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Abstract

In the present paper we treat an almost symplectic Finsler structure, defined as an
alternate, non-degenerate Finsler tensor field of type (0, 2), and especially consider
the problem of its integrability.

§0. Introduction.

On a differentiable manifold there exist many remarkable geometrical structures,
as metrical, conformal, almost complex, almost symplectic, conformal almost symplectic,
almost cosymplectic, conformal almost cosymplectic ete. ([2], [7], [12], [13]), whose
corresponding Finsler structures have been studied from various standpoints ([9],
[11], [3], [1]). It seems to be important to clarify their special geometrical properties
much more. For example, if someone wants to study the concept of Finsler analytical
dynamics, he will have need of the theory of almost symplectic Finsler structures.

In their recent papers [10, 11], the authors have investigated the metrical Finsler
connections and the conformal Finsler connections, as respective compatible ones with a
Finsler metric and a conformal Finsler structure. Continued from them, in the present
paper we shall treat an almost symplectic Finsler structure, defined as an alternate,
non-degenerate Finsler tensor field of type (0, 2).

We first introduce the notion of almost symplectic Finsler structure (§1), and define
the notion of almost symplectic Finsler connection on a geometrical way, and study the
properties of these notions (§2). And, the structure of the set of all almost symplectic
Finsler connections [1] is discussed (§3), and the group of their transformations
preserving a non-linear connection gives us the various important invariants (§4). For
a 2-form on the tangent bundle 7'(M) of the base manifold M, we characterize the case
when it is closed, using only the Finsler tensor fields (§5), and finally solve the problem
of integrability of an almost symplectic Finsler structure, by lifting it to a 2-form on
(M) (6).

As to the terminology and notations we retain those in our previous joint papers
[10, 11], which are essentially based on M. Matsumoto [5, 6].
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§1. The notion of almost symplectic Finsler structure.

Let M be a differentiable manifold of dimension 2n. z=(z‘) and y=(y’) denote a
point of M and a supporting element respectively. As a geometrical Finsler object on
M, we give

Definition 1.1. A Finsler tensor field a;; of type (0, 2) on a differentiable manifold
M is called an almost symplectic Finsler structure on M, if it is alternate and non-
degenerate:
(1.1) Aij = — Qj;
(12) det (G/,'j) —7& 0.
Example 1. Let w; be a Finsler covariant vector field on M. The Finsler tensor

field w;j=0w;/oyi~dw;/oy’ defines an almost symplectic Finsler structure on M, if
det(w;;)7%0.

Example 2. If a Finsler space M is an almost Hermitian space, it admits an
almost symplectic Finsler structure. In fact, let f ; be an almost complex structure
such that

(1.3) [ifi==8.  9sfif;=9:>
where ¢;; is the fundamental tensor field. Then, the Finsler tensor field a;=g..f’; satis-
fies a;;=-aj;, det(a;;)7%0.
The latter interesting example was communicated by Y. Ichijy®.

Given an almost symplectic Finsler structure a;;, we may associate Obata’s oper-
ators:

(1.4) CHES % (8587 — asja™) 6% = —;— (8287 + asja™)

where (a'/) is the inverse matrix of (a;):
(1.5) a;jai* = 8 .

o is also alternate. Obata’s operators have the same properties as ones associated
with the Finsler space [10].

§2. Almost symplectic Finsler connections.

A Finsler connection FI' on a differentiable manifold M is, by the third definition
of M. Matsumoto [5, 6], a triad of a V-connection I'y in the linear frame bundle L(M), a
non-linear connection N in the tangent bundle 7'(M), and a vertical connection I in the
Finsler bundle F(M). Let F; » N and O;: , be the respective coefficients of I'y,
N and I'.

For a Finsler tensor field, e.g. K;, the %- and v-covariant derivatives with respect
to FI' are given by
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(2.1) Kiy=5Ki/sa*+K"F; ,—K.,F" , K|, =aK:[ey*+K7rC; ,—K,0%,
where §/8x* = oot —N7o[oy™ .
The Ricei identities, applied to a Finsler tensor field a;;, are

Qijip—jnp = —aij,";'”—aimRﬁ;—dmmT“ aij| mBY
(2.2) Gijinli—ijlin = —OmiPlh—CimP T —ijimCry—aij | Py
@il i—ijl1le = —OmiS%—imS 1 —aij | STy »

where five torsion tensor fields T;: g R; 8 O;: 4 P; & S; , and three curvature tensor fields
R;.k,, P;k,, S;k, appear. .

Let C(z'(¢) ) be a differentiable curve in M and C(z(t), y*(t) ) a differentiable curve
in T(M) mapped on C by the canonical projection of T'(M). For a given Finsler
connection FI', a tangent vector field X*(t) along C is called parallel along C with
respect to C, if

(2.3) dXi|dt + Fi, X7 (do?[dt) + C%, X7 (8y*/dt) = O
where 8y* = dy*+ N, da™ .

Now and in the following, let an almost symplectic Fmsler structure a;; be given
on M. For two Finsler vector fields X, Y,

(2.4) o(X,Y) = ;X Y7

1S a Finsler scalar field. Then we have

Definition 2.1. A Finsler connection FI' is called almost symplectic with respect
to a;;, if a(X, Y) is preserved when X(¢), Y(¢) are parallel along any C with respect to
any C.

Theorem 2.1. The necessary and sufficient conditions that a Finsler connection FI'
be almost symplectic with respect to a;; are

(25) a/ijlk=0, (l,'jlk=0.

Theorem 2.2. The Finsler tensor fields @*”Rfk,, ”ij,, @*”S,k, and theur
h- and v-covariant dervatives of every order vamish, for every almost symplectic Finsler
connection, FI' with respect to a;;.

Proof. Applying the Ricci identities (2.2) to a;;, and remarking that Obata’s
operators are covariantly constant, we get the statement.

§3. The set of almost symplectic Finsler connections.

. . . o . .
Starting from a fixed Finsler connection FI', all almost symplectic Finsler connec-
tions are obtained in the same manner as in the previous papers [10, 11].

. Theorem 3.1. The set of all almost symplectic Finsler connections 1s gien by
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i i i

. 0. 0. 1 . 0 0 ,
Fiy = F5+ 00, Xi + - a™amjitam; |y X0 +03 X4,

. 0. 1 0 .
Otik = C;k + —2—a‘"‘am,-|k+(~);;. Yik ,

where FI01 1s a fized Finsler connection, (,) and |0 denote the h- and v-covariant differentiations
with respect to FIQ', and X}, X; w Y3, are arbitrary Finsler tensor fields.

This result is due to Gh. Atanasiu and I. Ghinea [1], where the inverse matrix (a*)
of (a;;) 1s defined by

(1.5") a;jatt = 8%,

and so the above a* means a* in the present paper.

Putting X;;:X;: sz; ;=0 in Theorem 3.1 we have an example of an almost
symplectic Finsler connection, which corresponds to the Kawaguchi metrical Finsler

0

connection derived from FI' in a Finsler space ([10]).

Theorem 3.2. Let FIQ be a fized Finsler connection. Then, the following Finsler
connection FI' is almost symplectic:

PR TRY op 1 im, 0 i R 1 im, ¢
(3.2) Nk=Nk,ij=ij+‘§“a Omjik 5 Cjk=0jk+—2‘a Amjlp -

0
On the other hand, if we take an almost symplectic Finsler connection as FI' in
Theorem 3.1, we have

Theorem 3.3. Let FI" be a fized almost symplectic Finsler connection. Then, the
set of all almost symplectic Finsler connections is gwen by

Nj=Ni-Xj,
0 0
. 0. .
Ci, =0 +0i Y5,

where Xi, X;:k, Y}k are arbitrary Finsler tensor fields.
0

The set in Theorem 3.3 has the following subset. We denote by FI'(N) a Finsler

0
connection having N as the non-linear connection.
Theorem 3.4. Let FI" be a fixzed almost symplectic Finsler connection. Then, the
0
set of all almost symplectic Finsler connections FI'(N) 1s given by
. O . . 0 . . . 0 . .
(3.4) N;=N;, F;k=F;k+@;;X;k, C’;k=0;k+@;; Ys,,

where X; » Y;: , are arbitrary Finsler tensor fields.
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§4. The group of transformations of almost symplectic Finsler connections.

Let us consider the transformations FI'(N)—»FI'(N) of almost symplectic Finsler
connections [8], which preserve the non-linear connection N. Owing to Theorem 3.4
they are given by

where X; 5o Y; , are arbitrarily given Finsler tensor fields.

Evidently we have

Theorem 4.1. The set of all transformations (4.1) and the mapping product form
an abelian group G, which is isomorphic to the additive group of the pairs of Finsler tensor
fields (@i;Xﬁk, @:; Y;,.

We shall pay attention to the invariants of the group G,. The torsion tensor

fields T; o S; 42 R;: " P;: ; are expressed as follows:

T =WalF5) 84y =Un(CF)
R, =Up{8N;[sa*), P}, =oN;[oy*—F,

kj?

(4.2)

where j;{---} denotes the alternate summation: N;z{A4;}=4j~As;. The torsion
tensor field R;k and the Finsler tensor field tj-k defined by

(4.3) £, = W oN' foy)

are called the curvature and torsion tensor fields of the non-linear connection N respectively
([3]). Since they depend on N only, they are invariants of G
We make here some notations:

w { *ijp = Gijp{@imte} 5 B¥jp = GijplaimBT}

T*;jn = Sijp{aimT T S*iik=@iik{“""'s7k} ’
where &;;;(+--} denotes the cyclic summation: &;j;{4ijs} =4+ Ajri+Asij, and

(4.5)

3

1 ) 2
{ wijh = G TT; + Wi {@im P} kijp = GimSTy+ W {0nCl)
4
"
wijn = Wjr{asn PP} kijp = Wij (@imC) -

It is noted that t*;;, R* s, T*:js, S*;j5 are alternate, and I;ijk for a=1, 4 (resp. a=
2, 3) are alternate with respect to 4, j (resp, j, k).
By direct calculations we have

Theorem 4.2. The Finsler tensor fields t;k, Rj.k, t*iin B¥ips T*ija, S*ijs and l:,-,-k
(a=1, 2, 3, 4) are tnvariants of the group G,

Proposition 4.1. Between the vnvariants in Theorem 4.2 there exist the following
relations:
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1 2
Cijn (i} = 2T+, Signlije} = 28%5s,
3 4
(4.6) Sijr {kija} = T*ijp+ %10, Sijr {(Kije} = S*ijn
2 4 1 4
Kijh+rine = S*ijn KijetRpi=t*iip+ T* i —ramt?; -
Theorem 4.3. Let N be a non-linear connection in the tangent bundle T(M).
(1) The invariant T* ;5 (resp. S*;jz) vanishes if and only if there ewists an almost
symplectic Finsler connection FI'(N) with T,=0 (resp. S};=0).
(2) The imvariants T*;j, and S*;;; vanish if and only if there exists an almost

symplectic Finsler connection FI'(N) with T;: k=S; »=0.

Proof. If we put X;k=o¢T;k in (4.1), where o is a real number, we have

o

2

Ty =T+ 2 (07 X5 = (1+ %@T;k 4% i,
Taking a=-2/3, T*;;=0 implies T;..k=0. The converse is evident. The statement
about S*;;; is proved in the same way. (2) follows from the independence of two
procedures in (1).

Paying attention to a,—,-|k=8a,-j/ayk—:,-jk=0, Proposition 4.1 tells us the condition
that a;; be a usual almost symplectic structure.

Theorem 4.4. An almost symplectic Finsler structure a;; does nmot depend on the

2 .

supporting element y, if and only f ;:;jk———O, which s equivalent to k;;3=0. In this
case it holds S*;;;=0.

For the later use we have

Proposition 4.2. (1) If /::;jk=0 then 21%*;j,=—t* ;.

(2) Assume that /éijk+akai”;=O, i,-,-k+,§,-,-k=0, and S*;;,=0. Then, R*;;3=0 us
equivalent to T*,;;,=0.

(3) Assume that ’/‘é,-jk—l—a/:c,-jk—f—aka;”jz(), (x/?:,-,-k—l—ic,'jk_—_o, and S*,’jk‘:O, where aFE
*1 s a real number. Then, T*;;,+aR*;;,=0 s equivalent to T*;;;=0.

Forming the cyclic summations of each of the assumed formulas, the proof
follows from Proposition 4.1.

In the following paragraphs we shall study the cases when some invariants in
Theorem 4.2 vanish, related with the integrability of the structure a;;.

§5. 2-forms on the tangent bundle.

Let A¥T(M)) be the F-module of all k-forms on the tangent bundle 7'(M), where %
is the ring of all differentiable functions on 7'(M). If a non-linear connection N is given
in T'(M), then (dzf, 8y’) makes a local basis of AY(Z'(M)), which is dual to (8/8z¢, 3/oy’),
where
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(5.1) Sy' = dy* + N dz™,
(5.2) 8/3x* = ajoxt— N7 afoy™ .
The differential of fe% is written as
(5.3) df = (3f/32) da* + (o f[oy’) 8y° ,

and the exterior differential of 8y is given by
(5.4) d(5y°) — % Risda* Ndai+ (oI [oy*) sy Ndla

If we express weA (T'(M)) in the form
(55) w= w,-dw"+¢b;8y" ,
the exterior differential dw is given by
(5.6) o = L @300 N+ i35 N + - oy N By
. w——?w,-j /\x+w,']~8y/\w+—2—w,-jy/\y,
where
W;; = 8w;/8ﬂ—8w,-/8z‘+R}"j Wy
(5.7) w;; = BW; [0yl —dd;[dxt + (0N} [oy?) dom
c'o,-j = ad),-/ayf—acbj/ay‘ .
@;j, w;j, o;; are Finsler tensor fields. In fact, as the tensorial expressions we have
Proposition 5.1. If a Finsler connection FI'(N) is given, @;;, w;j, c;; have the
exXPressions
Wij = ) j—Wj1; + L] W+ R} o
(5.7') w;j = w,-lj—cbj,,-+0?’; w,,,—}-Pf’jcbm ,
@i = ;| j— | i+ 8 om -
In general, weA*(T'(M)) is written in the form

a;jda N\ da + by N\ Syi + + CiidY NSy

(5.8) w 5

I
S

where a;;=-a;;, ¢;;=-Cj;. The exterior differential dw is given by

(5.9) deo = - oile? NI N + L douguda nad N3y

1 . . 1 , .
+ o c?),-jkdw‘ ASyi N\ Sy* + ry w;irdY' N\ Y’ NSy*,

where
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(lvijk = &;,(8a;;/5x* +ZimR;;;} )

@4 = O35/DY* + LR+ (8h4/00° + ;N " [0y}
Wi = 873/30° + ;3 (0bs3/0y" 4 C4mdN T 2

Z’ijk = &;;3{ac;[3y"} .

(5.10)

If we calculate d2w=0 from (5.9), we have

Theorem 5.1. The coefficients wijx(a=1, 2, 3, 4) of (5.9) satisfy the following
tdentities:

1 . 1 ! 2 " 2 m

W {Swjna/ 327} —Wpy (3w;a/ 88"} — Sjp {wijm By —wrim B 3} =0,

1 2 2 3
—aw,-jk/ay’—}—@,-jk {Sw,-ﬂ/Sxk—w,o,-maNZ‘/ay’+w,-m,R;';} =0,

. 4 "

(6.11) (A {aaz)ijz/ayk} +Asj {SOijkl/SW—Z’imkaN?/ay‘+Z)£mlaN;-"/ayk} +wnuBR; =0,

4 . 3 4
w4/ 82 —S ;1 (Bw; [y’ + wmiidN ' [0y'} = 0,

4 A 4
Wj {Bwa1[0y*} —Nps (Bw;ja/0y'} = 0.

a . .
w;j; are Finsler tensor fields. In fact, as the tensorial expressions we have

Proposition 5.2. If a Finsler connection FI'(N) 1s given, cf)i,-k(a,zl, 2, 3, 4) have
the expressions

1

wijk = Syja{Bijint dim T+ bimR 3}

2

(5.10) Wijh = 35| 1+ b T 3+ ComB ] +Wij Bjmii+ AimC 3+ bim Py}

. 3

Wijt = bimS i+ Cimi+Wialbijl 14 bmiCli+CmiP 1)
4
wijt = S;jn (Cij| 2+ CimS 3} -

For weA*T(M)) written in the form (5.8) we put

(5.12) A=[ & b"’].

bii ey
Definition 5.1. A 2-form weA*T(M)), for which the matrix 4 is non-degenerate,
is called vntegrable if dw=0.
One knows [4] that, in this case, dw=0 characterizes the fact that weA*(T(M)) has
the property that there exists a local coordinate system in (M) in which, in the natural
basis, the coefficients of w are all constant.

Theorem 5.2. A 2-form weA*T(M)), for which the matriz A s non-degenerate, s
wntegrable if and only if the Finsler tensor fields C?)ijk (a=1, 2, 3, 4) vanish.

It is easily seen that for wed*T(M)) the property det 440 does not on the choice
of the local basis. A 2-form weAX(T(M)) with detA+#0 is called non-degenerate, and
determines an almost symplectic structure on T'(M).
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When b;;=0, then a;; and ¢;; give two almost symplectic Finsler structures on M.
When ;=0 or ¢;;=0, and b;;/=-b;;, then b;; gives an almost symplectic Finsler
structure on M.

Conversely, let a;; be a given almost symplectic Finsler structure on M. Then
the 2-forms on T(M) defined by w=1/2a;jdz’ Adzi+1/2a,;:8y° A8y, w=a;ida’ A8y, ete.
determine almost symplectic structures on T'(M). The integrability of each of these 2-
forms gives some type of integrability for the given almost symplectic Finsler
structure a;;. We discuss these cases in the following last section.

§6. Integrabilities of an almost symplectic Finsler structure.

Assume that a non-linear connection N be given in the tangent bundle I'(M).
Then, an almost symplectic Finsler structure a;; on the base manifold M is lifted to a
2-form w on T(M) in various ways. We consider the following w of three single types
I, II, IIT and four combined types I--II, I--III, IT--ITI, I+4-oII4-III, where oz
+1 is a real number:

w= % ﬁ,-,-dw"/\dwf+zi,-d:n"/\8yf + —1— 5,']'8?/"/\3?/7' ,

2
where

@ i),'j Cij

I a,;j 0 0

II 0 a;; 0
m | o 0 @i

I+I1 @ij g 0
I+II1 aij 0 aij
IT+I1T 0 @i; 2]
I+alI+111 aij @a;; Qij

Proposition 6.1. Each 2-form w of types 11, I4+1II, I4III, II+IIT and I+oll4
III s non-degenerate, and defines an almost symplectic structure on T(M).

Proposition 6.2. The coefficients cs,-jk (a=1, 2, 3, 4) of the exterior differentials of
the 2-forms given in Proposition 6.1 are invariants of the group G, and are given in the
Sollowing table:

1 2 3 4
@ijk @ik 7] @ik
1 2
II R*ijk kg kijk 0
* * 1 4 2
I+II | T*;+R*j KijhtKijh *ijk 0
4
m 3
I+III | T* *ijhtOpmB K4 jk S*; i
* X R” : :
II+III | R*; rijht@rmB 15 ik 15 S*; ik
4 1 2 3
I+eII+III | T*;;+aR*; xijjtanijhtGrmB] @kijptKijh 8%; i
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Proof. Calculating directly from Proposition 5.2 we have

1 2 3 4
w; ik ®;jk @ik w;jk
" 4
I T ijk K,']'k O 0
1 2
II B*;j; K5 jk Kijk 0
m 3 *
III 0 akaij Kijk S ijk

Since Z),-,-k are linear combinations of a;;, b,j, ¢;;, the expressions for the combined types
are obtained as the linear combinations of the ones for I, II, III.

Theorem 6.1.  The Finsler tensor fields Z)i,-k (a=1, 2, 3, 4) giwen wn Proposition 6.2
satisfy the equation (5.11).

Now, corresponding to Definition 5.1 we have

Definition 6.1. An almost symplectic Finsler structure a;; on a differentiable
manifold M is called untegrable of the type II, I--II, I--III, IT4+III or I4-oII4III, if
there exists an almost symplectic Finsler connection FI'(N) such that the corresponding
lifted 2-form on 7'(M) is integrable.

Then, from Theorems 4.3 and 4.4 and Proposition 4.2 we have

Theorem 6.2. An almost symplectic Finsler structure a;; on o differentiable
manifold M s integrable of the type 11, I+11, I--III, IT4+I1I or I4-oI14-111, of and only
of there exists an almost symplectic Finsler connection FI'(N) satisfying the following
conditions in each type:

IT : R¥3 =0, ;lci,-k =0, a;; does not depend on the supporting element y.
I+11 i —2R¥j 4t =0, :lc,-jk =0, a;; does not depend on

the supporting element y.
T+ ¢ T8, =80, =0, kit apBl =0, iz—0.
410 ¢ T%, =80, =0, kjp+ @Bl =0, kit =0.

"

T+odl+T01 : T8, = 8%, = 0, kijp+omijs+apRls = 0, anpeticijp =0.

Finally, we note that the above integrabilities are reduced to two types II, €I4-III,
where €540 is a constant. In fact, the transformation Ni—»Ni=N;-X; of non-linear
connections implies 3y=8y'-Xidas. Taking Xj=-1/23;, Xj=-3; or X;=-a3}, a
2-form of the type I4+II, II+4III or I4-oII4IIT is reduced to a 2-form of the type II,
I4-IIT or (1-o2)/2 I4-III respectively.

If an almost symplectic Finsler structure a;; really depends on the supporting
element, there does not exist the integrability of the type II, which shows the
importance of the lift of the type éI+III. For the case we have

Theorem 6.3. Let an almost symplectic Finsler structure a;; be integrable of the
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type ELI+-1I1. a,; does mot depend on the supporting element, if and only if the concerned
non-linear connection is integrable: R;: »=0.

The proof follows from Efc,-jk-{- aka;”jz—_O, and Theorem 4.4.
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