proof is completed.

LeEmma 4.3

Under the assumptions of Theorem 2, there exists a positive constant & such that along the
solution of (4.1)

W(4.1) (tyx:y’z)é —S(?/z + 22) o
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Proor or LEmmaA 4.3.
W o (t,2,9,2)=—8(0)e O (V(£,2,5,2) + B} + € EOV (5 (62,4,2)
=—2(t)e D {8(x2+y2+2%) — M+ k) + e EO{—§(y2+2?)
+ aze(t x,y,2) +ye(t,x,y,2)}
() EO (et 4yt + ) — M+ F) e E OBy 429+ |l [2]2()

And
d(@2+y2+28)—|allz|—|y| —M+E
2
a2 la]ly 1 a2
8x+8<|yl )+3(|z| 28) TR 3 M+E.

Take the constant %2 as follows:
FzM+ 5 (L+ |al?),
we have
W4 (b:y.2) S—BeE Oy +2)
—8e~Fo(y?+2?)
—S(y2+22)  (5=8e-Fv).
The remainder of the proof of Theorem 2 can be easily proved in a similar fashion as of
Theorem 1.
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