DOUBLY TRANSITIVE PERMUTATION GROUPS OF DEGREE 5q+1, WHERE q IS a PRIME

著者	ATSUMI Tsuyoshi
journal or	鹿児島大学理学部紀要.数学・物理学・化学
publication title	
volume	8
page range	23-27
別言語のタイトル	5q+1次の2重可移群について
URL	http://hdl.handle.net/10232/00003959

Rep. Fac. Sci. Kagoshima Univ., (Math. Phys. Chem.) No. 8, pp. 23-27, 1975

DOUBLY TRANSITIVE PERMUTATION GROUPS OF DEGREE 5q+1, WHERE q IS a PRIME

By

Tsuyoshi Atsumi (Received Sept. 30, 1975)

1. Introduction and Summary

M.D. Atkinson [4] and T. Tsuzuku [9] proved the following theorem independently.

THEOREM. Let G be an insoluble transitive permutation group of degree p=4q+1where p and q are primes, which is not doubly primitive. Then G=PSL (3,3) and p=13.

Furthermore Atkinson [4] proved the following theorems.

THEOREM. Let G be a doubly transitive group of degree 2q+1, where q is a prime, which is not doubly primitive. Then G is either sharply doubly transitive or a group of automorphisms of a block design with $\lambda=1$ and k=3.

THEOREM. Let G be a doubly transitive permutation group on Ω of degree 3q+1, where q is a prime. Then one of the following statements is true.

(1) G is doubly primitive.

(2) G is sharply doubly transitive.

(3) G is a group of automorphisms of a block design on Ω with $\lambda = 1$ and k = 4.

(4) G=PSL (3,2) and q=2.

In this paper we shall prove the following theorem.

THEOREM. Let G be a doubly transitive permutation group on Ω of degree 5q+1, where q is a prime and greater than 11, Then one of the following statements is true.

(1) G is doubly primitive.

(2) G is a group of automorphisms of a block design on Ω with $\lambda = 1$ and k = 6.

(3) $|G_{\alpha\beta}||24.$

(4) G has a regular normal subgroup.

Our notation for the parameters of a block design, v, k, r, λ , is standard; see [8]. Throughout this paper the term "block" is used only in the block design sense; however, a term such as "K-block" refers to a set of imprimitivity for a group K. In order to prove Theorem we need the several lemmas.

T. Atsumi

LEMMA 1 (E. WITT [12]). Let X be a doubly transitive group on a set Ω , let a, $\beta \in \Omega$ with $a \pm \beta$ and let K be a weakly closed subgroup of $X_{\alpha\beta}$. Then, if $\Delta = fix$ (K), in the block design whose blocks are the images under X of Δ we have $\lambda = 1$.

PROOF. We omit the proof of the lemma. (See [4]).

LEMMA 2. (ATKINSON [4]). Let X be a doubly transitive group on a set Ω , let $\alpha \in \Omega$ and let Δ be a set of imprimitivity for the action of X_{α} on $\Omega - \{\alpha\}$. Let $\beta \in \Delta$ and suppose that $\Delta - \{\beta\}$ is invariant under $X_{\{\alpha,\beta\}}$ Then, in the block design whose blocks are the images under X of $\Gamma = \Delta \cup \{\alpha\}$ we have $\lambda = 1$.

PROOF. (See [4]).

LEMMA 3 (ATKINSON [4]). Let X be a doubly transitive group on a set Ω . Let $a \in \Omega$ and let Δ be a set of imprimitivity of size m for the action of X_{α} on $\Omega - \{a\}$. Then, if $\beta \in \Delta$, $X_{\{\alpha,\beta\}}$ has an invariant set Γ of size m-1 on $\Omega - \{\alpha,\beta\}$. Furthermore, if $X_{\alpha\beta}$ is transitive on $\Delta - \{\beta\}$, $X_{\alpha\beta}$ and $X_{\{\alpha,\beta\}}$ are transitive on Γ .

PROOF. (See [4]).

LEMMA 4. Let Ω be a set on which there is a non-trivial block design with $\lambda=1$. Then if $|\Omega|=5q+1$, where q is a prime, then q=3 or 19 or k=6.

PROOF. We prove this lemma by considering the incidence equations of a block design.

LEMMA 5 (E. BANNAI [5]). Let G be a transitive permutation group on Ω and $a \in \Omega$. Let $H = G_{\alpha}$ and $x \in G$. Then we have the following equation,

 $\frac{|\Omega|}{|I(x)|} |\{h \in H \mid h \text{ is } H\text{-conjugate to } x\}|$ $= |\{g \in G \mid g \text{ is } G\text{-conjugate to } x\}|.$

PROOF. We count the pairs $\{(\delta, g) | \delta \in \Omega, g \in G \ \delta^g = \delta. g \text{ is G-conjugate to } x\}$ in two ways. We get the above equation.

We shall frequently use the well-known theorem of Burnside that a transitive group of prime degree is either doubly transitive or is a metacyclic Frobenius group.

2. Proof of the theorem

Let G be a doubly transitive group on a set Ω of size 5q+1, where q is a prime. If G is a counterexample to theorem. By a theorem of [1] we have that q divides |G| to the first power only. Let Q be a Sylow q-subgroup of G_{α} where $\alpha \in \Omega$. Let $\Delta_1, \Delta_2, \Delta_3, \ldots$ be a non-trivial system of imprimitivity for the action of G_{α} on $\Omega - \{\alpha\}$. Let H = $\{x | x \in G_{\alpha}, \Delta_1 x = \Delta_1\}, K = \{x \in G_{\alpha} | \Delta_i x = \Delta_i, i = 1, 2, 3, \ldots\}$ and $\beta \in \Delta_1$. Then $G_{\alpha\beta} \subseteq H$ and $K \triangleleft G_{\alpha}$. Furthermore we can consider G_{α} to act on Δ , where $\Delta = \{\Delta_1, \Delta_2, \ldots\}$. There are two cases to consider depending on the size of the G_{α} -blocks. Case 1. $q \ G_{\alpha}$ -blocks of size 5

Clearly H acts transitively on Δ_1 . At first we assume that G_{α} acts on Δ as an insoluble group and H acts on Δ_1 as a soluble group. If H acts on Δ_1 as a regular group of order 5, then $G_{\alpha\beta}=1$ on Δ_1 . Consequently $G_{\alpha\beta}$ fixes the points of Δ_1 . So we get a contradiction by using Lemma 1. If H acts on Δ_1 as a Frobenius group of of order 10, then we can assume that $H=<(\beta\gamma\delta\epsilon\eta), (\beta)(\gamma\eta)(\delta\epsilon)>$, where $\{\beta, \gamma, \delta, \epsilon, \eta\}=\Delta_1$. $G_{\alpha\beta}$ acts on $\Delta_1-\{\beta\}$ semi-regularly and $\{\delta, \epsilon\}, \{\gamma, \eta\}$ are $G_{\alpha\beta}$ -orbits. So $\{\delta, \epsilon\}$ and $\{\gamma, \eta\}$ are $G_{\alpha\beta}$ -invariant. By Lemma 1 we can assume that $G_{\alpha\beta}$ fixes no points of Ω except α and β . So $N(G_{\alpha\beta})=G_{\{\alpha,\beta\}}$. $|G_{\{\delta,\epsilon\}}: |G_{\alpha\beta}|=|G_{\{\gamma,\eta\}}: |G_{\alpha\beta}|=2$. Consequently $N(G_{\alpha\beta})=G_{\{\alpha,\beta\}}\supset G_{\{\delta,\epsilon\}}, G_{\{\gamma,\eta\}}$. Therefore $\Delta_1-\{\beta\}$ is $G_{\{\alpha,\beta\}}$ -invariant. This fact contradicts Lemma 2.

If H acts on Δ_1 as a doubly transitive group, then $\Delta_1 - \{\beta\}$ is an orbit of $G_{\alpha\beta}(=H_{\beta})$. Since G_{α} acts on Δ as a doubly transitive group, H acts transitively on $\{\Delta_2, \ldots, \Delta_q\}$. As $|H: G_{\alpha\beta}| = |H: H_{\beta}| = 5$, all the orbits of $G_{\alpha\beta}$ on $\{\Delta_2, \ldots, \Delta_q\}$ have size at least (q-1)/5 (>4) when q > 19, and if $q \leq 19$, then all the orbits of $G_{\alpha\beta}$ on $\{\Delta_2, \ldots, \Delta_q\}$ have size at least size at least (q-1)/5 (>4) by Lemma 17. 1 [10]. It follows that $\Delta_1 - \{\beta\}$ is the unique orbit of $G_{\alpha\beta}$ of size 4 and therefore $\Delta_1 - \{\beta\}$ is $G_{\{\alpha,\beta\}}$ -invariant. We may now obtain a contradiction from Lemma 2.

Secondly if G_{α} acts on Δ as a soluble group and K is insoluble, then we may assume that G_{α} is not local in O'Nan's sense [7]. For if G_{α} is local, then $G_{\alpha}=N(P)$, where P is an abelian p-group (p: prime), and P is half-transitive on $\Omega - \{\alpha\}$. So P is a 5-group or a q-group. If P is a 5-group and P does not act on $\Omega - \{\alpha\}$ as semi-regular group, then we have a block design with $\lambda=1$ by Corollary B1 [6]. So this is a contradiction. So P acts semi-regularly. Consequently $|P|=|P_{\beta}||\beta^{P}|=5$. P is cyclic. Thus G is known by a theorem of Aschbacher [2]. We have a contradiction by considering the degree of G. Similarly we get a contradiction when P is a q-group. Therefore from now on in this particular case we can assume that G_{α} has a unique minimal normal simple subgroup N by the result of O'Nan [7]. Consequently H acts on Δ_i as A_5 or S_5 for any i. Now let be a element x of N of order 3. Then x fixes 1+2q points on Ω because N acts faithfully on Δ_i for any i. The number of the conjugate elements of x in G_{α} is 20. For G_{α} acts on Δ as a Frobenius group and so any element of G_{α} -K does not fix 1+2q points.

Therefore the number of the conjugate elements of x is $(5q+1) \ 20/(2q+1)$ by Lemma 5 and this number must be integer. $(5q+1) \ 20/(2q+1)=50-30/(2q+1)\pm an$ integer (q>11). This is a contradiction.

Finally if G_{α} acts on Δ as a soluble group and K is soluble and $K \neq 1$, then K has an abelian characteristic subgroup $M \neq 1$. Clearly $\pi(M) \cong \{2, 3, 5\}$. Let S be a S_2 subgroup of M. If $S \neq 1$, then S is weakly closed in G_{α} . For G_{α} acts on Δ as a Frobenius group and so any element of order 2^i in G_{α} -K fixes at most one Δ_i as a set, but

 $\mathbf{25}$

every element of order 2^i in S fixes at least q points on $\Omega - \{a\}$. So any element of S is not conjugate to any element of $G_{\alpha} - K$ in G_{α} . If $S^g \subseteq G_{\alpha}$ for any $g \in G$, then by the above argument $S^g \subseteq K$ and so $S^g = S^k$ for some $k \in K$ because S is a S_2 -subgroup of K and S is normal in K. Thus $S^g = S$. Clearly $S \subseteq G_{\alpha\gamma}$ for some $\gamma \in \Omega$ and S is weakly closed in $G_{\alpha\gamma}$ and S fixes at least q points on $\Omega - \{\alpha\}$. This result contradicts our assumption by Lemma 1. If S=1, then we consider S_3 -subgroup of M. Similarly we get a contradiction. So we assume that M is a 5-group. If M does not act on $\Omega - \{a\}$ as semi-regular group, then we can construct a block design with $\lambda = 1$ by Corollary B1 [6]. This is not our case. So M acts on $\Omega - \{a\}$ semi-regularly. Thus |M|=5, M is cyclic. In this case we have a contradiction by Aschbacher' result [2]. If K=1, then it follows that the S_2 -subgroup of G_{α} is cyclic. Consequently G is known by a result of Aschbacher [3]. We have a contradiction by considering the degree of G.

Case 2. 5 G_{α} -blocks of size q

Since $G_{\alpha}/K \subseteq S_5$, $q \not\models | G_{\alpha} : K |$. Therefore $Q \subseteq K$ and K is transitive on each Δ_1, Δ_2 , Δ_3, Δ_4 and Δ_5 . If N is the kernel of the action of K on Δ_1 and $N \neq 1$, then N acts transitively on some Δ_i which contradicts the fact that $q^2 \mid |G|$. Thus K acts faithfully on each of $\Delta_1, \Delta_2, \Delta_3, \Delta_4$ and Δ_5 . If K is soluble we shall show that $K_{\beta} = 1$. If K_{β} $\neq 1$, then K_{β} fixes precisely one point from each of $\Delta_1, \Delta_2, \Delta_3, \Delta_4$ and Δ_5 because K has a unique conjugacy class of subgroups of index q. Thus K_{β} and any conjugate of K_{β} fix exactly 6 points. Consider some conjugate K_{β}^{g} of K contained in $G_{\alpha\beta}$. If $K_{\beta}{}^{g} \subseteq K$ then some Δ_{i} contains none of the fixed points of $K_{\beta}{}^{g}$ and hence there is some Δ_i which contains at least two of these fixed points; but then K_{β}^{g} must fix pointwise the whole of Δ_i and so has more than 5 fixed points. Thus $K_{\beta}{}^{g} \subseteq K$ and, as K has a unique subgroup of index q which fixes β , we have $K_{\beta}{}^{g} = K_{\beta}$. Therefore K_{β} is weakly closed in $G_{\alpha\beta}$ and Lemma 1 gives us a contradiction. This means that $K_{\beta}=1$ as we asserted. $|G_{\alpha}| = 5q |G_{\alpha\beta}| = vq (v | 120)$. Consequently $|G_{\alpha\beta}| | 24$. This is a contradiction. If K is insoluble and G_{α} is local, then there is a normal q-subgroup Q' of G_{α} . |Q'| = q by Theorem [1]. So G is known by Aschbacher's Theorem [2]. Again we have a contradiction by considering the degree of G.

From now on we can assume that G_{α} has a unique minimal normal subgroup Nwhich is simple. If $C_{G_{\alpha}}(N) \neq 1$, then $C_{G_{\alpha}}(N) \supseteq N$ because $C_{G_{\alpha}}(N) \triangleleft G$ and N is a unique minimal subgroup. Therefore $Z(N) = C_N(N) \neq 1$. So N is a cyclic group of order q. G is local. This is not our case. So $C_{G_{\alpha}}(N) = 1$. $G_{\alpha} = N_{G_{\alpha}}(N)/C_{G_{\alpha}}(N)$ is considered to be included in Aut N, where Aut N is the group of the automorphisms of N. Since $N \cong \text{Inn } N$, where Inn N is the group of the inner automorphisms of N, we can consider G_{α}/N to be included in Aut N/Inn N. By a theorem of Wielandt [11] Aut N/Inn N is cyclic. So it follows that G_{α}/N is cyclic. Since G_{α}/K is a homomorphic image of G_{α}/N and $G_{\alpha}/K \subseteq S_5$. Thus G_{α}/K is cyclic and G_{α} acts on Δ regularly....(1)

As $K \subseteq G_{\alpha\beta}$, $\Gamma_1 = \Delta_1 - \{\beta\}$ is a $G_{\alpha\beta}$ -orbit of size q-1. If Γ_1 is $G_{\{\alpha,\beta\}}$ -invariant, then

we have a contradiction from Lemma 2. If Γ_1 is not $G_{\{\alpha,\beta\}}$ -invariant, then there exists another $G_{\alpha\beta}$ -orbit Γ_2 of size q-1 such that $\Gamma_1 \cup \Gamma_2$ is an orbit of $G_{\{\alpha,\beta\}}$. By Lemma 3 there is yet another $G_{\alpha\beta}$ -orbit Γ_3 of size q-1 and since it is a $G_{\{\alpha,\beta\}}$ -orbit it is distinct form Γ_1 and Γ_2 . If either of Γ_2 or Γ_3 is contained in any Δ_i then $G_{\alpha\beta}$ leaves Δ_i invariant and fixes the remaining point of Δ_i ; using Lemma 1, this leads to a There are two cases to remain. In first case there is Δ_k ($2 \leq k \leq 5$) contradiction. such that $\Delta_k \cap \Gamma_2 \neq \emptyset$ and $\Delta_k \cap \Gamma_3 \neq \emptyset$. But $\Gamma_2 \cap \Delta_k$ and $\Gamma_3 \cap \Delta_k$ are invariant under K_β and, as they are set of imprimitivity for the action of $G_{\alpha\beta}$ on Γ_2 and Γ_3 , we have $|\Delta_k \cap \Gamma_2| \leq (q-1)/2$ and $|\Delta_k \cap \Gamma_3| \leq (q-1)/2$. Consequently, K has at least 3 orbits on Δ_k . Now K acts doubly transitively on each of Δ_1 and Δ_k with characters $1+x_1$ and $1+x_2$, say, and the number of orbits of K_{θ} on Δ_k is $(1+x_1, 1+x_2) \leq 2$ and this is a contradiction. In final case we have $\Gamma_2 \subseteq \Delta_i \cup \Delta_j$, $\Gamma_3 \subseteq \Delta_k \cup \Delta_l$, where $\{i, j\} \cap \{k, l\} = \emptyset$. So $G_{\alpha\beta}$ has a element of order 2 on $\{\Delta_2, \Delta_3, \Delta_4, \Delta_5\}$. This fact contradicts (1). Thus we complete the proof of the Theorem.

Acknowledgment

The author is grateful to Prof. H. Nagao and Dr. E. Bannai for their kind suggestions.

References

- [1] K.I. Appel and E.T. Parker, On unsolvable groups of degree p=4q+1, p and q primes, Canad J. Math., 19 (1967), 583-589.
- [2] M. Aschbacher, F-Sets and permutation groups, J. Algebra, 30 (1974), 400-416.
- [3] M. Aschbacher, 2-transitive groups whose 2-point stabilizer has 2-rank 1, to appear.
- [4] M.D. Atkinson, Two theorems on doubly transitive permutation groups, J. London Math. Soc., (2), 6 (1973), 269-274.
- [5] E. Bannai, Several remarks on transitive extensions of finite permutation groups, Osaka J. Math., 8 (1971), 131-134.
- [6] M. O'Nan, A characterization of $L_n(q)$ as a permutation group, Math. Z., 127 (1972), 301-314.
- [7] M. O'Nan, Normal structure of the one-point stabilizer of doubly transitive permutation group, 1. to appear.
- [8] C.C. Sims, Computational methods in the study of permutation groups, Computational problems in abstract algebra, 169–183. John Leech (Editor). (Pergamon Press, 1970).
- [9] T. Tsuzuku, On LF₃ (3), Hokkaido J. Math., 22 (1972), 104–107.
- [10] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
- [11] H. Wielandt, On automorphisms of doubly transitive permutation groups, Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ. Canberra, August (1965), 389–393.
- [12] E. Witt, Die 5-fach transitiven Gruppen von Mathieu, Abhandl. Math. Sem. Univ. Hamburg, 12 (1937), 256-264.