NORMAL SUBGROUPS OF MULTIPLY TRANSITIVE PERMUTATION GROUPS

著者	ATSUMI Tsuyoshi
journal or	鹿児島大学理学部紀要.数学・物理学・化学
publication title	
volume	14
page range	21-23
別言語のタイトル	多重可移群の正規部分群について
URL	http://hdl.handle.net/10232/00003977

Rep. Fac. Sci. Kagoshima Univ., (Math., Phys. & Chem.), No. 14, p. 21-23, 1981

NORMAL SUBGROUPS OF MULTIPLY TRANSITIVE PERMUTATION GROUPS

Tsuyoshi ATSUMI (Received September 28, 1981)

1. Introduction

is t-fold transitive.

Let G be a t-fold transitive group on $\Omega = \{1, 2, \dots, n\}$ with $t \ge 2$, $H(\ne 1)$ a normal subgroup of G and assume that n > t+1. The following is a classical result of Jordan.

Proposition 1 (Jordan, [8]). Under the above assumptions H must be (t-1)-fold transitive.

There are several results on t-told transitivity of H by Wagner [7] for t=3, Ito [4] and Saxl [6] for t=4 and Bannai [3] for $t\geq4$, and it has been conjectured that if $t\geq4$ then H must be t-told transitive.

The purpose of this paper is to prove the following

Theorem. Let G and H be as above, and assume that $t \ge 4$ and n > t+1. Let Δ_1 , $\Delta_2, \dots, \Delta_s$ be the orbits of $H_{1, 2, \dots, t-1}$ on $\Omega - \{1, 2, \dots, t-1\}$. Assume that q is an odd prime which divides (t-1) and $n \equiv r \pmod{q}$, 0 < r < q. Then s divides r, and if $r \ge 2$ then s is less than r. In particular if r=1 or a prime then H

Notation. For a set X, let |X| denote the number of elements of X. For a subset X of a group G, we denote by $N_G(X)$ the normalizer of X in G. For a permutation group G on Ω , let $G_{i,j,\dots,k}$ denote the stabilizer of the points i, j, \dots, k in G. Let Δ be a subset of Ω . We denote by $G_{(\Delta)}$ the setwise stabilizer of Δ . For a set X of permutations the totality of the points left fixed by X is denoted by I(X). If a subset Δ of Ω is a fixed block of X, i.e. if $\Delta^X = \Delta$, the restriction of X on Δ is a set of permutations on Δ . We denote it by X^{Δ} .

2. Preliminary results

We list here the results which are needed for the proof of our theorem.

Proposition 2. Let G be t-fold transitive on Ω , and let $\Gamma \subseteq \Omega$ with $|\Gamma| = t$. Let K be a normal subgroup of G and let P be a Sylow p-subgroup of K_{Γ} for some prime p. Then $N_{G}(P)$ is t-fold transitive on I(P).

Proposition 3 [2]. Let G be a t-fold transitive permutation group on a set Ω for $t \ge 4$ and let $H \ne 1$ be a normal subgroup of G. Then for all $\Delta \subseteq \Omega$ with $|\Delta| = t$, $H_{(\Delta)}^{\Delta} = S_t$.

T. Atsumi

Proposition 4 [6]. Let *H* be a *t*-fold transitive permutation group on a set Ω ($t \ge 2$) such that $H_{(\Gamma)}{}^{\Gamma} = S_{t+1}$ for all $\Gamma \subseteq \Omega$ with $|\Gamma| = t+1$. Then H_{Δ} and $H_{(\Delta)}$ have the same orbits on $\Omega - \Delta$ for all $\Delta \subseteq \Omega$ with $|\Delta| = t$.

Proposition 5 [5]. Let G be a triply transitive permutation group of odd degree n such that

(1) G is a normal subgroup of a quadruply transitive group, and

(2) any involution in G fixes at most three points. Then n is 5, 7, or 11, and G is A_5 , S_5 , A_7 or M_{11} .

Proposition 6 [1]. Let p be an odd prime. Let G be a 2p-fold transitive permutation group such that $G_{1, 2, \dots, 2p}$, is of order prime to p. Then G is one of $S_n (2p \le n \le 3p - 1)$ and $A_n (2p+2 \le n < 3p-1)$.

3. Proof of Theorem

Let (G, H) be a counter example of the smallest degree *n* to our theorem. Then under the assumption in Theorem $s \not| r$ or $2 \leq r \leq s$, in particular s > 1. Since $G_{1,2,\dots,t-1}$ is transitive on $\Omega - \{1, 2, \dots, t-1\}$ and $H_{1,2,\dots,t-1}$ is a normal subgroup of $G_{1,2,\dots,t-1}$, $|\Delta_1| = |\Delta_2| = \dots |\Delta_s|$ and hence

$$n-(t-1) = s |\Delta_1| \equiv r \pmod{q}.$$

Let $t \in \Delta_1$ and let S be a Sylow q-subgroup of $H_{1,2,\dots,t}$. Then, since $|\Delta_1| = |H_{1,2,\dots,t-1}$: $H_{1,2,\dots,t}|$ is prime to q, S is a Sylow q-subgroup of $H_{1,2,\dots,t-1}$. Now $H_{1,2,\dots,t-1}$ is a normal subgroup of $G_{1,2,\dots,t-1}$, and S is a Sylow q-subgroup, $G = N_G(S) H_{1,2,\dots,t-1}$. Thus we have that $N_G(S) \cong H$. Also $N_G(S) \cap H \neq 1$ because $|H| = n(n-1)\cdots(n-t+2)$ $|H_{1,2,\dots,t-1}|$.

Next we shall show that the number of orbits of $(N_H(S))_{1, 2, \dots, t-1}$ on $I(S) - \{1, 2, \dots, t-1\}$ is s. Since $(|\Delta_i|, q) = 1$, $\Delta_i \cap I(S) \neq \phi$ (i.e. there are at least s orbits). $I(S) \cap \Delta_i$ is an orbit for all i. For let α , $\beta \in I(S) \cap \Delta_i$. Since Δ_i is an orbit of $H_{1, 2, \dots, t-1}$ on $\Omega - \{1, 2, \dots, t-1\}$, there exists an element h in $H_{1, 2, \dots, t-1}$ such that $\alpha^h = \beta$. Both S^h and S are Sylow q-subgroups of $H_{1, 2, \dots, t-1, \beta}$. Thus there exists an element l in $H_{1, 2, \dots, t-1, \beta}$, such that $S^h = S^l$. We have that $hl^{-1} \in N_{H_{1,2},\dots, t-1}(S)$ and $\alpha^{hl^{-1}} = \beta$. We are done.

Therefore, if $S \neq 1$, then by induction, we have that s divides r and $2 \leq s < r$, or $|I(S)| \leq t+1$. If the first case holds, then this is a contradiction. If the second case holds, then |I(S)| = t+1 because $(|\Delta_i|, q) = 1$. So $N_H(S)^{I(S)} \geq A^{I(S)}$, where $I(S) = \{1, 2, \dots, t, t'\}$, and $A^{I(S)}$ is an alternating group of degree t+1 on I(S). There exists an element x in $H_{\{1, 2, \dots, t-1\}}$ such that $x = \cdots (t t') \cdots$: the existence of such an element is given by our knowledge of $N_H(S)^{I(S)}$. By Proposition 3 and Proposition 4 we obtain that $t' \in \Delta_1$. This is a contradiction. Therefore S=1.

From now on we shall divide the proof of Theorem into the following two cases: Case 1: t-1 is not a prime number. Case 2: t-1 is a prime number.

Case 1: Suppose that t-1 is not a prime number. (That is, t-1=kq, where q is a prime and $k\geq 2$). In this case H is kq-fold transitive on Ω and $H_{1, 2, \dots, kq}$ is of order prime to q. Therefore using Proposition 6 H is one of $S_n(kq\leq n\leq kq+q-1)$ and $A_n(kq+2\leq n< kq+q-1)$. Since n>t+1, H is a t-fold transitive permutation group on Ω . Thus s=1, which is a contradiction.

Case 2: Suppose that t-1 is q, a prime number. Let $t \in \Delta_1$ and let T be a Sylow 2-subgroup of $H_{1, 2, \dots, t}$. By Proposition 2 $N_G(T)^{I(T)}$ is t-fold transitive on I(T), and By Proposition 1 $N_H(T)^{I(T)}$ is (t-1)-fold transitive on I(T). Hence Proposition 5 implies that $N_H(T)^{I(T)} = A_{t+1}$, S_{t+1} or A_{t+3} when $t \ge 6$, and $N_H(T)^{I(T)} = A_5$, S_5 , A_7 or M_{11} when t=4. Let $\varepsilon \in I(T)$ and $\varepsilon \notin \{1, 2, \dots, t\}$. If |I(T)| = t+1 then $\varepsilon \in \Delta_1$ since $|\Delta_i| \equiv 0$ (mod 2) and T is a 2-group. Also in the other cases $\varepsilon \in \Delta_1$, since then $N_H(T)^{I(T)}$ is ttold transitive. Hence $I(T) \cong \Delta_1 \cup \{1, 2, \dots, t\}$.

Let x be a q-element of $N_H(T)$ involving the q-cycle $(1, 2, \dots, q)$ and fixing at least 2 points of I(T); the existence of such a q-element follows from our knowledge of $N_H(T)^{I(T)}$. Then $x \in H_{\{1, 2, \dots, t-1\}}$, and by Proposition 3 and Proposition 4 x preserves the $H_{1,2,\dots,t-1}$ -orbits. Hence if $|\Delta_1| \equiv 1 \pmod{q}$ then a Sylow q-subgroup of $H_{1,2,\dots,t-1} \neq 1$. This is a contradiction. Thus $|\Delta_1| \equiv l \pmod{q}$, 1 < l < q. Therefore $n = sl \pmod{q}$. This is also a contradiction. For since $q = t-1 > |I(x)| \ge sl$, sl = r.

Acknowledgment

I wish to thank Prof. Hirosi Nagao for his careful reading of the manuscript and his kind advices.

References

- [1] E. BANNAI: On multiply transitive permutation group II, Osaka J. Math. 11 (1974), 413-416.

- [4] N. Ito: Normal subgroups of quadruply transitive permutation groups, Hokkaido J. Math. 1 (1972), 1-6.
- [5] J. King: Doubly transitive groups in whih involutions fix one or three points, Math. Z. 111 (1969), 311-321.
- [6] J. Saxl: Multiply transitive permutation groups, Ph. D. Thesis, Oxford University 1973.
- [7] A. Wagner: Normal subgroups of triply transitive permutation groups of odd degree, Math. Z. 94 (1966), 219-222.
- [8] H. Wielandt: Finite permutation group, Academic Press 1964.