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O. Summary.

A measure of the difference between two continuous distributions is estimated by
a Bayesian method. The proposed estimators are consistent. The absolute value of
the difference between one of our estimators and the U.M.V. unbiased estimator is
smaller than 2(m/(m2-1)4n/(n?-1) ), where m and n are sample sizes.

1. Introduction

A measure of the difference between two distribution functions # and G is given
by

+00
are = | [F(t)—G(t)]zdF(—t);ﬂQ. (1.1)

It is well-known that F(t)=G(¢) if and only if d(F, G)=0, for continuous F and G.
If the distribution functions F' and G are continuous, then the measure d(¥, G) can be
written as '

4 +00 . + 00
AEG) =~ {j G(t)dFZ(t)+J F(ydee) (1.2)
(See, for example, Fraser [4], p. 164-165).
Let X;,...., X,, be a sample of size m from an unknown continuous distribution
Fand Y,,...., Y, be a sample of size n from an unknown continuous distribution G.

We want to estimate a measure of the difference d(¥, ). We shall derive an estimator
by a Bayesian method. In our problem the parameter space @ is the set of all
continuous distribution functions on the real line, R. Let the action space be the
interval [0, 1]. Let the loss function be L(F, G, d)=(d(F, G)-d)? for an action d.
Before we say a prior distribution on @, following Doksum [2] we define a linearized
Dirichlet process. Let @, b be constants with a<b and we choose a set of points #,. .,
t, with a=t, <t,<.--<t=b. Then the set of points A4=(t;, ....,t;) is called the

division into subintervals and we deno‘celsmgkm . “t,-ﬂ-t,- by |4|. Let a be a positive
ish- .
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and o-additive finite measure on (R, &) with support (a, b), where & is the o-field
of Borel sets. We recall o determines a Dirichlet process, which has as its realiza-
tion a discrete distribution function H, such that Hy(a)=0 and Hy(b)=1 with
probability one. Given a division 4 of the interval (a, b), the joint distribution of
the corresponding increments of the distribution function being a Dirichlet process
is denoted by a Dirichlet distribution, and we define a linearized Dirichlet process
on Definition 1. For the Dirichlet process see Ferguson [3].

DerinitioN 1. We say H s a linearized Dirichlet process with the parameters
a, 4 when H s linear between the points (ty, Hy(ty) ),. ..., (tr, Hy (t;) ) and Hy (t;), 1=1,
..., are the realization of the Dirichlet process with parameter o having support (a, b),
where a=t,, b=t;, and A(t,,...., t;).

Let F and G' be independent and be linearized Dirichlet process with the
parameters a, 4 and B, 4 respectively, with a, § dominated by the Lebesgue measure
on R. Since we shall estimate a measure d(¥, G) with squared error loss, the Bayes
estimate is given by

E[d(F, ®)|Xy. ..., X, Yoy .., Vol

We shall derive the above estimate and its limit in section 2.

2. Estimators.

Since a ((—oo, ¢ JU[#s, 0))=0 and B ((—oo, t,JU[ %, 0))=0, we have with
probability one '

F(t) = G(t) =0 for t<t,
Fit)=6@1)=1 for t=t;.
By the definition we have for ¢;<t<t;sy, 1=1,...., k-1
, Flt V(2.
Fy— TG (),
bivr—1;

G(t+1)—G(t)

tiri— Y

G(t)= (t—t,)+G(t;).

Therefore we have easily with probability one

big

_ 4 _kf[ J t”lG(t)sz(t)Jrj 1F(t)dGz(t)}, (2.1)

3 i=1 t; 1

d(FQ)

where

¢,

[ 60t = - (6060 —60) Fi)—Fey

+[G(t;+1) +GE)E () [F(tir)—F(2:)]
+G(¢;) [F(t+1)—F(2,)2 (2.2)
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t-
and by replacing F with G and ¢ with F we have the equality for I’+1F(t)dG2(t).
ti
Let us put

F (t) = pruFo(t)+ (L= p1,m) F u(?) (2.3)
Gn(t) = Pa,nGo() + (L —D2,n)G(?), (2.4)

where (i) py,n=a(R)/(a(B)+m), ps,,=FR)/(B(R)+n), (i) Fot)=a((—oco,t])/a(R), Gq(t)
=p((—o0, t])/B(R) and (iii) F,(t) and G,(¢) are the empirical distribution functions
of the samples X,,...., X,and Y,,...., Y, respectively. For our prior distribu-
tions we have \

Fat)=G,t)=0 for t<t,,

Fut)=@G,0=1 for t>t,
with probability one. Corresponding to the division 4, we define a distribution
function F,,, 4 which is linear between the points (t,, £, (t),.... (t F, (t,)) and

similarly we define a distribution function @, , which is linear between the points
(tr, Gu(t)),. ..., (tss G,(t)). Then we obviously have

lim £ t) = E,0)  for teC(F,), (2.5)
llAi’mO G, At) = G, @) for tC(@,) , (2.6)

where C(H) denotes the all continuity points of H.

Lemma 1. We have with probability one

E“ti+1 GOAF()| Xy, -+, X Vs o+, Y, |

123

_ _dB)dm
~ a(R)+m+1 I G, ADIF, A1)

1 9 lin \
@yt 5] O d0iFa, 40

A

1 \
5 Gt Pt —F (6] (27)
Proor. The posterior distribution of (F(t;, F(ti+,)-F(t;), 1-F(ti+,)) given X,

.., X,, is a Dirichlet distribution with parameter ((a-l— % 8x;) (—oot]), (a+ §3x,~)
j=1 j=1

(@, tird), (@ + in: 8x;) ((ti+1, ©0) )) , Where §, denotes the unite measure concentrating
. =1

at the point z. The posterior distribution of (G(t;), G(¢;+1)-G(t;), 1-G(t;+,) ) given Y,
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...+, Y, is a Dirichelt distribution with parameter ((ﬂ + f 3y;) ((—o0,t) ), (B+ Zn] dv;)
i=1 =1

( (8 tix1]), (B+ ﬁISYj) (41, o) )>. Hence by taking the conditional expectation of
=

(2.2) given X,,...., X,,, Y,,....,Y, we have (2.7).

From the lemma 1 we have with probability one

E Ub GOAF) | X, -+, Xy, Vyy oo, ¥, ]

a(R)+m ' fr2 ’
= a®+mi1] On A0 40
1 2 -

* By 5] G d09Fn )

1 &= A A
5 B Oultin) (B lti)—Fult) 1] 29

Thus the Bayes estimate is |
EdF,M Xy, -, Xy Yoy o+, Y]

4 aB)+m ‘.

" 38 aB)+m+1 aGﬂ.A(t)dFm,A(t)

LN PR
—W{?L ny AQOTE 1, 4(2)

1 &= A 2
+ 5 5 6lt) [Fultion)—Fult)

R ’ 4
B 735(3_)::’:_1 I F,. 4062, 4(t)

1 2 1
_W [—3—‘[ Fm, A(t)dGn, A(t)

1 k=1,
+ "3—1:%'; Fo(tinn) [Goltin)—Gault) 1} .

Next we shall evaulate this estimate in the limit.
Since the measure f is dominated by the Lebesgue measure on R, G,(f) is an

absolutely continuous distribution function on R and has its derivative Gy(¢).

Lemma 2. If max G'y(t) @s finite, then we have with probability one
astsbh



A Bayesian Estimation of a Measure of the Difference Between two Continuous Distributions 33

hlmo G,, AOTF, alt) —j G (O)IF (1), (29
|Al -
b
tim [ Gt a2, A(t)=j G.IF (). (2.10)
Al —
Proor. Let y;,...., y, be the observations of Y,,....,Y, and y,=a, y,,=
b. The points %y,...., y, are discontinuity points of @, and are with probability
one continuity points of F,. Now we evaluate the integral
b . ” Vi1 R '
[ G awifn =3[ Guatifn, 40). (2.11)
a I=0%yj

Since y; and y,;, are continuity points of F,, with probability one £, is continuous on
[¥;, y;+0] and [yj+;—8, y;+1] for a sutiable $>>0 with probability one. For this §,
we choose an arbitrary ¢ with 0<£<$ and choose a division into subintervals 4 of (a,
b) with |4|<¢. The points in the division 4 which lie on the open interval (y;+3,
y;j+1—3) are denoted by ¢,,. ..., ¢,—,, the point in the division 4 which is the largest one
below y;+8 is denoted by #, and the point in the division § which is the smallest one
above y;,,—8 is denoted by ¢,. Then y;<ty<y;+8 and y;+;—8=t,<yj+;. Since G,
has the derivative p,, ,,G;(t) on [ty t,], we have for te[y;+8, y;+;—38]

|G t)=Gulf) = _max Goltser)—Galt)|

= max Gy(&)|t—til
i=0.,7-1
where ¢,<¢,<t,:,. We shall denote max Gi(t) by M. Then we have
asts

1G,,4(0)—G,(t)| <Me for te[y;+8,y;+1—3] and therefore

Vi~ . Yip—=d .
H G, JO)AF . 4(t) — j C.(0dF , 4lt) | <Me. (2.12)

yj+s y;+8

On the other hand @, is continuous on [y;+38, y;+,—8] and y j+38, y;+;—8¢C(F,,). There-
fore by (2.5) we have

Yip1—d . Yipr~d .
lim j G.()dF , 4(t) =j G.()AE (1). (2.13)
|a] =0 y;+38 yj+é

By (2.12) and (2.13) we have

Yjgr=0 . Vi -2 .
lim j G, s0)dF,, A(t)=j G0)AF (0). 2.14)
1] =0 yj+d yj+38

Yi+d Y548

In the inequality, O<I G, At)dF, At)= J dF, 4(t), the right hand term

yj yi
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y5+8 4 o, ZE
converges to dF ,(t) because F, is continuous at y;, y;+8. Since I dF (1)

y§ Yi
becomes arbitrary small when we choose an arbitraily small §, we have

yj+d

5,1|1AI|£1.OJ Gy, A)AF , s0)=0, (2.15)
yj+0 . .
%imo_[ @A (t)=0. (2.16)
—> 9j ]
Similarly we have
tim [ @, At)dF
i n l Fm t)= O, 2.17
Jm,] | On s ) (217)
Yis1 ‘ .
1imj G.(t)dE () = O. (2.18)
0—0 Yji41—?

By (2.14), (2.15), (2.16), (2.17) and (2.18), we have
Vit . Vi1 o
im [ Gy, s, at) = GudF ()
1a] -0 9 9j _ )
with probability one and consequently by (2.11) we obtain (2.9) with probability one.
Similarly we can show (2.10) with probability one. Thus the lemma is proved.
By applying Lemma 2 to (2.8), under the condition

max Gy(t)<co we have with probability one
astsh

b

lim E[J G(t)sz(t) ’Xh v ':Xm’ Yl} ) Yn

|al -0
1 b ) b )
=—a(R)+m+ T ” G, ()dF , (t)+(a(R)+m) J G () dF2(t)}.

Under the condition max Fi(t)<co we also have the similar result about the
astsbh

b
conditional expectation of I F(t) dG2(t) given the samples. By using these results to
the conditional expectation of (1.2) given the samples, we have

Propostrion 1. If maxz Fi(t) and max Go(t) are finite then we have with
astsb ast<b

probability one
lim E[d(F,G)IXla °e ',Xma Yla ) Yn]

|A}-0
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b

=5 it ] Q0080 [ 0080
b
W”F (04C.(0)+ (B(R)+n) j W0AG3(0)]

We have derived the proposition 1 based on a particular prior distribution. The
author propose a following estimator d(F, G) of a measure d(F, G) with continuous ¥
and @,

4 1 ®

U0.6) =~ it | GOEL0+a@®+m) | Gu0afi0)

- 79(‘1%7}%_1 | _Fuwab.o+@®en | Fanads),
Where (1), a, B are non-negative, finitely additive and finite measures on (R, Z) and
(i) F, (t),G, () are given by (2.3), (2.4) with py, ,=a(R)/(a(R)+(m), ps, ,=B(R)/(B(R)
+mn), Fo (t)=a ((—oo, t])/a(R), Gy (t)=p((—co, t])/B(R) and the empirical distribu-
tion functions F,,(), G,(t). In the estimator d(F, @), we may put the prior infor-
mation about F and G into a and f, respectively. By letting a(R) and g(R) tend to
zero in d(F, G), we have an estimator

d*(F,G)=—~§—— mil [jw G,,(t)olFm(t)-l—mrj G,,(t)dF,%,(t)]
— ni - {jeijm(t)dG,,(t)+nji°mFm(t)dGﬁ(t)} .

This estimator is written as follows,

d*(F G) =i — '—‘];‘— [U + % imax{j: Y( -)SX(-)}:]
’ 3 mmm+l) LY S =
— ———1——[U2+ Zn:j max{t: X )<Y -)}],
mn(n+1) =1 =y
where
U, =no. of ((0.J): X;<Y;}, U;=mno. of{(v,7):Y;<X}},
X ;) is the ¢-th smallest order statistic of X,,...., X,, and Y, is the j-th smallest
order statistic of Y;,...., Y,. In the next section, we shall investigate the properties

of the estimators d(F, G) and d* (F, @).

The d(F, G) given by (1.2) implies a measure of the difference between two
distribution functions F and @ if and only if ¥ and G are continuous. Therefore the
author did not choose Dirichlet processes as prior distributions to estimate a measure
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d(F, @) given by (1.2). By using linearized Dirichlet processes as prior distributions,
the author derived the Bayes estimate of a measure d(#, G). The limit of the Bayes
estimate suggested the estimators d(F, @) and d* (F, G).

If we regard the d(F; @) given by (1.2) as a quantity made by two distributions
F and G which are not necessarily continuous and if we choose Dirichlet processes as
prior distributions, then we can directly compute the Bayes estimate of a quantity
d(F, @) given by (1.2). This estimate is equal to d(F, G).

3. Properties of the estimators.

The estimators ai(F, G) and d*(F, G) can be used to estimate d(F, G) with
continuous distribution functions F and G. A reason for this is the following

Prorostoton 2. Let X;,...., X, and Y,,...., Y, be samples of size m and n from
continuous distribution functions F and G, respectively. Then the estimator d(F, @)
converges to d(F, G) as m and n tend to infinity with probability one.

Proor. @,(t) converges to G(¢) uniformly as n tends to infinity with probability
one (See, Ferguson [2], p. 223). Hence in the inequality

] G0—6m1iF 0| <suplGu0—-60)1,
the right hand converges to zero as n tends to infinity with probability one. Since
G is bounded and continuous, we have

(o] o0

lim j G@)dE(t) =j G(t)dF )

with probabilityone. Therefore the integral

00

jw Gn<t)dﬁm(t>=j°° (@) —CaNdE )+ | GO0

—_ - 00

converges to I G@t)dF(t) as m and » tend to infinity with probability one.

- 00

Similarly we have with probability one

im | Gmifan=[ Goir,
im [ E.0d00 =] Foiee,
in | Emdcm = F()d6a ().
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From the above four convergences, we have with probability one

| lin d(F,G) = d(F,G). (3.1)
m,n—>0
Thus the proposition is proved. ,

It follows that d(F, @) and d*(F, G) are consistent estimators of d(F, @) with
continuous F and ¢. Next we shall compare the estimator d*(¥, ¢) with the U.M.V.
unbiased estimator of d(¥, () in absolutely continuous case. If F and G are
absolutely continuous, then the U.M.V. unbiased estimator of d(¥, () is given by

UFG) = [@1@ PSR A A% % ARE S FENCE
where ¢

1 if max(X;, X,)<min(Y,, Y,) or
¢ (Xy; Xy, Yy, V)= max(Yy, Y,)<min(X;, X,)
: 0 otherwise

(See, Zacks [5], p. 155). Before a comparison we prepare

Lemma 3. If F and G are absoluiely continuous, then we have with probability one

AF.G) = —‘;— — ‘w]'l_T {mr G()dF 2 () — r G,,(t)dFm(t)]

— 00 -0

1 (o] (o0] |

{n[ Fm(t)dGﬁ(t)—J F,(0)6,(1) . (3.3)

— o0 —o0

n—1

Proor. Since the right hand of (3.3) is an unbiased estimator of d(¥, (), symme-
tric in X;,...., X,, and symmetric in Y,,...., Y,, the right hand of (3.3) is identical
with d(F, G) with probability one. Thus the lemma is proved.

ProrosttTion 3. Let X,,...., X,, be a sample of size m from a distribution F and
Yi...., Y, be a sample of size n from a distribution G. If F and G are absolutely
continuous, then we have with probability one

" . m n
|d%(F, &) —d(F, 6)| <2 ( — Tt T ) (4.3)
Proor. By the inequality

o]

0§j G (t)dF2(1)=<2 jw G (0)dF(¢),

— 00

we have
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jljw G”(c)dﬁ,s,(t)_-jw G(OAF () | = r G, (1)dF,()=<1. (3.5)
Similarly we hav_ew - -
Hw Fm(t)de,(t)—r P60 |=<1. (3.6)
By applying (3.5) and (3—5 to the equati;:
d*(F,G)—d(F,G) = m%fl me G, (1) AFz(t)— rm GL(O)AF (1)
+ nf_’fl [I:F,,,(t)dag(t)_j:Fm(t)dG,,(t)],

we have (3.4) with probability one. Thus the proposition is proved.

If m<n and lim % exists, then from Proposition 3
Mm—>»00

lim [ vm(d*(F, G)—d(F, @)} —vm(dF,F)—d(F,G)}]=0

with probability one and then by Theorem 5.6 of Fraser [4], p. 229, vm (d(F, @)—d
(F, @)} has a limiting normal distribution with mean zero. Therefore by Theorem
4.1 of Billingsley [1], p. 25, if m<n and lim —::b— exists, then v (d*(F, G)—d(F, G)}

has a limiting normal distribution with mean zero.

The author wishes to thank Prof. A. Kudo of Kyushu University for his
encouragments and advices.
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