NORNAL SUBGROUPS OF MLTI PLY TRANSI TI VE PERMTATI ON GROUPS

著者	ATSUM Tsuyoshi
j our nal or publ i cat i on title e	鹿児島大学理学部紀要．数学•物理学•化学
vol une	14
page range	$21-23$
別言語のタイトル	多重可移群の正規部分群について
URL	ht tp：／／hdl ．handl e．net／10232／00003977

NORMAL SUBGROUPS OF MULTIPLY TRANSITIVE PERMUTATION GROUPS

Tsuyoshi Atsumi
(Received September 28, 1981)

1. Introduction

Let G be a t-fold transitive group on $\Omega=\{1,2, \cdots, n\}$ with $t \geqq 2, H(\neq 1)$ a normal subgroup of G and assume that $n>t+1$. The following is a classical result of Jordan.

Proposition 1 (Jordan, [8]). Under the above assumptions H must be ($t-1$)-fold transitive.

There are several results on t-told transitivity of H by Wagner [7] for $t=3$, Ito [4] and Saxl [6] for $t=4$ and Bannai [3] for $t \geqq 4$, and it has been conjectured that if $t \geqq 4$ then H must be t-told transitive.

The purpose of this paper is to prove the following
Theorem. Let G and H be as above, and assume that $t \geqq 4$ and $n>t+1$. Let Δ_{1}, $\Delta_{2}, \cdots, \Delta_{s}$ be the orbits of $H_{1,2}, \cdots, t-1$ on $\Omega-\{1,2, \cdots, t-1\}$. Assume that q is an odd prime which divides $(t-1)$ and $n \equiv r(\bmod q), 0<r<q$.
Then s divides r, and if $r \geqq 2$ then s is less than r. In particular if $r=1$ or a prime then H is t-fold transitive.

Notation. For a set X, let $|X|$ denote the number of elements of X. For a subset X of a group G, we denote by $N_{G}(X)$ the normalizer of X in G. For a permutation group G on Ω, let $G_{i, j, \cdots, k}$ denote the stabilizer of the points i, j, \cdots, k in G. Let Δ be a subset of Ω. We denote by $G_{(\Delta)}$ the setwise stabilizer of Δ. For a set X of permutations the totality of the points left fixed by X is denoted by $I(X)$. If a subset Δ of Ω is a fixed block of X, i.e. if $\Delta^{X}=\Delta$, the restriction of X on Δ is a set of permutations on Δ. We denote it by X^{Δ}.

2. Preliminary results

We list here the results which are needed for the proof of our theorem.
Proposition 2. Let G be t-fold transitive on Ω, and let $\Gamma \cong \Omega$ with $|\Gamma|=t$. Let K be a normal subgroup of G and let P be a Sylow p-subgroup of K_{Γ} for some prime p. Then $N_{G}(P)$ is t-fold transitive on $I(P)$.

Proposition 3 [2]. Let G be a t-fold transitive permutation group on a set Ω for $t \geqq 4$ and let $H \neq 1$ be a normal subgroup of G. Then for all $\Delta \subseteq \Omega$ with $|\Delta|=t, H_{(\Delta)}{ }^{\Delta}$ $=S_{t}$.

Proposition 4 [6]. Let H be a t-fold transitive permutation group on a set $\Omega(t \geqq 2)$ such that $H_{(\Gamma)}{ }^{r}=S_{t+1}$ for all $\Gamma \cong \Omega$ with $|\Gamma|=t+1$. Then H_{Δ} and $H_{(\Delta)}$ have the same orbits on $\Omega-\Delta$ for all $\Delta \subseteq \Omega$ with $|\Delta|=t$.

Proposition 5 [5]. Let G be a triply transitive permutation group of odd degree n such that
(1) G is a normal subgroup of a quadruply transitive group, and
(2) any involution in G fixes at most three points. Then n is 5,7 , or 11 , and G is A_{5}, S_{5}, A_{7} or M_{11}.

Proposition 6 [1]. Let p be an odd prime. Let G be a $2 p$-fold transitive permutation group such that $G_{1,2}, \cdots, 2 p$, is of order prime to p. Then G is one of $S_{n}(2 p \leqq n \leqq 3 p$ $-1)$ and $A_{n}(2 p+2 \leqq n<3 p-1)$.

3. Proof of Theorem

Let (G, H) be a counter example of the smallest degree n to our theorem. Then under the assumption in Theorem $s \nmid r$ or $2 \leqq r \leqq s$, in particular $s>1$. Since $G_{1,2}, \cdots, t-1$ is transitive on $\Omega-\{1,2, \cdots, t-1\}$ and $H_{1,2}, \cdots, t-1$ is a normal subgroup of $G_{1,2}, \cdots, t-1$, $\left|\Delta_{1}\right|=\left|\Delta_{2}\right|=\cdots\left|\Delta_{s}\right|$ and hence

$$
n-(t-1)=s\left|\Delta_{1}\right| \equiv r(\bmod q) .
$$

Let $t \in \Delta_{1}$ and let S be a Sylow q-subgroup of $H_{1,2, \cdots, t}$. Then, since $\left|\Delta_{1}\right|=\mid H_{1,2, \cdots, t-1}$: $H_{1,2}, \cdots, t \mid$ is prime to q, S is a Sylow q-subgroup of $H_{1,2}, \cdots, t-1$. Now $H_{1,2}, \cdots, t-1$ is a normal subgroup of $G_{1,2}, \cdots, t-1$, and S is a Sylow q-subgroup, $G=N_{G}(S) H_{1,2}, \cdots, t-1$. Thus we have that $N_{G}(S) \subseteq H$. Also $N_{G}(S) \cap H \neq 1$ because $|H|=n(n-1) \cdots(n-t+2)$ $\left|H_{1,2}, \cdots, t-1\right|$.

Next we shall show that the number of orbits of $\left(N_{H}(S)\right)_{1,2}, \cdots, t-1$ on $I(S)-\{1,2$, $\cdots, t-1\}$ is s. Since $\left(\left|\Delta_{i}\right|, q\right)=1, \Delta_{i} \cap I(S) \neq \phi$ (i.e. there are at least s orbits). $I(\mathrm{~S})$ $\cap \Delta_{i}$ is an orbit for all i. For let $\alpha, \beta \in I(S) \cap \Delta_{i}$. Since Δ_{i} is an orbit of $H_{1,2}, \cdots, t-1$ on $\Omega-\{1,2, \cdots, t-1\}$, there exists an element h in $H_{1,2}, \cdots, t-1$ such that $\alpha^{h}=\beta$. Both S^{h} and S are Sylow q-subgroups of $H_{1,2, \cdots, t-1, \beta}$. Thus there exists an element l in $H_{1,2}, \ldots, t-1, \beta$, such that $S^{h}=S^{l}$. We have that $h l^{-1} \in N_{H_{1,2}, \cdots, t-1}(S)$ and $\alpha^{k l-1}=\beta$. We are done.

Therefore, if $S \neq 1$, then by induction, we have that s divides r and $2 \leqq s<r$, or $|I(S)|$ $\leqq t+1$. If the first case holds, then this is a contradiction. If the second case holds, then $|I(S)|=t+1$ because $\left(\left|\Delta_{i}\right|, q\right)=1$. So $N_{H}(S)^{I(S)} \geqq A^{I(S)}$, where $I(S)=\{1,2, \cdots, t$, $\left.t^{\prime}\right\}$, and $A^{I(S)}$ is an alternating group of degree $t+1$ on $I(S)$. There exists an element x in $H_{\{1,2, \ldots, t-1\}}$ such that $x=\cdots\left(t t^{\prime}\right) \cdots$: the existence of such an element is given by our knowledge of $N_{H}(S)^{I(S)}$. By Proposition 3 and Proposition 4 we obtain that $t^{\prime} \in \Delta_{1}$. This is a contradiction. Therefore $S=1$.

From now on we shall divide the proof of Theorem into the following two cases:
Case 1: $t-1$ is not a prime number.

Case 2: $t-1$ is a prime number.
Case 1: Suppose that $t-1$ is not a prime number. (That is, $t-1=k q$, where q is a prime and $k \geqq 2$). In this case H is $k q$-fold transitive on Ω and $H_{1,2}, \cdots, k q$ is of order prime to q. Therefore using Proposition $6 H$ is one of $S_{n}(k q \leqq n \leqq k q+q-1)$ and $A_{n}(k q+$ $2 \leqq n<k q+q-1)$. Since $n>t+1, H$ is a t-fold transitive permutation group on Ω. Thus $s=1$, which is a contradiction.
Case 2: Suppose that $t-1$ is q, a prime number. Let $t \in \Delta_{1}$ and let T be a Sylow 2 -subgroup of $H_{1,2}, \ldots, t$. By Proposition $2 N_{G}(T)^{I(T)}$ is t-fold transitive on $I(T)$, and By Proposition $1 N_{H}(T)^{I(T)}$ is $(t-1)$-fold transitive on $I(T)$. Hence Proposition 5 implies that $N_{H}(T)^{I(T)}=A_{t+1}, S_{t+1}$ or A_{t+3} when $t \geqq 6$, and $N_{H}(T)^{I(T)}=A_{5}, S_{5}, A_{7}$ or M_{11} when $t=4$. Let $\varepsilon \in I(T)$ and $\varepsilon \notin\{1,2, \cdots, t\}$. If $|I(T)|=t+1$ then $\varepsilon \in \Delta_{1}$ since $\left|\Delta_{i}\right| \equiv 0$ $(\bmod 2)$ and T is a 2 -group. Also in the other cases $\varepsilon \in \Delta_{1}$, since then $N_{H}(T)^{I(T)}$ is t told transitive. Hence $I(T) \cong \Delta_{1} \cup\{1,2, \cdots, t\}$.

Let x be a q-element of $N_{H}(T)$ involving the q-cycle $(1,2, \cdots, q)$ and fixing at least 2 points of $I(T)$; the existence of such a q-element follows from our knowledge of $N_{H}(T)^{I(T)}$. Then $x \in H\left\{1_{1}, \cdots, t-1\right\}$, and by Proposition 3 and Proposition $4 x$ preserves the $H_{1,2}, \cdots, t-1$-orbits. Hence if $\left|\Delta_{1}\right| \equiv 1(\bmod q)$ then a Sylow q-subgroup of $H_{1,2}, \cdots$, ${ }_{t-1} \neq 1$. This is a contradiction. Thus $\left|\Delta_{1}\right| \equiv l(\bmod q), 1<l<q$. Therefore $n=s l(\bmod q)$. This is also a contradiction. For since $q=t-1>|I(x)| \geqq s l$, $s l=r$.

Acknowledgment

I wish to thank Prof. Hirosi Nagao for his careful reading of the manuscript and his kind advices.

References

[1] E. Bannai: On multiply transitive permutation group II, Osaka J. Math. 11 (1974), 413-416.
[2] : A note on characters of normal subgroups of multiply transitive permutation group, J. Fac. Sci. Univ. Tokyo 20 (1973), 373-376.
[3] -: Normal subgroups of finite multiply transitive permutation groups, Nagoya Math. J. 53 (1974), 103-107.
[4] N. Ito: Normal subgroups of quadruply transitive permutation groups, Hokkaido J. Math. 1 (1972), 1-6.
[5] J. King: Doubly transitive groups in whih involutions fix one or three points, Math. Z. 111 (1969), 311-321.
[6] J. Saxl: Multiply transitive permutation groups, Ph. D. Thesis, Oxford University 1973.
[7] A. Wagner: Normal subgroups of triply transitive permutation groups of odd degree, Math. Z. 94 (1966), 219-222.
[8] H. Wielandt: Finite permutation group, Academic Press 1964.

