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In Proc. Japan Acad. Vol. 48, No. 7 (1972), pp. 484-488, Theorems 1,2 and 3 are
not valid as they stand. From Lemmas 1.2 and 1.3 we can not derive these Theorems,
and we shall give the corrected forms of them in this paper. And we shall give the
detailed proofs of all results, which are stated without proofs in the paper mentioned
above.

First we consider the first order differential equation;

(1.1) y =1 (@y)

Y(@o) = Yo -

According to Euler’s method, we shall try to approximate the equation (1.1) by the
following difference equation;

(1.2) Ynt1 = Ynt+1f (@usln);
where y, is an approximation of the solution of (1.1) at z=x,=x,+nh.

In actual calculation, the calculated value of y,., is given by the formula;

(1.3) - Yutr = Yu+ b f (@ny,)—R, (R, ; round-off error).
On the other hand, if we denote the true value of the solution of (1.1) at the point
z=x, by y(z,), we have also the relation;

(L4) Y(@pt) = Y@+ Hf @ (@2)) + (DY (£1)

where ¢, =2,+0,h (0<6,<1).
If we subtract (1.3) from (1.4) and write

(L)  B,=R,+(1/2ky'(s)

€n = Y(Tp)—Yn> e =0,

we find the difference equation;

(16) €n+1 = 8n+k(f (mn?y(wn))”f(wmyn))_{"En .
We notice first that we may write

f(wmy(wn))—f(wm Yn) ny(wm nn)(y(mn)"’yn)

if f, exists, where 7, is a number between y, and y(x,), so that (1.6) may be written
in the form;

(1.7) w1 = €+ he.f (T, 1,)+E,,
or

(1.8) Ven = pueu-1,+ (hfy (Tu-1, Mu-1) — Pu)en—1 + By
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Here we discuss respectively the asymptotic behavior of the solution of (1.7)
and (1.8).

Theorem [1]. Consider the difference equation (1.7) under the assumptions;

m ey <ve (—oo<y<-+o0)
S (et G0+ IRDSL  for 0<h<
() [ fy(@, y)| <o(x) (—oo<y < +00)

‘where AM, 3h,, >0

Z_%O k¢(x0+uk)g95£ for O<h<hy,
(3) € = O’
then we have

le,| < C (L<O)

Sfor O<h<min{hg, hy}.
Proof. The proof is derived by mathematical induction. Let us assume
le,|<C (»=0,1,2,-.-,n—1),
and we shall show
le,| <C.
From (1.7) and the hypothesis of the induction, we have

n-1 n-1
lenl < 3 1hf (o vk, )e, | + 5, | Eeotvh)|

n—1
Sho ;0 !fy(xo+”k: 771;) l +L ’
and taking % so small that conditions (1) and (2) are satisfied,
len] <C. Q.E.D.

Next we shall show that, under certain conditions, the solution of difference
equation (1.8) monotonically decreases as n—>co. Before stating the Theorem, we shall
give a Lemma. ‘

Lemma [1.1]. The solution of the equation;
v2(xy+nh) = A,z2(xy+ (n—1)h)
+ B(wy+ (n—1)h)2(o+ (n—1)h) +w(zo+ (n—1)h)
is gwen by .

2(y+nh) = 2(x,) Y (2 + nh)

+ n‘i—:: Y (y+nh) Y12+ (v + 1) k) B(xy+vh)2(z,+vh)

n ”gl Y (@ + k) Y =@y + (v-+ 1)h)(zy+ vh),
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where Y (x) is a solution of the following equation;
vY(xy+nh) = A4,Y (xy+(n—1)h)

Y (xg)=1.
Proof. The proof proceeds by the well known method, namely the variation of

parameters.
Let

2(wy+nh) = Y (2 + nh)u(xy+nh),
then \

va(Ty+nh) = 7Y (xy+ nh)u(xy+ nh)

= (@ + (n—1)R)w Y (% + nh) + Y (19+ nh)gu(ry+nh),

and

vY(xy+nh) = 4,Y(xy+ (n—1)h).
Thus

A, Y (zy+ (n—1)h)yu(xo+ (n—1)h) + Y (x4 + nh)yu(xy+nh)
= 4, Y (xy+ (n—1)h)yu(xy+ (n—1)h) + B(xy+ (n—1)A) Y (29 + (n— 1) h)u(ze+ (n—1)A)
+w(wy+(n—1)h),
and hence
vu(wy+nh) = Y=Y+ nh)B(ay+ (n—1)h)2(,+ (n—1)hk)
+ Y =12+ nh)w(xy+ (n—1)k).
From the above equation, we have

(g + k) = ulzg)+ "g: Y~Y(tg-+ (v + 1)) B(to + vh) (@ +vh)

v ’L_i;l Y12y + v+ L)R)w(zo+vh),

where
2(@) = Y (wo)u(o) = u(o)-
Thus, we have the solution;
2(wy+nh) = Y (x,+ nh)u(ry+nh)

— () Y@+ k) + Y (@ +1h) "‘_iol Y1+ @+ L)) B(@y+vh)e(y+vh)

+ Y (xy+nh) ng_}ol Y Y xy+ (v+ 1)h)w(zy+vh).
Q. E. D.

Theorem [2]. Suppose that there exist constants
AM >0, 3hy, 3,>0, 3(A,}, 3{a,}, IL,>0, IL,>0, 3L;>0, (L+Ly<1), which satisfy
the following conditions;

(1) 0<|1+4 4| el (v=12,..-)

n-1
Y |4, =L,eMn,
v=]
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2) | fy(,y)| <o(x) (—oo<y <o)

z:;: ho(@,+vh)y<(1—L—Lg)es  for 0<h<hy,

I = (—eo<y<o0)
where ‘
(1/2)h%r(zy+ (v +0,)h) + R, < @, Lgeto+*1+e++% for 0<h<h,
n—1 .
go a,<LyeM (2g=0),
(4) € =0,
then we have
Ien| SL36A1+A2+'"+AM (n = 1, 2’- . .)

Jor 0O<h<min{hy, hy}.

Proof. The proof is carried out by mathematical induction. For the case n=1,
the proposition is clearly true, and for the case n=2, we have
leal <hleyfy(@1,m) |+ | Byl + | By
<hley|0(@)+ (ap+ )6
<Ly
Let us assume
|€y | < Lgehitrot s +Am (m=1,2,--+, n—1),

and we shall show that the above inequality holds for m=n as well. From Lemma
[1.1], we have

leal <1 X(og+nt) 'S, Yo+ - LR+ 9hm.)— Aol |

n—

+1¥(@tnt) 'S, Yot 6+ DIE, |

Thus from the conditions (1), (2), and the hypothesis of induction

| Y (oo tnh) S Y4+ ot DR (20 Hh, 1)~ e, |
< WY (wy+nh) g: Y-z, + @+ 1)h)e, 0@y +vh) |

n—1
1Y @tnh) 8 Y ot G+ DR 14l e

<Ly(1—Ly)eM+ st « o +h,
And by making (2) and (3),

n—1
| Y (o -+nh) Z:o Y-+ +1)h)E, |
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<IBo I (1+4,) |+ 1B, I (1 4) |+ + By

= v=3
SL2L36A1+A2+ L] +)\ﬂ.
Hence we have the inequality

ley| SLghitate ..+t Q.E.D.
Remark. The following example satisfies the conditions of Theorem [2],
r—_ €7
TS
In Theorem [2], if we take the constants A4, as
—1<4,<4,:,<0
and
11+Anl = e_)‘”—lJ

then A,;>A,> 0, and we have the following result.

Corollary. Under the same assumptions as in Theorem [2] on the constants

3IM, 3h,, 3h ,ﬂ[a,,}.oo ,3L,,3L,3L,, if the following conditions are satisfied
1 PR 3 9

n—1
1) 11+ 4,4] =€, 2 Aol <L,

(2) | fy(@y)| <&(2) (—oo<y <o)

"_211 7oy +vh) <(1—Ly—Ly)e-*n for 0<h<h, ,

) ]diwf@,y)j <¥(@) (—oo<y<ed) ,
where
(%o + (v +0,)h)+ R, <a,Lse 1™~ for 0<h<h,
ng_:: a,<L.,en (A,>0r=0,1,2,--+),

then
len l SLse—Al—/\a—...-An
Jor 0<h<min{hy,h,}.

In the above corollary, for instance, if we take the constants 4, as

—1

Am-—:m (m=12,---) (p>1 : constant).
A
and a>-%1 p+1,

then the conditions (1) is satisfied.

Moreover, using the same idea, we may have the similar result for the propagation
of error of general one step methods.
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