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1. Introduction and Summary

M.D. Atkinson [4] and T. Tsuzuku [9] proved the following theorem
independently. '

TaEorREM. Let G be an wnsoluble transitive permutation group of degree p=4q+1
where p and q are primes, which is not doubly primitive. Then G=PSL (3,3) and p=
13.

Furthermore Atkinson [4] proved the following theorems.

TueorEM. Let G be o doubly transitive group of degree 2q-+1, where q is a prime,
which 1s not doubly primitive. Then G s either sharply doubly transitive or a group of
automorphisms of a block design with A=1 and k=3.

TaEOREM. Let G be a doubly transitive permutation group on Q of degree 3q+1,
where q 1s a prime. Then one of the following statements is true.
(1) G s doubly primitive.
(2) @G s sharply doubly tramsitive.
(8) G 4s a group of automorphisms of a block design on Q with A=1 and k=4.
(4) G=PSL (3,2) and ¢q=2.

In this paper we shall prove the following theorem.

TarEOREM. Let G be a doubly tramsitive permutation group on Q of degree 5g—+-1,
where q 1s a prime and greater than 11, Then one of the following statements is true.
(1) G 9s doubly primitive.
(2) G is a group of automorphisms of a block design on Q with A=1 and k=86.
(3) 16|24,
(4) @G has a regular normal subgroup.

Our notation for the parameters of a block design, v, k, 7, A, is standard; see [8].
Throughout this paper the term “block’ is used only in the block design sense; how-
ever, a term such as “K-block™ refers to a set of imprimitivity for a group K. In
order to prove Theorem we need the several lemmas.
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Lemma 1 (E. Wrrr [12]). Let X be a doubly transitive group on a set Q, let a, fef
with a=+f and let K be a weakly closed subgroup of X.5. Then, if A=fix (K), in the
block design whose blocks are the images under X of A we have A=1.

Proor. We omit the proof of the lemma. (See [4]).

Lemma 2. (AtrinsoN [4]). Let X be a doubly transitive group on a set Q, let
acQ and let A be a set of imprimitivity for the action of X, on Q—{a}. Let feA and
suppose that A—{B} is tnvariant under X(, ) Then, in the block design whose blocks are
the images under X of '=Au {a} we have A=1.

Proor. (See [4]).

LemMA 3 (AtkiNsoN [4]). Let X be a doubly tramsitive group on a set Q. Let
acQ and let A be a set of imprimativity of size m for the action of X, on Q-{a}. Then, if
Bed; X5 has an tnvariant set T of size m-1 on Q—(,5). Furthermore, if X4 %8
tramsitive on A—{f}, X5 and X{(, ) are transitive on T

Proor. (See [4]).

Lemma 4. Let Q be a set on which there is a non-trivial block design with A=1.
Then if |Q|=bq+1, where q is a prime, then g=3 or 19 or k=6.

Proor. We prove this lemma by considering the incidence equations of a block
design.

Levmma 5 (E. Banwnar [5]). Let G be a transitive permutation group on Q and
0eQ. Let H=G, and zcG. Then we have the following equation,

—l—}% |{heH| h is H-conjugate to } |

=|{9eG|g ts G-conjugate to z}|.

Proor. We count the pairs {(3, ¢)|8eQ, geG 8¢=S8. g vs G-conjugate to z} in
two ways. We get the above equation.

We shall frequently use the well-known theorem of Burnside that a transitive
group of prime degree is either doubly transitive or is a metacyclic Frobenius group.

2. Proof of the theorem

Let G be a doubly transitive group on a set Q of size 5¢+-1, where ¢ is a prime. If
G is a counterexample to theorem. By a theorem of [1] we have that ¢ divides |G| to
the first power only. Let @ be a Sylow g-subgroup of ¢, where acQ. Let A;, A, A, .. ..
be a non-trivial system of imprimitivity for the action of G, on Q—{a}. Let H=
{z|zeG,. A=A}, K={zeG,|Ax=4,;, i=1,2,3, ....} and fed;. Then G, H
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and K<|G,. Furthermore we can consider G, to act on A, where A={A,, A,, ....}.
There are two cases to consider depending on the size of the G, -blocks.
Case 1. ¢ G,-blocks of size 5

Clearly H acts transitively on A,. At first we assume that G, acts on A as an
insoluble group and H acts on A; as a soluble group. If H acts on A; as a regular
group of order 5, then G,,=1 on A,. Consequently G, fixes the points of A;. So
we get a contradiction by using Lemma 1. If H acts on A, as a Frobenius group of
of order 10, then we can assume that H=<(8y8¢n), (B) (¥7) (8€)>, where {B, y, §, €,
n}=4A,. G, acts on A;—{f} semi-regularly and (3, €}, {y, 7} are G 4-orbits. So
{3, ¢} and {y, 7} are G -invariant. By Lemma 1 we can assume that G, fixes no
points of Q except @ and B. So N(G,)=G1(,z). GG} Gul=IG(,,): Gul=2.
Consequently N(G,)=G1, D0 ,), G(,,,). Therefore A,—{B} is G{,z)-invariant.
This fact contradicts Lemma 2.

If H acts on A, as a doubly transitive group, then A,— {8} is an orbit of G, z(=Hj).
Since ¢, acts on A as a doubly transitive group, H acts transitively on {A,, .... Ag}.
As |H: G,4|=|H: H;|=5, all the orbits of G,; on {A,....A;} have size at least
(¢-1)/5 (>4) when ¢>19, and if ¢<19, then all the orbits of G,; on {A,....A,} have
size at least (¢-1) (>4) by Lemma 17. 1 [10]. It follows that A,—{f} is the unique
orbit of G, of size 4 and therefore A,—{f} is G, z)-invariant. We may now
obtain a contradiction from Lemma 2.

Secondly if G, acts on A as a soluble group and K is insoluble, then we may
assume that @, is not local in O’Nan’s sense [7]. For if G, is local, then G ,=N(P),
where P is an abelian p-group (p: prime), and P is half-transitive on Q—{a}. So
P is a b-group or a g-group. If P is a 5-group and P does not act on Q—{a} as
semi-regular group, then we have a block design with A=1 by Corollary Bl [6]. So
this is a contradiction. So P acts semi-regularly. Consequently |P| =|P,||B¥|=b5.
P is cyclic. Thus G is known by a theorem of Aschbacher [2]. We have a contradiction
by considering the degree of . Similarly we get a contradiction when P is a ¢-group.
Therefore from now on in this particular case we can assume that G, has a unique
minimal normal simple subgroup N by the result of O’Nan [7]. Consequently H acts
on A; as A; or S; for any 2. Now let be a element  of N of order 3. Then x fixes
1-+2¢ points on Q because N acts faithfully on A; for any ¢. The number of the con-
jugate elements of z in G, is 20. For ¢, acts on A as a Frobenius group and so any
element of G,-K does not fix 1+2¢ points.

Therefore the number of the conjugate elements of z is (5g-+1) 20/(2g+1) by Lemma 5
and this number must be integer. (5¢+1) 20/(29+1)=50-30/(2¢+1)=*an integer
(¢>11). This is a contradiction.

Finally if G, acts on A as a soluble group and K is soluble and K=1, then K has
an abelian characteristic subgroup M=1. Clearly #(M)={2, 3, 5}. Let S be a S,-
subgroup of M. If S=1, then S is weakly closed in ,. For G, acts on A as a Frobenius
group and so any element of order 2¢ in G -K fixes at most one A; as a set, but
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every element of order 2 in S fixes at least ¢ points on Q—{a}. So any element of S
1s not conjugate to any element of G,—K in ¢,. If S.<@, for any ge@, then by the
above argument S¢S K and so S¢=8* for some keK because S is a S,-subgroup of K
and S is normal in K. Thus S¢=S. Clearly S=G,, for some ycQ and S is weakly
closed in G,, and S fixes at least ¢ points on Q—{a}. This result contradicts our
assumption by Lemma 1. If S=I, then we consider S;-subgroup of M. Similarly
we get a contradiction. So we assume that M is a 5-group. If M does not act on
Q—{a} as semi-regular group, then we can construct a block design with A=1 by
Corollary B1 [6]. This is not our case. So M acts on Q—{a} semi-regularly. Thus
|M|=5, M is cyclic. In this case we have a contradiction by Aschbacher’ result [2].
If K=1, then it follows that the S,-subgroup of @, is cyclic. Consequently G is known
by a result of Aschbacher [3]. We have a contradiction by considering the degree of
G.

Case 2. 5 G,-blocks of size ¢ .

Since G,/K<S;, qY|G,: K|. Therefore Q=K and K is transitive on each A;, A,,
Ay, A, and A;. If N is the kernel of the action of K on A; and N=1, then N acts
transitively on some A; which contradicts the fact that ¢2\|G|. Thus K acts faithfully
on each of A}, Ay, Ay, A, and A;. If K is soluble we shall show that K,=1. If K,
#1, then K, fixes precisely one point from each of A, A, A, A, and Ay because K
has a unique conjugacy class of subgroups of index g. Thus K; and any conjugate
of K, fix exactly 6 points. Consider some conjugate Kz of K contained in G, If
K&K then some A; contains none of the fixed points of K¢ and hence there is some
A; which contains at least two of these fixed points; but then Kz¢ must fix pointwise
the whole of A; and so has more than b fixed points. Thus K;#=K. and, as K has a
unique subgroup of index ¢ which fixes 8, we have K,¢=K,;. Therefore K, is weakly
closed in (.4 and Lemma 1 gives us a contradiction. This means that K,=1 as we
asserted. |G,|=>5q|G,;z|=vq(v|120). Consequently |G,4||24. This is a contradiction.
If K is insoluble and @, is local, then there is a normal g¢-subgroup @’ of G..
|| =g by Theorem [1]. So G is known by Aschbacher’s Theorem [2]. Again we
have a contradiction by considering the degree of G.

From now on we can assume that ¢, has a unique minimal normal subgroup N
which is simple. If Cg, (N)=1, then C¢, (N)2N because C;, (N)<|G and N is a unique
minimal subgroup. Therefore Z(N)=Cy(N)+1. So N is a cyclic group of order g¢.
G is local. This is not our case. So Cg, (N)=1. G,=Ng, (N)/Cs.(N) is considered
to be included in Aut N, where Aut N is the group of the automorphisms of N.
Since N=~Inn N, where Inn N is the group of the inner automorphisms of N,
we can consider G,/N to be included in Aut N/Inn N. By a theorem of Wielandt
[11] Aut N/Inn N is cyclic. So it follows that G,/N is cyclic. Since G,/K is a
homomorphic image of ¢,/N and G,/K<S;. Thus G,/K is cyclic and G, acts on A
regularly.....(1)

As K=G,p, I')=0,—{B) is a G 4-orbit of size ¢-1. If ' is G(,,z}-invariant, then
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we have a contradiction from Lemma 2. If I'; is not G, )-invariant, then there
exists another G,-orbit [', of size ¢-1 such that I';UT, is an orbit of G{(,z. By
Lemma 3 there is yet another G, 4-orbit I'y of size ¢—1 and since it is a G/(,,z}-orbit it is
distinet form I'; and I'y. If either of I, or 'y is contained in any A; then G,; leaves
A; invariant and fixes the remaining point of A;; using Lemma 1, this leads to a
contradiction. There are two cases to remain. In first case there is 4, (2<k=5)
such that A,NTy#+06 and A, NT3=6. But I',NA,; and [3NA, are invariant under K,
and, as they are set of imprimitivity for the action of G, on I', and I, we have
18, NT,]=(¢-1)/2 and |A,NT;]=(¢-1)/2. Consequently, K has at least 3 orbits on
A;. Now K acts doubly transitively on each of A; and A; with characters 14z, and
14-z,, say, and the number of orbits of K; on A, is (1+z;, 14,)<2 and this is a
contradiction. In final case we have I')=A,U4A;, T';=A,UAD;, where {4, 5} N (£, [} =0.
So G,; has a element of order 2 on {4,, 4;, 4,, 4;}. This fact contradicts (1). Thus
we complete the proof of the Theorem.
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